Mathematical Methods of Physics 116B- Spring 2018
Physics 116B

Home Work # 8 Solutions
Posted on May 31, 2018
Due in Class May 6, 2018

SRequired Problems: Each problem has 10 points
E.g. MB 19.16 means problem #16 on page 19 in the book by M. Boas, 3rd
Edition.

1. MB 699.11 Evaluate the following using contour methods:

o dx
= G .

§Solution

We can show that the integral in Eq. 1 can be found by computing the
contour integral around the upper half plane since line integal along the
arc vanishes:

dz > dz > dx
a=¢ 2 [ ¥ _of T
barm=) wrt, wri ©

The simplest method to compute the contour integral is to find the residues
contain in the countour. The first step is to factor the denominator and
identify the poles z,:

dx .
$ o i} () 3)

There are poles at z, = —i/2,i/2 both of order 3, but only the pole at
zp = 1/2 is contained inside the contour. The residue at z, = /2 is

d? 12

R(i/2) = lim (= i/Df() = —5 4 (4)

zp—if2 21 d2?

where f(z) = 1/(4(z —i/2)(z +i/2))3. Hence,

—12¢

2. MB 700.30(a) Evaluate the following integral using the contour method:

< dx
I:/O 1424 (6)




§Solution

The integral in Eq. 6 can be found by computing the contour integral
around the upper half plane since the line integral along the arc vanishes:

21:7{ dz :/ dx :2/ dz . )
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We compute the contour integral using the residue method. We begin by
factoring the denominator and finding the poles

dz )
7{0 (2 + iei™ /) (z — iei™/4)(z — e/ A) (2 + e /1) 2m ZZ f(z)  (8)

We see there are poles at z, = eiBm/4 ein/4 _eidn/4 _ein/4 vet only the

pole at z, = ¢3™/4 /1 are located inside the contour. The residues at
z, = €7/4 and z, = '™/* are

R(ei3w/4) = lim z — ei37r/4(z _ ei37r/4>f(z) — _1/4€i37r/8 ,

, , , , 9
R(e”/4) =limz — 6”/4(2 — 613”/4)]”(2) = 71/46“7/8 , ©)

respectively and f(z) = 1/(1 + 2*). Hence, the integral is

211 T
1= %:f(zp) -5 (10)

. MB 701.42 If F(z) = f'(2)/f(2),

a) show that the residue of F'(z) at an nth order zero of f(z), is n.
b) Also show that the reside of F'(z) at a pole of order —p of f(z), is -p.

§Solution

a) If f(z) has a zero at z = a of order n, then the function is characterized
by the series

f(2)=an(z —a)" +ans1(z—a)" 4. (11)
Therefore
F(z) = apn(z—a)" P+ api(n+1)(z—a)" +--- (12)
an(z —a)" + apt1(z —a)?tl + .-
In the limit as we approach z = a, we obtain
) L —— (13)

an(z—a) (z—a)

Hence, the residue of the function is [n ]



b) Similarly, If f(z) has a pole at z = a of order p, then the function is
characterized by the series

f(z) =bpz—a) P4by_1(z—a)P " 4 by (2—1) " +agtai(z—a)- - .
(14)
Therefore

bo(=p)(z = )P 4 by (—p+ Dz =) P b by (~D)(z = )2 -

F =
(2) bp(z—a)P+by_1(z—a) P+ 4+ b(z—1)"+ay+ai(z—a)---
(15)
In the limit as z approaches a, we obtain
Py = P (16)

b(z—a) (z—a)

This is easy to see if we multiply the numerator and denominator by
(z — a)P. Hence, the residue of the function is .

4. MB 681.8 Find the Laurent series about the origin and find the residue at

the origin for the following function:

30
(z+1)(z-2)(z+3)

f(z) = (17)

§Solution

To find the Laurent series, it is best to split the function into partical

fractions:
2 5 3

f(z):z—Z_z+1+z+3' (18)

We see that f(z) has poles at z = —1,2, —3 therefore for a series about the
origin there will be annular rings at a radius of |z| = 1,2, 3 respectively.
There for four regions of interest: 0 < [z| < 1,1 < |2] < 2, 2 < |z] < 3,
and |z| > 3. Next we can convert the partial fractions into power series




by writing them in the form a geometric series:

5 nn
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We can see that the series in the region for 0 < |z| < 1 has no term 1/z,
therefore b1, the coefficient corresponding to the residue must be zero, i.e.

