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1 Problem One

Consider a object orbiting around the earth at a constant altitude and constant latitude, i.e.
orbiting at a constant radius R from the earth’s center and a constant angle from the north
pole 6y. Show that the velocity and acceleration are given by

d .

d—‘: = Rsinfyde, (1.1)

2 . . ..

ZT;S = Rsin 6, <— sin Qongep — cosbyp’ey + gbe¢> (1.2)

Here we are using

x = psinf cos ¢ (1.3)
y = psinfsin ¢
2z = pcosd (1.5)

1.1 Solution One

First, let’s compute e,, ey, e,. Given the relationships in Eq. (1.3) - Eq. (1.5), we find
that

dx = (sinf cos @) dp + (pcosf cos @) df + (—psin b sin @) do (1.6)
dy = (sinfsin @) dp + (pcos O sin @) df + (psin b cos ¢) do (1.7)
dz = (cos0) dp + (—psind) dd + (0) dp (1.8)
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Given that
ds = Zdx + ydy + 2dz = e, dp + pegdf + psinfeydo (1.9)
We can see that
ds = & (sin 6 cos ¢dp + p cos 6 cos ¢pdf — psin O sin pdo) (1.10)
+ ¢ (sin @ sin ¢dp + p cos 0 sin ¢pdf + psin O cos pdo) (1.11)
+ 2 (cosBdp + —psin 6dh) (1.12)

Hence, the unit vectors in spherical coordinates are

e, = &sinfcos¢ + ysinfsin ¢ + Zcosd (1.13)
ep = T cosfcosp+ ycoshsing — Zsind (1.14)
es = —&sing + ycos ¢ (1.15)

Next, we can compute the velocity by dividing ds by dt:
ds . . ) .
pril + pegh + psin ey (1.16)

Since p = R = constant and 6 = 6, = constant, we find that

‘jl—‘j — Rsinfpeso (1.17)

Next, to compute the acceleration, we need to take the derivative of ds/dt. In order to do
so, we need to compute degy/dt. This is

d€¢_ d A ~ _ (A ~ ]
W_E( Tsing + gcosp) = — (T coso+ ysing) ¢ (1.18)

Let’s try to write this in terms of e, and ey. It isn’t to hard to see that

sinfe, + cos fey = cos ¢pT + sin ¢y (1.19)
Thus, we can see that
ded, . .
o = (sinfe, + cosfey) ¢ (1.20)

Now, the acceleration is

d’s ) .dey - , . - )
proi Rsin 6 gbﬁ + ¢ey | = Rsinb (—qb sintpe, — ¢* cos Hhey + ¢e¢) (1.21)
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2 Problem Two

A helicopter hovering over a target releases a payload of mass m from rest. Including
linear air-drag, the differential equation describing the motions of the payload in the vertical
direction is
d*y dy
m— =—b——m 2.1
e at Y 21)
Solve for the position as a function of time by first solving for the velocity as a function

of time. After computing v(t) = d_gZ’ integrate the velocity to compute the position y(t).

Using v(t), determine the terminal velocity of the payload, i.e. the limit of the velocity as
t — 0.

2.1 Solution Two

The differential equation for the velocity is given by

dv b
4 == 2.2
Z T ov=—g (2.2)
This is solved by use of an integrating factor equal to I(t)
differential equation can be written as

= eP/™  Multiplying by I(t) our

7 (ebt/mv(t)) = —gebt/m (2.3)
Integrating both sides, and solving for v we find
o(t) = —% + Cettm (2.4)
Given that v(0) = 0, we find that C = gm/b. Hence,
9m
v(t) = 5= (e btim 1) (2.5)
Next, let’s integrate this to obtain y(t):
y(t) = % (_%e—bt/m —~ t) +D (2.6)
Setting y(0) = yo, we find that
2
gm
D = Yo + b_2 (27)
Therefore,
2
gm b Cbt/m
y(t) = o+ =5 (1 - t—e b/ ) (2.8)
Lastly, we can take the limit as ¢ — oo of v(t) to find the terminal velocity:
i __gm
tlggo v(t) = ; (2.9)

Notice that this agrees with setting dv/dt = 0 in the differential equation for v(t).
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3 Problem Three

A very useful identity in quantum field theory and group theory is the Jacobi identity. A
manifestation of the Jacobi identity in terms of Levi-Civita symbols is as follows:

€ade€bed + EbdeCead T Ecde€abd = 0 (3.1)
Prove that this identity holds.
3.1 Solution Three
To prove this identity, we use
€iab€icd = OacObd — OadObe (3-2)
Before we start using this identity, let’s get all repeated indices into the first position by
using the anti-symmetry property of the levi-civita symbol (i.e. € ; ;. = —€_; i ):
€ade€bed T Ebde€cad + €cde€abd = —€dac€dbe — Edbe€dca — Edee€dab (3.3)

Next, let’s use the above identity everywhere

€ade€bed + €vde€ecad + €cde€abd = _(5abéec - 5acded) - (5(1056(1 - 5ba(5€c) - (5ca56b - 5cb56a> (34)
= —Oa0cc + Oacled — OdcOea + Opadec — Scaleh + Ocblea (3.5)
=0 3.6
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4 Problem Four

Prove the following identities:

V(A-B)=(A-V) B+ (B-V)A+Ax (VxB)+Bx(VxA) (4.1)
Vx(AxB)=A(V-B)-B(V-A)+(B-V)A—-(A-V)B

[Hint: Recall that €;4€;cd = 0acObd — Oaadne)

4.1 Solution Four

Let’s work with the first identity first. In tensor notation, this can be written as
V(A-B), = By0,Ay + Ap0u By = 64c0pa (ByO:.Ag + Ap0.By) (4.3)
Recall that €;4p€;cd = 00c0bq — 0addpe. We can use this identity to write
0acObd = OadObe + €iab€icd (4.4)
Then, we find that

V(A - B) = (0aadpe + €iav€ica) (ByO:Ad + Ap0:Bag)
= ByOy Ay + A0y B, + ByO:.Ag€ian€ica + ApOcBa€iav€ica
—(B-V)A+(A-V)B+B,(V x A), et + 4 (V % B), esar
=(B-V)A+(A-V)B+Bx (VxA)+Ax(Vx B)

Which is what we set out to prove. Next, let’s look at the second identity:
V X (A X B) = Eiabaa (A X B)b = ewbebcdﬁa (Ach) = €iab€bed (AcaaBd + Bd(‘?aAc) (49)
Using the usual levi-civita identity, we find

V x (A X B) = (6i06ad - 5id5ac) (AcaaBd + BdaaAc) (410)
—A(V-B)+(B-V)A-(A-V)B—-B(V-A) (4.11)

which is what we set out to prove.
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5 Problem Five

Consider a short lived, but prolific-breeding species inside a box. Suppose the rate of breeding
is proportional to the square of the density of beings inside the box and that the species dies
off at a rate of . The differential equation for the number of beings as a function of time
can be written as

dN
dt

Find N(t) given N(0) = 1. For what ratio of A/v does the species remain constant, i.e
N(t) =17

= AN? —yN (5.1)

5.1 Solution Five

We notice that this differential equation is separable. It separates to

dN

Ny = = (5.2)

To integrate the left-hand-side, we use partial fractions:

1 o B N(Aa—l—ﬁ)—o/y
NAN—7) N TAN—7 " T N(AN—7)

(5.3)

We can see that & = —1/+ and hence 8 = —Aa = A/~. Therefore,

[t - (e at) () o

We thus have

AN —
I T = cet (5.6)
Solving for N we find
v
N(t) = ——— :
(e (5.7
Forcing N(0) = 1, we find C = A — . Therefore, our solution is
N(t) = J - J (5.8)

yert+ Al —e)  (y—A)ert+ A
We can see that for v = A that N(¢) = 1.
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6 Problem Six

Solve the following differential equations

(D2 +1)(D* - 1)y =0
(D*+ D?*—6D)y =0

where D = d/dx.

6.1 Solution Six

To solve these problems, we guess a solution of the form
y(z) = Ae”

Plugging this into the first equation, we find

A" (W + 1) (w? — 1) =0

For A # 0, we require that w = 44 or w = +1. Therefore, our solution is

y(r) = 1™ + o™ + c3e” + che™”

We can write this in terms of real solutions as

y(x) = ¢ sin(z) + d, cos(x) + cze” + cpe”
To solve the second equation, we again guess y = Ae“*. Then we find

A" w(w? + w — 6) = Ae* " w(w +3)(w—2)=0

Thus, either w = 0, —3, 2. Therefore, our solution is

y(x) = c1 + coe” 3 4 cze™

(6.7)

(6.8)
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