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1 Problem One

[Boas, Ch.8, Sec.4, Problem 14] Use the methods of Ch. 8, Sec. 4 of Boas to solve the
following differential equation:

(x− 1)y′ + y − x−2 + 2x−3 = 0. (1.1)

Compare computer solutions and reconcile differences.

1.1 Solution One

First, we rewrite the differential equation as follows:

(x− 1)y′ + y = x−2 − 2x−3. (1.2)

We notice that the left-hand-side is just a total derivative:

d

dx
((x− 1)y) = (x− 1)y′ + y (1.3)

We can thus simply integrate both sides. Integrating the right-hand-side, we find∫
dx

(
1

x2
− 2

x3

)
= −1

x
+

1

x2
+ C (1.4)

Integrating the left-hand-side we get (x− 1)y. Therefore,

(x− 1)y = −1

x
+

1

x2
+ C = −

(
x− 1

x2

)
+ C (1.5)
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Thus, our solution is

y(x) = − 1

x2
+
C

x− 1
(1.6)

Suppose that y(2) = n. Then

y(2) = n = −1

4
+ C =⇒ C =

4n+ 1

4
(1.7)

Then

y(x) = − 1

x2
+

4n+ 1

4(x− 1)
(1.8)

Fig. (1) shows the numerical and analytic solutions to the differential equation for various
values of n.
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Figure 1: Numerical vs. analytic solutions to the differential equation (x − 1)y′ + y =
x−2 − 2x−3. The analytic solutions are show with large line widths and are faded while the
numerical are bold with thin linewidth.
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2 Problem Two

[Boas, Ch.8, Sec.4, Problem 19] Find the family of curves satisfying the differential
equation

(x+ y)dy + (x− y)dx = 0 (2.1)

and also find their orthogonal trajectories.

2.1 Solution Two

First let’s find the solutions to the differential equation. Let P (x, y) = x+ y and Q(x, y) =
x− y. We notice that P and Q are homogenous functions of degree 1. That is

P (x, y) = x (1 + y/x) (2.2)

Q(x, y) = x (1− y/x) (2.3)

Thus, our differential equation is homoegeneous. We can write our differential equation
as

dy

dx
= −Q

P
= −

(
1− y/x
1 + y/x

)
(2.4)

To solve this equation, we make the following change of variables: y = xv. Then, y′ = xv′+v.
We then have the following differnetial equation for v:

xv′ + v = −1− v
1 + v

(2.5)

We can rewrite this equation by moving the v on the LHS to the RHS, yeilding

xv′ = −
(
v +

1− v
1 + v

)
= −1 + v2

1 + v
(2.6)

We thus can seperate the differential equation:

1 + v

1 + v2
dv = −dx

x
(2.7)

The integral of the LHS is∫
1 + v

1 + v2
dv =

∫
1

1 + v2
dv +

∫
v

1 + v2
dv = arctan(v) +

1

2
log
(
1 + v2

)
(2.8)

Therefore, we find that

arctan(v) +
1

2
log
(
1 + v2

)
= − log(x) + C (2.9)
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This equation is begging for us to use v = tan(θ). For v = tan(θ), we can set y = r sin θ and
x = r cos θ, i.e. polar coordinates. Plugging these in, we find

θ − log(cos θ) = − log(r cos θ) + C (2.10)

Using log(ab) = log(a) + log(b), we find

θ = − log(r) + C (2.11)

which is solved by r(θ) = C ′e−θ. These solutions are decaying spirals. The solid curves in
Fig. (2) show the solutions for C ′ = 0.5, 1.0, 1.5, 2.0.
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Figure 2: Solutions and orthogonal solutions to (x + y)dy + (x − y)dx = 0. Solid lines are
the solutions and the dashed lines are the orthogonal solutions.