R(0)=0]

. MB 686.5 Find the Laurent series and the residue at the indicated point.

fz) = 221 catz=1. (25)

8§Solution If we break this function up into partial fractions, we obtain

z eZ

& =901 "+ (26)

There are poles at z, = —1, 1 and oo, such that there are three annular
rings separating the regions of convergence about the point zg = 1: 0 <
|z —1] < 2,2 < |z—1] < o0 and |z| > co. In order to find the residue
at z =1 we examine the Laurent series in powers of (z — 1) in the region
0 < |z —1] < 2. Now we want to find the power series expansion of the
functions in Eq. 26 that are convergent in this region:

cf=ele=e) (Z;i.l)n V |zl <o (27)
n=0 '
ler1 a0+ (zl_ 02~ Z(fl)”(zg# Vol < 2. (28)

n=0



The Laurent series is

Iz % 120 2: ) 0)
Sl s

and the residue is the coefficient, by, attached to the 1/(z — 1) power and
hence the residue is R(1) =|e/2|.

. MB 687.27 Find the residue of the following function at the indicated
point:

sh(z) — 1
flo) ==Ly (30)
z
8Solution We see that there is a pole at z = 0, but the question is what
is the order of the pole? We could guess and check the order using the
L’Hospital method, or we may expand coshz as a power series about

2o =0:

flz) = M - Z (31)

2n!

By examining the principle part of the series we see there is pole at z =0
of order 7 and the residue is b = which is just the coefficent of the

1/z term.

. MB 564.5 Find the two solutions to the following the differential equation,
L[y], using the power series method and verify:

Llyl=y"—y=0 (32)

§Solution We start with the ansatz that

o0
y = chx"

n=0

y = cona™! (33)
n=0

o0
= Z can(n —1)z" 2
n=0

where ¢, are real or complex coefficients. Next we insert Eq. 33 into
Eq. 32:

Z enn(n — Dz Z cnx” (34)



Our next step is to rewrite the first summation so that the exponent is n
instead of n — 2. This is accomplished by the subsitution n — n + 2:

chH n+1)(n+ 2)x

n=0

Z Cn (35)

Now we set the sum of the coeffiencts of like powers of x equal to zero:

Cnr2(n+1)(n+2) —¢, =0;. (36)

Equation (36) is a recurrence formula that produces all the coefficients. To
find the two solutions, we provide two choices for ¢y and ¢;. The simplest
possible choices are (i) ¢g = 1, ¢; = 0; (i7) ¢o = 0 and ¢; = 1. We find for

(1) and (i7):

respectively.

Y= Z x*"/(2n!) = cos(x)
n=0

and

y—ZxQ" L/(2n — 1)!) = sin(z)

8. MB 564.7 Find the two solutions to the following the differential equation,
L[y], using the power series method and verify:

§Solution

Ly = a*y" —3zy +3y =0 (37)

We start with the ansatz written out in Eq. (33) and we insert that into

Eq. 37:

Lly] = «* Z enn(n — 1z

o0

n=0

o0 o0
=2 _3g E Conz™ 43 E cpx™

n=0

n=0 (38)

Zc (n—1zx —Bchnm —&-SZCn

where we pulled the x terms into the summations. Our next step is to
write the sum coefficients of like powers of x and set them equal to zero:

en(n)(n —1) = 3(cy, —

n) =0;. (39)

Upon examination we see that n = 3 is a solutions of Eq. 39 where all
other coefficients are zero and there is a second solution for n = 1 where

all other coefficients are zero and hence, |y = ¢t + cst> .

9. MB 578.4 Show that f_ll dzPy(x)P,_,(z) = 0 using the relation

1
/ dxPy(z)(any polynomial of degree < £) =0. (40)
—1




10.

And also show that [, dzP}(x)Pry1(z) = 0.

§Solution The solution to this is actually very simple. We note that Py(x)
is a polynomial of degree ¢, such that P;(z) is a polynomial of degree {—1.
Hence, using Eq. 40 we find fil dzPy(z)P]_,(z) = 0 because £ — 2 < /.
Similarly, fil dxP)(x)Pps1(xz) = 0 because £ —1 < £+ 1.

MB 582.10 Expand the polynomial, f(x) = 322 + x — 1, in a Legendre
series.

g§Solution To expand a function as a Legendre series we must determine
the coefficients of this series

ngPg(z) . (41)
£=0

This is accomplished using the orthogonality relation

1 o0 1 2
[ dwof@Pu@) = > e | wP@Pu@ =gty @)

Essentially, we evaluate the integral on the LHS of Eq. 42 for Py(z),

Pi(z),...in order to determinte the coefficents:
2m+1 (!
%:T?_/dﬁ@ﬂM) (43)
-1

where ¢cg =0, ¢; =1, ¢co = 2 and ¢, = 0 for all m > 3 according to Eq. 40.
Hence, the Legendre series is

fiq&ungum+2g@g. (44)
=0



