
Mathematical Methods of Physics 116B- Spring 2018

Physics 116B

Home Work # 8 Solutions
Posted on May 31, 2018

Due in Class May 6, 2018

§Required Problems: Each problem has 10 points
E.g. MB 19.16 means problem #16 on page 19 in the book by M. Boas, 3rd

Edition.

1. MB 699.11 Evaluate the following using contour methods:

I =

∫ ∞
0

dx

(4x2 + 1)3
. (1)

§Solution
We can show that the integral in Eq. 1 can be found by computing the
contour integral around the upper half plane since line integal along the
arc vanishes:

2I =

∮
C

dz

(4x2 + 1)3
=

∫ ∞
−∞

dz

(4z2 + 1)3
= 2

∫ ∞
0

dx

(4x2 + 1)3
(2)

The simplest method to compute the contour integral is to find the residues
contain in the countour. The first step is to factor the denominator and
identify the poles zp:∮

C

dx

(z − i/2)3(z + i/2)3
= 2πi

∑
zp

f(zp) (3)

There are poles at zp = −i/2, i/2 both of order 3, but only the pole at
zp = i/2 is contained inside the contour. The residue at zp = i/2 is

R(i/2) = lim
zp→i/2

1

2!

d2

dz2
(z − i/2)f(z) = − 12i

2 · 43
, (4)

where f(z) = 1/(4(z − i/2)(z + i/2))3. Hence,

I = 2πi
−12i

2 · 43
= 3π/32 (5)

2. MB 700.30(a) Evaluate the following integral using the contour method:

I =

∫ ∞
0

dx

1 + x4
(6)



§Solution
The integral in Eq. 6 can be found by computing the contour integral
around the upper half plane since the line integral along the arc vanishes:

2I =

∮
C

dz

1 + z4
=

∫ ∞
−∞

dx

1 + x4
= 2

∫ ∞
0

dx

1 + x4
. (7)

We compute the contour integral using the residue method. We begin by
factoring the denominator and finding the poles∮

C

dz

(z + ieiπ/4)(z − ieiπ/4)(z − eiπ/4)(z + eiπ/4)
= 2πi

∑
zp

f(zp) (8)

We see there are poles at zp = ei3π/4, eiπ/4,−ei3π/4,−eiπ/4, yet only the
pole at zp = ei3π/4, eiπ/4 are located inside the contour. The residues at
zp = ei3π/4 and zp = eiπ/4 are

R(ei3π/4) = lim z → ei3π/4(z − ei3π/4)f(z) = −1/4ei3π/8 ,

R(eiπ/4) = lim z → eiπ/4(z − ei3π/4)f(z) = −1/4eiπ/8 ,
(9)

respectively and f(z) = 1/(1 + z4). Hence, the integral is

I =
2πi

2

∑
zp

f(zp) =
π

2
√

2
(10)

3. MB 701.42 If F (z) = f ′(z)/f(z),

a) show that the residue of F (z) at an nth order zero of f(z), is n.

b) Also show that the reside of F (z) at a pole of order −p of f(z), is -p.

§Solution

a) If f(z) has a zero at z = a of order n, then the function is characterized
by the series

f(z) = an(z − a)n + an+1(z − a)n+1 + · · · . (11)

Therefore

F (z) =
ann(z − a)n−1 + an+1(n+ 1)(z − a)n + · · ·

an(z − a)n + an+1(z − a)n+1 + · · ·
. (12)

In the limit as we approach z = a, we obtain

F (z) =
ann

an(z − a)
=

−p
(z − a)

. (13)

Hence, the residue of the function is n .



b) Similarly, If f(z) has a pole at z = a of order p, then the function is
characterized by the series

f(z) = bp(z−a)−p+bp−1(z−a)p−1+· · ·+b1(z−1)−1+a0+a1(z−a) · · · .
(14)

Therefore

F (z) =
bp(−p)(z − a)−p−1 + bp−1(−p+ 1)(z − a)−p+1 + · · ·+ b1(−1)(z − 1)−2 + a1 · · ·

bp(z − a)−p + bp−1(z − a)−p+1 + · · ·+ b1(z − 1)−1 + a0 + a1(z − a) · · ·
.

