Mathematical Methods of Physics 116B- Spring 2018

Physics 116B

Home Work # 7 Solutions

Posted on May 24, 2018 Due in Class May 31, 2018

§Required Problems: Each problem has 10 points

E.g. MB 19.16 means problem #16 on page 19 in the book by M. Boas, 3rd Edition.

1. MB 677.4 Evaluate the line integral $\int dz/(1-z^2)$ along the whole positive imaginary axis.

§Solution

$$\int_{iy=0}^{i\infty} dz \frac{1}{1-z^2} \tag{1}$$

We begin by reexpressing Eq. 1 in rectangular coordinates z=x+iy and dz=dx+idy:

$$\int_{C} \frac{dx + idy}{1 - (x + iy)^{2}} = \int_{C} \frac{dx}{1 - (x + iy)^{2}} + i \int_{C} \frac{dy}{1 - (x + iy)^{2}}$$
(2)

where C is the path. Since the path doesn't change along the x-direction, the first integral on the RHS Eq. 3 is zero and for the second integral x is a constant:

$$i\int_0^\infty \frac{dy}{1+y^2} = i\arctan(y)\Big|_0^\infty = \boxed{i\pi/2}$$
 (3)

2. MB 677.11 Evaluate $\oint (\bar{z}-3)dz$ where C is the indicated closed curve along the first quadrant part of the circle |z|=2, and the indicated parts of the x and y in Fig. 1.

Figure 1: Contour

Solution

We split the contour into three parts $C = C_1 + C_2 + C_3$, where C_1 is the path along the x-axis, C_2 is the path along the arc, and C_3 is the path along the y-axis.

For the path along C_1 we transform to rectangular coordinates z = x + iy, dz = dx + idy and set y = 0:

$$\int_{C_1} (\bar{z} - 3) dz = \int_{C_1} (x - iy) (dx + idy) = \left(\frac{x^2}{2} - 3x \right) \Big|_0^2 = -4.$$
 (4)

Similarly, for the path along C_3 we transform to rectangular coordinates z = x + iy, dz = dx + idy and set x = 0:

$$\int_{C_3} (\bar{z} - 3) dz = \int_2^0 \left(-iy - 3 \right) = i \left(\frac{-iy^2}{2} - 3y \right) i dy = -2 + 6i. \quad (5)$$

For the path along C_2 we transform to polar coordinates $z = \rho e^{i\theta}$, $dz = d\rho e^{i\theta} + i\rho e^{i\theta}$ and set $\rho = 2$:

$$\int_{C_3} (\bar{z} - 3) dz = 4i \int_0^{\pi/2} d\theta - 6i \int_0^{\pi/2} e^{i\theta} d\theta$$

$$= 4i\theta \Big|_0^{\pi/2} - 6i \frac{e^{i\theta}}{i} \Big|_0^{\pi/2} (1+i) = 2\pi i - 6i + 6.$$
(6)

Now we sum the results of the three integrals to get $2\pi i$

(7)

3. MB 677.21 Differentiate Cauchy's formula to get

$$f'(z) = \frac{1}{2\pi i} \oint_C \frac{f(\omega)}{(\omega - z)^2} d\omega , \qquad (8)$$

and by differentiating n times, obtain

$$f'(z) = \frac{n!}{2\pi i} \oint_C \frac{f(\omega)}{(\omega - z)^{n+1}} d\omega . \tag{9}$$

§Solution

Differenting Cauchy's formula gives

$$\frac{d}{dz}f(z) = \frac{d}{dz}\frac{1}{2\pi i}\oint_{C}\frac{f(\omega)}{(\omega - z)}d\omega$$

$$= -\frac{1}{2\pi i}\oint_{C}-(\omega - z)^{-2}(-1)f(\omega)d\omega$$

$$= \frac{1}{2\pi i}\oint_{C}\frac{f(\omega)}{(\omega - z)^{2}}$$
(10)

where the additional (-1) comes from the chain rule. Similarly, differentiating Cauchy's formula n times gives

$$\frac{d^2}{dz^2}f(z) = \frac{1}{2\pi i}(-1)^2(-1)(-2)\oint_C (\omega - z)^2 f(\omega)d\omega$$

$$\frac{d^3}{dz^3}f(z) = \frac{1}{2\pi i}(-1)^3(-1)(-2)(-3)\oint_C (\omega - z)^3 f(\omega)d\omega$$

$$\vdots$$

$$\frac{d^n}{dz^n}f(z) = \frac{1}{2\pi i}(-1)^n(-1)(-2)(-3)\cdots(-n)\oint_C (\omega - z)^{n+1}f(\omega)d\omega.$$

Hence,

$$\frac{d^n}{dz^n}f(z) = \frac{n!}{2\pi i} \oint_C \frac{f(\omega)}{(\omega - z)^{n+1}} d\omega . \tag{11}$$

4. MB 686.14 Find the residue of the following function at the indicated points:

$$f(z) = \frac{1}{(3z+2)(2-z)}$$
 at $z = -2/3$; and at $z = 2$; (12)

§Solution

The function f(z) has pole a simple pole at z = -2/3, so corresponding residue given by

$$R(-2/3) = \lim_{z \to -2/3} (z + 2/3) f(z) = \lim_{z \to -2/3} \frac{-1}{3(z-2)} = \boxed{1/8}, \quad (13)$$

and there is a simple pole at z=2 with corresponding residue of

$$R(2) = \lim_{z \to 2} (z - 2)f(z) = \lim_{z \to 2} \frac{-1}{3(z + 2/3)} = \boxed{-1/8}.$$
 (14)

