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1 Problem One

Consider a object orbiting around the earth at a constant altitude and constant latitude, i.e.
orbiting at a constant radius R from the earth’s center and a constant angle from the north
pole θ0. Show that the velocity and acceleration are given by

ds

dt
= R sin θ0φ̇eφ (1.1)

d2s

dt2
= R sin θ0

(
− sin θ0φ̇

2eρ − cos θ0φ̇
2eθ + φ̈eφ

)
(1.2)

Here we are using

x = ρ sin θ cosφ (1.3)

y = ρ sin θ sinφ (1.4)

z = ρ cos θ (1.5)

1.1 Solution One

First, let’s compute eρ, eθ, eφ. Given the relationships in Eq. (1.3) - Eq. (1.5), we find
that

dx = (sin θ cosφ) dρ+ (ρ cos θ cosφ) dθ + (−ρ sin θ sinφ) dφ (1.6)

dy = (sin θ sinφ) dρ+ (ρ cos θ sinφ) dθ + (ρ sin θ cosφ) dφ (1.7)

dz = (cos θ) dρ+ (−ρ sin θ) dθ + (0) dφ (1.8)
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Given that

ds = x̂dx+ ŷdy + ẑdz = eρdρ+ ρeθdθ + ρ sin θeφdφ (1.9)

We can see that

ds = x̂ (sin θ cosφdρ+ ρ cos θ cosφdθ − ρ sin θ sinφdφ) (1.10)

+ ŷ (sin θ sinφdρ+ ρ cos θ sinφdθ + ρ sin θ cosφdφ) (1.11)

+ ẑ (cos θdρ+−ρ sin θdθ) (1.12)

Hence, the unit vectors in spherical coordinates are

eρ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ (1.13)

eθ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ (1.14)

eφ = −x̂ sinφ+ ŷ cosφ (1.15)

Next, we can compute the velocity by dividing ds by dt:

ds

dt
= eρρ̇+ ρeθθ̇ + ρ sin θeφφ̇ (1.16)

Since ρ = R = constant and θ = θ0 = constant, we find that

ds

dt
= R sin θ0eφφ̇ (1.17)

Next, to compute the acceleration, we need to take the derivative of ds/dt. In order to do
so, we need to compute deφ/dt. This is

deφ
dt

=
d

dt
(−x̂ sinφ+ ŷ cosφ) = − (x̂ cosφ+ ŷ sinφ) φ̇ (1.18)

Let’s try to write this in terms of eρ and eθ. It isn’t to hard to see that

sin θeρ + cos θeθ = cosφx̂+ sinφŷ (1.19)

Thus, we can see that

deφ
dt

= − (sin θeρ + cos θeθ) φ̇ (1.20)

Now, the acceleration is

d2s

dt2
= R sin θ0

(
φ̇
deφ
dt

+ φ̈eφ

)
= R sin θ0

(
−φ̇2 sin θ0eρ − φ̇2 cos θ0eθ + φ̈eφ

)
(1.21)
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2 Problem Two

A helicopter hovering over a target releases a payload of mass m from rest. Including
linear air-drag, the differential equation describing the motions of the payload in the vertical
direction is

m
d2y

dt2
= −bdy

dt
−mg (2.1)

Solve for the position as a function of time by first solving for the velocity as a function

of time. After computing v(t) =
dy

dt
, integrate the velocity to compute the position y(t).

Using v(t), determine the terminal velocity of the payload, i.e. the limit of the velocity as
t→∞.

2.1 Solution Two

The differential equation for the velocity is given by

dv

dt
+

b

m
v = −g (2.2)

This is solved by use of an integrating factor equal to I(t) = ebt/m. Multiplying by I(t) our
differential equation can be written as

d

dt

(
ebt/mv(t)

)
= −gebt/m (2.3)

Integrating both sides, and solving for v we find

v(t) = −gm
b

+ Ce−bt/m (2.4)

Given that v(0) = 0, we find that C = gm/b. Hence,

v(t) =
gm

b

(
e−bt/m − 1

)
(2.5)

Next, let’s integrate this to obtain y(t):

y(t) =
gm

b

(
−m
b
e−bt/m − t

)
+D (2.6)

Setting y(0) = y0, we find that

D = y0 +
gm2

b2
(2.7)

Therefore,

y(t) = y0 +
gm2

b2

(
1− b

m
t− e−bt/m

)
(2.8)

Lastly, we can take the limit as t→∞ of v(t) to find the terminal velocity:

lim
t→∞

v(t) = −gm
b

(2.9)

Notice that this agrees with setting dv/dt = 0 in the differential equation for v(t).



L. A. Morrison PHYS 116B HW2 - Problem Three Page 4 / 7

3 Problem Three

A very useful identity in quantum field theory and group theory is the Jacobi identity. A
manifestation of the Jacobi identity in terms of Levi-Civita symbols is as follows:

εadeεbcd + εbdeεcad + εcdeεabd = 0 (3.1)

Prove that this identity holds.