(15)
In the limit as z approaches a, we obtain

F (z) =
bp(−p)
bp(z − a)

=
−p

(z − a)
. (16)

This is easy to see if we multiply the numerator and denominator by
(z − a)p. Hence, the residue of the function is −p .

4. MB 681.8 Find the Laurent series about the origin and find the residue at
the origin for the following function:

f(z) =
30

(z + 1)(z − 2)(z + 3)
. (17)

§Solution
To find the Laurent series, it is best to split the function into partical
fractions:

f(z) =
2

z − 2
− 5

z + 1
+

3

z + 3
. (18)

We see that f(z) has poles at z = −1, 2,−3 therefore for a series about the
origin there will be annular rings at a radius of |z| = 1, 2, 3 respectively.
There for four regions of interest: 0 < |z| < 1, 1 < |z| < 2, 2 < |z| < 3,
and |z| > 3. Next we can convert the partial fractions into power series



by writing them in the form a geometric series:

− 5

z + 1
= −5

∞∑
n=0

(−1)nzn for |z| < 1 (19)

−1

z

5

1 + 1/z
= −5

∞∑
n=0

(−1)n
(1

z

)n+1

for |z| > 1 (20)

− 1

1− z/2
= −

∞∑
n=0

(
z

2

)n
for |z| < 2 (21)

2

z

1

1− 2/z
=

∞∑
n=0

(2

z

)n+1

for |z| > 2 (22)

1

1 + z/3
=
∑

(−1)n(z/3)n for |z| < 3 (23)

3

z

1

1 + 3/z
=

∞∑
n=0

(−1)n(3/z)n+1 for |z| > 3 (24)

We can see that the series in the region for 0 < |z| < 1 has no term 1/z,
therefore b1, the coefficient corresponding to the residue must be zero, i.e.

R(0) = 0 .

5. MB 686.5 Find the Laurent series and the residue at the indicated point.

f(z) =
ez

z2 + 1
at z = 1 . (25)

§Solution If we break this function up into partial fractions, we obtain

f(z) =
ez

2(z − 1)
− ez

2(z + 1)
. (26)

There are poles at zp = −1, 1 and ∞, such that there are three annular
rings separating the regions of convergence about the point z0 = 1: 0 <
|z − 1| < 2, 2 < |z − 1| < ∞ and |z| > ∞. In order to find the residue
at z = 1 we examine the Laurent series in powers of (z − 1) in the region
0 < |z − 1| < 2. Now we want to find the power series expansion of the
functions in Eq. 26 that are convergent in this region:

ez = ez−1e = e

∞∑
n=0

(z − 1)n

n!
∀ |z| <∞ (27)

1

z + 1
=

1

2(1 + (z − 1)/2)
=

∞∑
n=0

(−1)n
(z − 1)n

2n
∀ |z| < |2| . (28)



The Laurent series is

f(z) =
e

2

1

z − 1

∞∑
n=0

(z − 1)n

n!

+
e

4

( ∞∑
n=0

(z − 1)n

n!

)( ∞∑
n=0

(−1)n
(z − 1)n

2n

) (29)

and the residue is the coefficient, b1, attached to the 1/(z − 1) power and

hence the residue is R(1) = e/2 .

6. MB 687.27 Find the residue of the following function at the indicated
point:

f(z) =
cosh(z)− 1

z
at z = 0 . (30)

§Solution We see that there is a pole at z = 0, but the question is what
is the order of the pole? We could guess and check the order using the
L’Hospital method, or we may expand cosh z as a power series about
z0 = 0:

f(z) =

∑∞
n=0

z2n

2n! − 1

z7
=

∞∑
n=1

z2n−7

2n!
(31)

By examining the principle part of the series we see there is pole at z = 0

of order 7 and the residue is b1 = 1/6! which is just the coefficent of the

1/z term.