Let’s now solve for the orthogonal solutions. The orthogonal differential equation is obtained
by negating and inverting the slope. That is, we change the slope to

y′ → − 1

y′
(2.12)

Then, our differential equation is

− 1

y′
= −

(
1− y/x
1 + y/x

)
(2.13)



L. A. Morrison PHYS 116B HW3 - Problem Two Page 5 / 14

which can be written as

y′ =
1 + y/x

1− y/x (2.14)

We again have a homogeneous equation. We follow the above steps to obtain

xv′ + v =
1 + v

1− v (2.15)

This differential equation can be rearranged to obtain

xv′ =
v2 + 1

1− v (2.16)

This can now be separated out:

1− v
1 + v2

dv =
dx

x
(2.17)

Integrating the entire equation, we find

arctan(v)− 1

2
log
(
1 + v2

)
= log(x) + C (2.18)

Changing to polar coordinates again, we find

θ + log(cos θ) = log(r cos θ) + C (2.19)

Solving for r yeilds r = C ′eθ. The dashed curves in Fig. (2) show the solutions for C ′ =
0.5, 1.0, 1.5, 2.0. We can see that the dashed lines are perpendicular to the solid lines every-
where.
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3 Problem Three

[Boas, Ch.8, Sec.4, Problem 21] As in text just before (4.11) of Boas Ch. 8, show
that

(a) x2 − 5xy + y3/x is a homogeneous function of degree 2;

(b) x−1(y4 − x3y)− xy2 sin(x/y) is homogeneous of degree 3;

(c) x2y3 + x5 ln(y/x)− y6/
√
x2 + y2 is homogeneous of degree 5;

(d) x2 + y, x+ cos(y) and y + 1 are not homogeneous.

See Boas Ch. 4, Sec. 13. Problem 1 for a more general definition of a homogeneous function
of any number of variables.

3.1 Solution Three

(a) If x2 − 5xy + y3/x is a homogeneous function of degree 2, then we should be able to
write it as x2f(y/x). Indeed, if we factor our an x2, we obtain

x2 − 5xy + y3/x = x2
(
1− 5y/x+ (y/x)3

)
(3.1)

(b) If x−1(y4 − x3y) − xy2 sin(x/y) is a homogeneous function of degree 3, then we should
be able to write it as x3f(y/x). Indeed, if we factor our an x3, we obtain

x−1(y4 − x3y)− xy2 sin(x/y) = x3
(
(y/x)4 − (y/x)− (y/x)2 sin(1/(y/x))

)
(3.2)

(c) If x2y3+x5 ln(y/x)−y6/
√
x2 + y2 is a homogeneous function of degree 5, then we should

be able to write it as x5f(y/x). Indeed, if we factor our an x3, we obtain

x2y3 + x5 ln(y/x)− y6/
√
x2 + y2 = x5

(
(y/x)3 + ln(y/x)− (y/x)5/

√
1 + (y/x)2

)
(3.3)

(d) Let’s try to write x2 + y as a homogeneous function. We would want it to be of degree
2. Trying to put it in the correct for gives us

x2 + y = x2
(

1 +
1

x
(y/x)

)
(3.4)

which is not homogeneous. We can see that x + cos(y) is not homogeneous right away
since it containes cos(y). This factor screws everything up. You can see this by taylor
expanding the cosine:

cos(y) = 1− 1

2
y2 +

1

4!
y4 + · · · (3.5)

There is xn you can multiply cos(y) by to make it homogeneous. Lastly, 1 + y cannot
be homogeneous. It has y’s and no x’s.
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4 Problem Four

[Boas, Ch.8, Sec.4, Problem 25] An equation of the form

y′ = f(x)y2 + g(x)y + h(x) (4.1)

is called a Riccati equation. If we know one particular solution yp, then the substitution
y = yp + 1/z gives a linear first-order equation for z. We can solve this for z and substitute
back to find a solution of the y equation containing one arbitrary constant (see Problem 26).
Following this method, check the given yp, and then solve

(a) y′ = xy2 − 2

x
y − 1

x3
, yp =

1

x2
;

(b) y′ =
2

x
y2 +

1

x
y − 2x, yp = x;

(c) y′ = e−xy2 + y − ex, yp = ex;

4.1 Solution Four

(a) First let’s verify the solution give is indeed a solution. if yp = 1/x2, then y′p = −2/x3.
The LHS is

xy2p −
2

x
yp −

1

x3
=

x

x4
− 2

x3
− 1

x3
= − 2

x3
(4.2)

Thus, yp is indeed a solution. Now we will use y = yp+1/z. Nearly the entire differential
equation is linear. The non-linear piece comes from the y2. This give

y2 = y2p + 2yp
1

z
+

1

z2
(4.3)

Plugging this in, and using our knowledge of the fact that yp is a solution, we find

− z
′

z2
= x

(
2

x

1

z
+
x

z2

)
− 2

x

1

z
(4.4)