3.1 Solution Three

To prove this identity, we use

εiabεicd = δacδbd − δadδbc (3.2)

Before we start using this identity, let’s get all repeated indices into the first position by
using the anti-symmetry property of the levi-civita symbol (i.e. ε...i...j... = −ε...j...i...):

εadeεbcd + εbdeεcad + εcdeεabd = −εdaeεdbc − εdbeεdca − εdceεdab (3.3)

Next, let’s use the above identity everywhere

εadeεbcd + εbdeεcad + εcdeεabd = −(δabδec − δacδed)− (δdcδea − δbaδec)− (δcaδeb − δcbδea) (3.4)

= −���δabδec + ���δacδed −���δdcδea + ���δbaδec −���δcaδeb + ���δcbδea (3.5)

= 0 (3.6)
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4 Problem Four

Prove the following identities:

∇(A ·B) = (A · ∇)B + (B · ∇)A + A× (∇×B) + B × (∇×A) (4.1)

∇× (A×B) = A(∇ ·B)−B(∇ ·A) + (B · ∇)A− (A · ∇)B (4.2)

[Hint: Recall that εiabεicd = δacδbd − δadδbc]

4.1 Solution Four

Let’s work with the first identity first. In tensor notation, this can be written as

∇ (A ·B)a = Bb∂aAb + Ab∂aBb = δacδbd (Bb∂cAd + Ab∂cBd) (4.3)

Recall that εiabεicd = δacδbd − δadδbc. We can use this identity to write

δacδbd = δadδbc + εiabεicd (4.4)

Then, we find that

∇ (A ·B) = (δadδbc + εiabεicd) (Bb∂cAd + Ab∂cBd) (4.5)

= Bb∂bAa + Ab∂bBa +Bb∂cAdεiabεicd + Ab∂cBdεiabεicd (4.6)

= (B · ∇)A + (A · ∇)B +Bb (∇×A)i εiab + Ab (∇×B)i εiab (4.7)

= (B · ∇)A + (A · ∇)B + B × (∇×A) + A× (∇×B) (4.8)

Which is what we set out to prove. Next, let’s look at the second identity:

∇× (A×B) = εiab∂a (A×B)b = εiabεbcd∂a (AcBd) = εiabεbcd (Ac∂aBd +Bd∂aAc) (4.9)

Using the usual levi-civita identity, we find

∇× (A×B) = (δicδad − δidδac) (Ac∂aBd +Bd∂aAc) (4.10)

= A (∇ ·B) + (B · ∇)A− (A · ∇)B −B (∇ ·A) (4.11)

which is what we set out to prove.
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5 Problem Five

Consider a short lived, but prolific-breeding species inside a box. Suppose the rate of breeding
is proportional to the square of the density of beings inside the box and that the species dies
off at a rate of γ. The differential equation for the number of beings as a function of time
can be written as

dN

dt
= AN2 − γN (5.1)

Find N(t) given N(0) = 1. For what ratio of A/γ does the species remain constant, i.e
N(t) = 1?

5.1 Solution Five

We notice that this differential equation is separable. It separates to

dN

N(AN − γ)
= dt (5.2)

To integrate the left-hand-side, we use partial fractions:

1

N(AN − γ)
=
α

N
+

β

AN − γ
=
N(Aα + β)− αγ
N(AN − γ)

(5.3)

We can see that α = −1/γ and hence β = −Aα = A/γ. Therefore,∫
dN

N(AN − γ)
=

1

γ

∫
dN

(
− 1

N
+

A

AN − γ

)
=

1

γ
log

(
AN − γ
N

)
(5.4)

We thus have

1

γ
log

(
AN − γ
N

)
= t+ C (5.5)

Exponentiating both sides, we find

AN − γ
N

= Ceγt (5.6)

Solving for N we find

N(t) =
γ

A− Ceγt
(5.7)

Forcing N(0) = 1, we find C = A− γ. Therefore, our solution is

N(t) =
γ

γeγt + A(1− eγt)
=

γ

(γ − A)eγt + A
(5.8)

We can see that for γ = A that N(t) = 1.
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6 Problem Six

Solve the following differential equations

(D2 + 1)(D2 − 1)y = 0 (6.1)

(D3 +D2 − 6D)y = 0 (6.2)

where D = d/dx.

6.1 Solution Six

To solve these problems, we guess a solution of the form

y(x) = Aeωx (6.3)

Plugging this into the first equation, we find

Aeωx(ω2 + 1)(ω2 − 1) = 0 (6.4)

For A 6= 0, we require that ω = ±i or ω = ±1. Therefore, our solution is

y(x) = c1e
ix + c2e

−ix + c3e
x + c4e

−x (6.5)

We can write this in terms of real solutions as

y(x) = c′1 sin(x) + c′2 cos(x) + c3e
x + c4e

−x (6.6)

To solve the second equation, we again guess y = Aeωx. Then we find

Aeωxω(ω2 + ω − 6) = Aeωxω(ω + 3)(ω − 2) = 0 (6.7)

Thus, either ω = 0,−3, 2. Therefore, our solution is

y(x) = c1 + c2e
−3x + c3e

2x (6.8)
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