7. MB 564.5 Find the two solutions to the following the differential equation,
L[y], using the power series method and verify:

L[y] = y′′ − y = 0 (32)

§Solution We start with the ansatz that

y =

∞∑
n=0

cnx
n

y′ =

∞∑
n=0

cnnx
n−1

y′′ =

∞∑
n=0

cnn(n− 1)xn−2

(33)

where cn are real or complex coefficients. Next we insert Eq. 33 into
Eq. 32:

L[y] =

∞∑
n=0

cnn(n− 1)xn−2 −
∞∑
n=0

cnx
n (34)



Our next step is to rewrite the first summation so that the exponent is n
instead of n− 2. This is accomplished by the subsitution n→ n+ 2:

L[y] =

∞∑
n=0

cn+2(n+ 1)(n+ 2)xn −
∞∑
n=0

cnx
n (35)

Now we set the sum of the coeffiencts of like powers of x equal to zero:

cn+2(n+ 1)(n+ 2)− cn = 0; . (36)

Equation (36) is a recurrence formula that produces all the coefficients. To
find the two solutions, we provide two choices for c0 and c1. The simplest
possible choices are (i) c0 = 1, c1 = 0; (ii) c0 = 0 and c1 = 1. We find for

(i) and (ii): y =

∞∑
n=0

x2n/(2n!) = cos(x) and y =

∞∑
n=0

x2n−1/(2n− 1)!) = sin(x)

respectively.

8. MB 564.7 Find the two solutions to the following the differential equation,
L[y], using the power series method and verify:

L[y] = x2y′′ − 3xy + 3y = 0 (37)

§Solution
We start with the ansatz written out in Eq. (33) and we insert that into
Eq. 37:

L[y] = x2
∞∑
n=0

cnn(n− 1)xn−2 − 3x

∞∑
n=0

cnnx
n−1 + 3

∞∑
n=0

cnx
n

=

∞∑
n=0

cnn(n− 1)xn − 3

∞∑
n=0

cnnx
n + 3

∞∑
n=0

cnx
n

(38)

where we pulled the x terms into the summations. Our next step is to
write the sum coefficients of like powers of x and set them equal to zero:

cn(n)(n− 1)− 3(cn − n) = 0; . (39)

Upon examination we see that n = 3 is a solutions of Eq. 39 where all
other coefficients are zero and there is a second solution for n = 1 where

all other coefficients are zero and hence, y = c1t+ c3t
3 .

9. MB 578.4 Show that
∫ 1

−1 dxP`(x)P ′`−1(x) = 0 using the relation

∫ 1

−1
dxP`(x)(any polynomial of degree < `) = 0 . (40)



And also show that
∫ 1

−1 dxP
′
`(x)P`+1(x) = 0.

§Solution The solution to this is actually very simple. We note that P`(x)
is a polynomial of degree `, such that P ′`(x) is a polynomial of degree `−1.

Hence, using Eq. 40 we find
∫ 1

−1 dxP`(x)P ′`−1(x) = 0 because ` − 2 < `.

Similarly,
∫ 1

−1 dxP
′
`(x)P`+1(x) = 0 because `− 1 < `+ 1.

10. MB 582.10 Expand the polynomial, f(x) = 3x2 + x − 1, in a Legendre
series.

§Solution To expand a function as a Legendre series we must determine
the coefficients of this series

∞∑
`=0

c`P`(x) . (41)

This is accomplished using the orthogonality relation∫ 1

−1
dxf(x)Pm(x) =

∞∑
`=0

c`

∫ 1

−1
dxP`(x)Pm(x) = cm

2

2m+ 1
(42)

Essentially, we evaluate the integral on the LHS of Eq. 42 for P0(x),
P1(x), . . . in order to determinte the coefficents:

cm =
2m+ 1

2

∫ 1

−1
dxf(x)Pm(x) (43)

where c0 = 0, c1 = 1, c2 = 2 and cm = 0 for all m > 3 according to Eq. 40.
Hence, the Legendre series is

∞∑
`=0

c`P`(x) = P1(x) + 2P2(x) . (44)


