
PHYS 116C
Homework Three

Logan A. Morrison

April 30, 2018

1 Problem One

[Boas, Ch.8, Sec.1, Problem 5]

Find the position x of a particle at time t if its acceleration is d2x/dt2 = A sin(ωt).

1.1 Solution One

Integrating x′′(t) onces, we obtain

dx

dt
=

∫
d2x

dt2
dt = −A

ω
cos(ωt) + C (1.1)

where C is an integration constant. Integrating once again, we find

x(t) =

∫
dx

dt
dt = − A

ω2
sin(ωt) + Ct +D (1.2)

where D is a second integration constant.
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2 Problem Two

[Boas, Ch.8, Sec.1, Problem 4]

Find the distance which an object moves in time t if it starts from rest and has an acceleration
d2x/dt2 = ge−kt. Show that for small t the result is approximately (1.10), and for very large
t, the speed dx/dt is approximately constant. The constant is called the terminal speed.
(This problem corresponds roughly to the motion of a parachutist.)

2.1 Solution Two

Integrating the acceleration, we find

dx

dt
=

∫
d2x

dt2
dt = −g

k
e−kt + C (2.1)

Given that the object was released from rest, i.e. dx/dt(t = 0) = 0, we find that C = g/k.
Integrating once more, we find

x(t) =

∫
dx

dt
dt =

g

k2
e−kt +

g

k
t +D (2.2)

Calling x(0) = x0, we can see that D = x0 − g/k2. Therefore, our solution is

x(t) = x0 +
g

k2

(
e−kt − 1 + kt

)
(2.3)

For small t, we can write the exponential as

e−kt = 1− kt +
1

2
k2t2 +O(t3) (2.4)

Thus, for small t, we can write

x(t) = x0 +
1

2
gt2 +O(t3) (2.5)

which is of the form of eqn. 1.10 from Boas chapter 10. The velocity as a functions of time
is

v(t) = −g

k
e−kt +

g

k
(2.6)

As t→∞, we find that v → g/k. Thus, g/k is the terminal velocity.
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3 Problem Three

[Boas, Ch.8, Sec.2, Problem 7]

For the following differential equation:

ydy + (xy2 − 8x)dx = 0, y = 3 when x = 1 (3.1)

separate variables and find a solution containing one arbitrary constant. Then find the
value of the constant to give a particular solution satisfying the given boundary condition.
Computer plot a slope field and some of the solution curves.

3.1 Solution Three
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Figure 1: Family of curves for the differential equation y′ = x(8− y2)/y

The differential equation can be separated to the form

y

8− y2
dy = xdx (3.2)

Integrating both sides of this equation, we find

−1

2
log
(
8− y2

)
=

1

2
x2 + C (3.3)
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where C is an arbitrary constant. Solving for y, we find

y = ±
√

8 +De−x2 (3.4)

where D is some other integration constant. Given that y = 3 at x = 1, i.e. y > 0, we
can see that the − solution can be dropped. Additionally, we can see that at x = 1, the
argument of the square root must be 9. Hence, D = e. Hence, our solution is

y(x) =
√

8 + e1−x2 (3.5)
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4 Problem Four

[Boas, Ch.8, Sec.2, Problem 11]

For the following differential equation:

2y′ = 3(y − 2)1/3, y = 3 when x = 1 (4.1)

separate variables and find a solution containing one arbitrary constant. Then find the
value of the constant to give a particular solution satisfying the given boundary condition.
Computer plot a slope field and some of the solution curves.

4.1 Solution Four
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Figure 2: Family of curves for the differential equation y′ = 3(y − 2)1/3/2

This differential equation is

dy

(y − 2)1/3
dy =

3

2
dx (4.2)

Integrating, we find

3

2
(y − 2)2/3 =

3

2
x + C (4.3)



L. A. Morrison PHYS 116B HW3 - Problem Four Page 6 / 17

or

y = 2±
√

(x + C)3 (4.4)

Given the initial condition, the − solution doesn’t work. Using y(x = 1) = 3, we find that
C = 0. Thus

y(x) = 2 + x3/2 (4.5)
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5 Problem Five

[Boas, Ch.8, Sec.3, Problem 3]

Using (3.9), find the general solution of each of the following differential equation:

dy + (2xy − xe−x
2

)dx = 0. (5.1)

Compare a computer solution and, if necessary, reconcile it with yours. Hint: See comments
just after (3.9), and Example 1.