Simplifying this, we arrive at z′ = −x. Hence, z = −1

2
x2 +

1

2
C (I put in the 1/2 on the

C for convienience.). Our general solutions is therefore

y(x) =
1

x2
+

2

C − x2 =
C + x2

x2(C − x2) (4.5)

(b) First, let’s check that yp = x is a solution. The LHS is simply 1. The RHS is

2

x
y2p +

1

x
yp − 2x =

2

x
x2 +

1

x
x− 2x = 1 (4.6)
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Thus, yp = x is indeed a solution. Bearing this in mind and setting y = yp + 1/z, we
find

− z
′

z2
=

2

x

(
2x

z
+

1

z2

)
+

1

xz
=

1

z

(
4 +

1

x
+

2

xz

)
(4.7)

Mulitplying through by z2, we find

z′ +

(
4 +

1

x

)
z = −2

x
(4.8)

This equation can be solved by integrating factor. Our integrating factor will be

I(x) = exp

(∫ (
4 +

1

x

)
dx

)
= exp(4x+ log(x)) = xe4x (4.9)

Multipkying through by this factor, we find

d

dx

(
zxe4x

)
= −2e4x (4.10)

Integrating both sides, we find

z = − 1

2x

(
1− Ce−4x

)
(4.11)

Thus, our entire solution is

y(x) = x− 2x

1− Ce−4x = −x
(

1 + Ce−4x
1− Ce−4x

)
(4.12)

(c) First we check that yp = ex is a solution. Of cource y′p = yp. The LHS is

e−xy2 + y − ex = ex + ex − ex = ex (4.13)

Thus, yp is a solution. Next, we plug in y = yp + 1/z:

− z
′

z2
= e−x

(
2

z
ex +

1

z2

)
+

1

z
=

3

z
+
e−x

z2
(4.14)

Rearranging, we find

z′ + 3z = −e−x (4.15)

We can solve this by use of an integrating factor I = e3x. Using this, we find

d

dx

(
ze3x

)
= −e2x (4.16)

After integrating, we find

z = −1

2
e−x +

1

2
Ce−3x = −e

−x

2

(
1− Ce−2x

)
(4.17)

Thus, our solution is

y(x) = ex − 2ex

1− Ce−2x = −ex
(

1 + Ce−2x
1− Ce−2x

)
(4.18)
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5 Problem Five

[Boas, Ch.8, Sec.5, Problem 7] Solve the following differential equation by the methods
discussed in Boas Ch. 8, Sec. 5 and compare computer solutions.

(D2 − 5D + 6)y = 0 (5.1)

5.1 Solution Five

To solve this differential equation, we guess y = Aeωx. Plugging this into the differential
equation, we find

Aeωx
(
ω2 − 5ω + 6

)
= 0 (5.2)

Thus, in order to have non-trivial solutions (i.e. A = 0), we require that ω2 − 5ω + 6 = 0.
Hence, ω = 2, 3. Thus, our soultion is

y(x) = c1e
2x + c2e

3x (5.3)
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6 Problem Six

[Boas, Ch.8, Sec.5, Problem 10] Solve the following differential equation by the methods
discussed in Boas Ch. 8, Sec. 5 and compare computer solutions.

y′′ − 2y′ = 0 (6.1)

6.1 Solution Six

To solve this differential equation, we guess y(x) = Aeωx. Plugging this in, we find

Aeωx
(
ω2 − 2ω

)
= 0 (6.2)

Thus, either ω = 0 or ω = 2. Our general solution is therefore

y(x) = c1 + c2e
2x (6.3)
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7 Problem Seven

[Boas, Ch.8, Sec.5, Problem 12] Solve the following differential equation by the methods
discussed in Boas Ch. 8, Sec. 5 and compare computer solutions.

(2D2 +D − 1)y = 0 (7.1)

7.1 Solution Seven

As in the previous two problems, we guess y = Aeωx. Plugging this in. we find

Aeωx
(
2ω2 + ω − 1

)
= 0 (7.2)

For non-trivial solutions, we require 2ω2 + ω − 1 = 0. That is, we require that

ω =
−1± 3

4
= −1,

1

2
(7.3)

Thus, our general solution is

y(x) = c1e
−x + c2e

x/2 (7.4)
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8 Problem Eight

[Boas, Ch.8, Sec.5, Problem 13] Recall from Boas Ch. 3, equation (8.5), that a set of
functions is linearly independent if their Wronskian is not identically zero. Calculate the
Wronskian of each of the set

e−x, e−4x (8.1)

to show that they are linearly independent. Write the differential equation of which they are
solutions. Also note that each set of functions is a set of basis functions for a linear vector
space (see Boas Ch. 3, Sec. 14, Example 2) and that the general solution of the differential
equation gives all vectors of the vector space.