5. MB 687.20 Evaluate the residue of the following function at the indicated point:

$$f(z) = \frac{z}{1 - z^4}$$
 at $z = i$. (15)

Solution

First we factor the denominator of Eq. 15:

$$f(z) = \frac{-z}{(z-i)(z+i)(z-1)(z+1)}$$
(16)

We see that the function has a simple pole at z = i and the residue is

$$R(i) = \lim_{z \to i} (z - i) f(z) = \lim_{z \to i} \frac{-z}{(z + i)(z - 1)(z + 1)} = \boxed{1/4}$$
 (17)

6. MB 687.27 Evaluate the residue of the following function at the indicated point:

$$f(z) = \frac{\cos(z)}{1 - 2\sin(z)}$$
 at $z = \pi/6$. (18)

§Solution

To find the residue of Eq. 20 we use L'Hospitals rule

$$R(\pi/6) = \lim_{z \to \pi/6} \frac{\cos(z)}{-2\cos(z)} = \boxed{-1/2}.$$
 (19)

7. MB 687.35 Evaluate the residue of the following function at the indicated point:

$$f(z) = \frac{z}{(z^2 + 1)^2}$$
 at $z = i$. (20)

§Solution

We factor the denominator to find the poles:

$$f(z) = \frac{z}{(z+1)(z-1)}$$
 (21)

We see that the function has pole of order to at z = i, so the residue is given by

$$R(i) = \lim_{z \to i} \frac{d}{dz} (z - i) f(z) = \lim_{z \to i} \left(\frac{1}{(z + i)^2} + \frac{-2z}{(z + i)^3} \right) = \boxed{0}.$$
 (22)

8. MB 687.23 Evaluate the residue of the following function at the indicated point:

$$f(z) = \frac{e^{iz}}{9z^2 + 4}$$
 at $z = 2i/3$. (23)

Solution

We factor the denominator to find the poles:

$$f(z) = \frac{z}{9(z - 2i/3)(z + 2i/3)}$$
 (24)

The pole at z = 2i/3 is a simple pole, hence the residue is

$$R(2i/3) = \lim_{z \to 2i/3} (z - 2i/3) f(z) = \lim_{z \to 2i/3} \frac{e^{iz}}{9(z + 2i/3)} = \boxed{\frac{e^{-2/3}}{12i}}$$
(25)

9. MB 699.3 Evaluate the contour integral:

$$\int_0^{2\pi} \frac{d\theta}{5 - 4\sin(\theta)} \tag{26}$$

§Solution

This integral is equivalent to a contour integral over the unit circle. Note that $\sin\theta=(e^{i\theta}-e^{-i\theta})/2i$. Now if we set $z=e^{i\theta}$ such that $d\theta=dz/iz$ and $\sin\theta=(z-1/z)/2i$, we obtain

$$\oint_{C} \frac{1}{5 - 4(z - 1/z)/2i} \frac{dz}{z} = \int_{C} \frac{dz}{5z + 2i(z^{2} - 1)}$$

$$= -\frac{1}{2} \int_{C} \frac{dz}{(z - 2i)(z - i/2)}.$$
(27)

To evaluate the integral we sum the residues contain in the unit circle

$$-\frac{1}{2}2\pi i \sum_{z_p} R(z_p) \tag{28}$$

where z_p are the poles. Note that the residue at z=2i lies outside the unit circle. The residue at z=i/2 is

$$R(i/2) = \lim_{z \to i/2} (z - i/2) f(z) = -2/3i$$

where f(z) = 1/(z - 2i)(z - i/2). Hence,

$$\int_0^{2\pi} \frac{d\theta}{13 + 5\sin(\theta)} = -\frac{1}{2} 2\pi i \sum_{z_p} R(z_p) = \boxed{2\pi/3}.$$
 (29)

10. MB 699.4 Evaluate the contour integral:

$$\int_0^{2\pi} \frac{\sin^2 \theta d\theta}{5 + 3\cos(\theta)} \ . \tag{30}$$

§Solution

As in the previous problem we notice that the integral is equivalent to the contour integral over the unit circle

$$\oint_C -\frac{(z-1/z)^2/4}{5+3(z+1/z)/2} \frac{dz}{iz} \,. \tag{31}$$

Next we factor the denominator and expand the numerator

$$-\frac{1}{6i} \oint_C \frac{z^2 - 1/z^2 - 2}{(z+3)(z-1/3)} = -\frac{1}{6i} \oint_C \frac{z^2 - 2}{(z+3)(z+1/3)} - \frac{1}{6i} \oint_C \frac{1}{z^2(z+3)(z+1/3)}$$
(32)

The first contour integral on the RSH of Eq. 32 has poles at z = -1/3, -3, however z = -3 lies outside the unit circle, and evaluating the integral using the residue method we obtain

$$-\frac{1}{6i} \oint_C \frac{z^2 - 2}{(z+3)(z+1/3)} = -\frac{1}{6i} 2\pi i \sum_{z_p} R(z_p) = 17\pi/72.$$
 (33)

The second contour integral on the RSH of Eq. 32 has two poles that lie inside the unit circle, where the pole at z=-1/3 is first order and the poles at z=0 is second order. We evaluate the integral using the residue method to find

$$-\frac{1}{6i} \oint_C \frac{z^2 - 2}{(z+3)(z+1/3)} = -\frac{1}{6i} 2\pi i \sum_{z_p} R(z_p) = -\pi/72 \ . \tag{34}$$

Hence,

$$\int_0^{2\pi} \frac{\sin^2 \theta d\theta}{5 + 3\cos(\theta)} = \boxed{2\pi/9} \,. \tag{35}$$