5.1 Solution Five
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Figure 3: Analytic vs. numerical solution for the differential equation y′ = −2xy + xe−x
2

We can rewrite this differential equation as

dy

dx
+ 2xy = xe−x

2

(5.2)

To solve this, we use the method of integrating factor. Our integrating factor will be

I(x) = e
∫
2xdx = ex

2

(5.3)
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Multiplying through by this factor, we find

ex
2 dy

dx
+ 2xex

2

y = x (5.4)

We notice that the left-hand-side is just the total derivative of yex
2
. Therefore

d

dx

(
ex

2

y(x)
)

= x (5.5)

Integrating both sides and multiplying by e−x
2
, we find that

y(x) =

(
1

2
x2 + C

)
e−x

2

(5.6)
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6 Problem Six

[Boas, Ch.8, Sec.3, Problem 10]

Using (3.9), find the general solution of each of the following differential equation:

y′ + y tanh(x) = 2ex. (6.1)

Compare a computer solution and, if necessary, reconcile it with yours. Hint: See comments
just after (3.9), and Example 1.

6.1 Solution Six
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Figure 4: Analytic vs. numerical solution for the differential equation y′ = −y tanh(x) + 2ex

To solve this differential equation, we again use an integrating factor. This time, our inte-
grating factor is

I(x) = e
∫
tanh(x)dx = eln(cosh(x)) = cosh(x) (6.2)

Multiplying through by this integrating factor, our differential equation can be written
as

cosh(x)
dy

dx
+ sinh(x)y(x) = 2 cosh(x)ex (6.3)
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or

d

dx
(cosh(x)y(x)) = e2x + 1 (6.4)

where we used cosh(x) = (ex + e−x)/2 on the right-hand-side. Integrating both sides, we
find

cosh(x)y(x) =
1

2
e2x + x + C (6.5)

which we can write as

y(x) =
e2x + 2x +D

2 cosh(x)
(6.6)
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7 Problem Seven

[Boas, Ch.8, Sec.4, Problem 4]

Use the methods of Boas section 10.4 to solve the following differential equation:

(2xe3y + ex)dx + (3x2e3y − y2)dy = 0. (7.1)

Compare computer solutions and reconcile differences.

7.1 Solution Seven

We recognize this differential equation as an exact differential equation. We can see this by
setting

P (x, y) = 2xe3y + ex (7.2)

Q(x, y) = 3x2e3y − y2 (7.3)

Differentiating these we find that

dP (x, y)

dy
= 6xe3y (7.4)

dQ(x, y)

dx
= 6xe3y (7.5)

(7.6)

Hence, this differential equation is exact. We can then write

P (x, y) =
∂F

∂x
(7.7)

Q(x, y) =
∂F

∂y
(7.8)

Then, our differential equation reads dF = 0, which implies that F (x, y) is a constant.
Integrating ∂F/∂x, we find

F (x, y) = f(y) +

∫
∂F

∂x
dx = f(y) + x2e3y + ex (7.9)

where f(y) is an unknown function of y. Integrating ∂F/∂y, we find

F (x, y) = g(y) +

∫
∂F

∂y
dx = g(y) + x2e3y − 1

3
y3 (7.10)

Matching these two expressions, we find that

F (x, y) = x2e3y − 1

3
y3 + ex (7.11)

We can then solve for y(x) by using F (x, y) = constant = C

x2e3y − 1

3
y3 + ex = C (7.12)
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8 Problem Eight

[Boas, Ch.8, Sec.4, Problem 7]

Use the methods of Boas section 10.4 to solve the following differential equation:

x2dy + (y2 − xy)dx = 0 (8.1)

Compare computer solutions and reconcile differences.