8.1 Solution Eight

The Wronskian for the functions e−x and e−4x is

W =

∣∣∣∣ e−x e−4x

−e−x −4e−4x

∣∣∣∣ = −4e−5x + e−5x = −3e−5x 6= 0 (8.2)

Since the Wronskian doesn’t vanish, we know these functions are linearly independent. The
differential equation that these functions satisfy is

(D + 1)(D + 4)y = 0 (8.3)
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9 Problem Nine

[Boas, Ch.8, Sec.5, Problem 27] Use the results of Problem 21 to find the general
solutions of the following equation:

D2(D − 1)2(D + 2)3y = 0 (9.1)

and compare computer solutions.

9.1 Solution Nine

We solve this differential equation by guessing y = Aeωx. Plugging this in, we find

Aeωxω2(ω − 1)2(ω + 2)3 = 0 (9.2)

Thus, we require that, either ω = 0, 1 or −2. However, our differential equation is 7th order,
meaning we expect 7 linearly independent solutions. To find the remaining, we use the
standard trick when we have repeated roots. That is, we guess a polynomial times the know
solutions. We guess x, xex, xe−2x and x2e−2x. We can see that x will work due to the D2.
Let’s check xex:

(D − 1)2xex = (D − 1) (ex + xex − xex) = (D − 1)ex = 0 (9.3)

Thus, xex works. Next, let’s check xe−2x:

(D + 2)3xe−2x = (D + 2)2
(
e−2x − 2xe−2x + 2e−2x

)
= (D + 2)2e−2x = 0 (9.4)

Lastly, let’s check x2e−2x:

(D + 2)3x2e−2x = (D + 2)2
(
2xe−2x − 2x2e−2x + 2x2e−2x

)
(9.5)

= (D + 2)22xe−2x (9.6)

= 2(D + 2)
(
e−2x − 2xe−2x + 2xe−2x

)
(9.7)

= 2(D + 2)e−2x (9.8)

= 0 (9.9)

Thus, we have found all of our solutions. One can also show that these functions are indeed
linearly independent. The Wronskian is 93312e−4x. Our general solutions is therefore,

y = c1 + c2x+ c3e
x + c4xe

x + c5e
−2x + c6xe

−2x + c7x
2e−2x (9.10)
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10 Problem Ten

[Boas, Ch.8, Sec.5, Problem 38] Solve the RLC circuit equation [(5.33) or (5.34) of Boas
Ch. 8] with V = 0 as we did (5.27), and write the conditions and solutions for overdamped,
critically damped, and under- damped electrical oscillations in terms of the quantities R,L,
and C.

10.1 Solution Ten

The RLC circuit equation for the current is

LI ′′ +RI ′ + I/C = 0 (10.1)

So solve this equation, we guess I = Aeωt. Plugging this in, we find

Aeωt
(
Lω2 +Rω +

1

C

)
= 0 (10.2)

The solutions are

ω =
−R±

√
R2 − 4L/C

2L
=

R

2L

(
−1±

√
1− 4L/R2C

)
(10.3)

Let γ = (R/2L)
√

1− 4L/R2C. If γ 6= 0, then we have the following solutions:

I(t) = c1e
−Rt/2L+γt + c2e

−Rt/2L−γt (10.4)

If γ is real, then our solution is overdamped. That is, if

CR2 > 4L =⇒ overdamped (10.5)

The overdamped solutions are

I(t) = e−Rt/2L
(
c1e

γt + c2e
−γt) (10.6)

If γ is imaginary, our solution is underdamped:

CR2 < 4L =⇒ underdamped (10.7)

The underdamped solutions are

I(t) = e−Rt/2L
(
c1e

i|γ|t + c2e
−i|γ|t) (10.8)

If γ = 0, or R2C = 4L, then our solution is critically damped. In this case, our solutions
are

I(t) = e−Rt/2L (c1 + c2t) (10.9)
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