8.1 Solution Eight
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Figure 5: Analytic vs. numerical solution for the differential equation y′ =
xy − y2

x2
=

y

x
−
(y
x

)2
Our differential equation reads

dy

dx
=

xy − y2

x2
=

y

x
−
(y
x

)2
(8.2)

We notice that the right-hand-side is a function of y/x only. Thus, we set v(x) = y(x)/x.
Then, we find a new differential equation in v(x) given by

x
dv

dx
+ v = v − v2 (8.3)



L. A. Morrison PHYS 116B HW3 - Problem Eight Page 13 / 17

We can solve this differntial equation by separation of variable. The differential equation
separates to

dv

v2
= −1

x
(8.4)

Integrating both sides, we find

−1

v
= − log(x) + C (8.5)

which gives us

v =
1

log(x) +D (8.6)

and therefore

y(x) =
x

log(x) +D (8.7)
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9 Problem Nine

[Boas, Ch.8, Sec.4, Problem 8]

Use the methods of Boas section 10.4 to solve the following differential equation:

ydy = (−x +
√
x2 + y2)dx (9.1)

Compare computer solutions and reconcile differences.

9.1 Solution Nine
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Figure 6: Analytic vs. numerical solution for the differential equation y′ =
xy − y2

x2
=

−x

y
+

√
1 +

(
x

y

)2

Our differential equation reads

dy

dx
= −x

y
+

√
1 +

(
x

y

)2

(9.2)
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We can see that the right-hand-side is a function of y/x only. Thus, we set v(x) = y/x and
obtain the following differential equation for v:

x
dv

dx
+ v = −1

v
+
√

1 + 1/v2 (9.3)

Multiplying through by v and moving all v’s to the right-hand-side, we find

xv
dv

dx
= −

(
1 + v2

)
+
√

1 + v2 (9.4)

We can now separate, findingvariablesvariables

vdv

(1 + v2)−
√

1 + v2
= −dx/x (9.5)

To integrate the left-hand-side, we make a change of variables u =
√

1 + v2, with du =
vdv/

√
1 + v2. Then∫

vdv

(1 + v2)−
√

1 + v2
=

∫
1

u− 1
= log(u− 1) = log

(√
1 + v2 − 1

)
(9.6)

Therefore, we find that

log
(√

1 + v2 − 1
)

= − log(x) + C (9.7)

We can then untangle this to obtain y:

y(x) = ±x
√

(1 + C/x)2 − 1 (9.8)
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10 Problem Ten

[Boas, Ch.8, Sec.4, Problem 13]

Use the methods of Boas section 10.4 to solve the following differential equation:

yy′ − 2y2 cot(x) = sin(x) cos(x) (10.1)

Compare computer solutions and reconcile differences.

10.1 Solution Ten
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Figure 7: Analytic vs. numerical solution for the differential equation dy
dx
− 2y cot(x) =

sin(x) cos(x)/y

If we divide our differential equation by y, we can see that it is of the form of Bernoulli’s
equation with n = −1. We thus make the change of variables z = y2 with z′ = 2yy′. Then,
our differential equation for z is

1

2

dz

dx
− 2 cot(x)z = sin(x) cos(x) (10.2)

We can solve this by using integrating factor, with

I(x) = e−4
∫
cot(x)dx = e−4 log(sin(x)) = sin−4(x) (10.3)
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Multiplying through by I(x), we find

sin−4(x)
dz

dx
− 4

cos(x)

sin5(x)
z = 2

cos(x)

sin3(x)
(10.4)

which we can write as

d

dx

(
z(x)

sin4(x)

)
= 2

cos(x)

sin3(x)
(10.5)

Integrating both sides, we find

z(x) = sin4(x)
(
− cot2(x) + C

)
= C sin4(x)− sin2(x) cos2(x) (10.6)

and hence,

y(x) = ±
√
C sin4(x)− sin(2x)2/4 (10.7)
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