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1 Problem One

[Boas, Ch.8, Sec.6, Problem 9]

Find the general solution of the following differential equations (complementary function +
particular solution):

(D2 + 2D + 1)y = 2e−x (1.1)

Find the particular solution by inspection or by (6.18), (6.23), or (6.24). Also find a computer
solution and reconcile differences if necessary, noticing especially whether the particular
solution is in simplest form [see (6.26) and the discussion after (6.15)].

1.1 Solution One

Let’s first find the complementary solution. We will guess y = eαx. With this guess we
find

(D2 + 2D + 1)eαx = eαx(α2 + 2α + 1) = eαx(α + 1)2 = 0 (1.2)

We can see that for eαx to be a solution, α = −1. Since this is a double root, we know that
the solution is

yc = (A+Bx)e−x (1.3)

For the particular solution, we will guess x2e−x:

(D2 + 2D + 1)x2e−x = 2e−x (1.4)

Therefore, we can se that the particular solution is yp = x2e−x. Thus, the entire solution
is

y = yc + yp = (A+Bx)e−x + x2e−x (1.5)
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2 Problem Two

[Boas, Ch.8, Sec.6, Problem 18]

Find the general solution of the following differential equations (complementary function +
particular solution):

(D2 + 2D + 17)y = 60e−4x sin(5x) (2.1)

Find the particular solution by inspection or by (6.18), (6.23), or (6.24). Also find a computer
solution and reconcile differences if necessary, noticing especially whether the particular
solution is in simplest form [see (6.26) and the discussion after (6.15)].

2.1 Solution Two

First, let’s determine the complementary solution. As usual we guess eαx:

(D2 + 2D + 17)eαx = eαx(α2 + 2α + 17) = 0 (2.2)

The solution to this is α = −1± 4i. Thus, the complementary solution is

yc(x) = c1e
(−1−4i)x + c1e

(−1+4i)x = e−x
(
c1e
−4ix + c2e

4ix
)

(2.3)

For the particular solution, we will guess e−4x cos(5x). After some algebra, one finds that:

(D2 + 2D + 17)e−4x cos(5x) = 30e−4x sin(5x) (2.4)

Which is what we want up to a factor of two. Thus, our entire solution is

y(x) = e−x
(
c1e
−4ix + c2e

4ix
)

+ 2e−4x cos(5x) (2.5)

The real solutions can be obtained by replacing

c1e
−4ix + c2e

4ix = (c1 + c2) cos (4x) + i(c1 − c2) sin (x) = c′1 cos (4x) + c′2 sin (x), (2.6)

resulting in

y(x) = e−x (c′1 cos (4x) + c′2 sin (x)) + 2e−4x cos(5x) (2.7)
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3 Problem Three

[Boas, Ch.8, Sec.6, Problem 27] 423.27

Verify that (6.4) is a particular solution of (6.2). Verify that another particular solution of
(6.2) is

yp =
1

10
sin(2x)− e−x (3.1)

Observe that we obtain the same general solution (6.7) whichever particular solution we use
[since (A−1) is just as good an arbitrary constant as A]. Show in general that the difference
between two particular solutions of (a2D

2 + a1D + a0)y = f(x) is always a solution of the
homogeneous equation a2D

2 + a1D + a0)y = 0, and thus show that the general solution is
the same for all choices of a particular solution.

3.1 Solution Three

Equation (6.2) is

(D2 + 5D + 4)y = cos(2x) (3.2)

First let’s verify that sin(2x)/10 is a solution. Notice that

D sin(2x) = 2 cos(2x) (3.3)

D2 sin(2x) = −4 sin(2x) (3.4)

Using these, we find that

(D2 + 5D + 4) sin(2x) = −4 sin(2x) + 10 cos(2x) + 4 sin(2x) = 10 cos(2x) (3.5)

Thus, (D2 +5D+4) sin(2x)/10 = cos(2x). Next, let’s verify that e−x is also a solution:

(D2 + 5D + 4)e−x = e−x − 5e−x + 4e−x = 0 (3.6)

Since D2 + 5D + 4 is linear, we conclude that 1
10

sin(2x) − e−x is a solution (note that is
is pretty clear since the complementary solution is c1e

−x + c2e
−4x.) Suppose we have two

particular solutions:

(a2D
2 + a1D + a0)y

1
p = f(x) (3.7)

(a2D
2 + a1D + a0)y

2
p = f(x) (3.8)

Subtracting the two, we find

(a2D
2 + a1D + a0)(y

1
p − y2p) = 0 (3.9)
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Hence, y1−y2 is a solution to the homogeneous differential equation. Therefore we can write
two solutions:

y1 = y1p + yc (3.10)

y2 = y2p + yc (3.11)

We can write the second solution as

y2 = y1p + (y2p − y1p) + yc (3.12)

But since y2p − y1p is a solution to the homogeneous differential equation, (y2p − y1p) + yc is the
same as yc but with different arbitrary constants.
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4 Problem Four

[Boas, Ch.8, Sec.6, Problem 31] 424.31

(a) Show that

D(eaxy) = eax(D + a)y, (4.1)

D2(eaxy) = eax(D + a)2y, (4.2)

and so onl that is, for any positive integral n,

Dn(eaxy) = eax(D + a)ny. (4.3)

Thus show that if L[D] is any polynomial in the operator D, then

L[D](eaxy) = eaxL[D + a]y (4.4)

This is called the exponetial shift.

(b) Use (a) to show that

(D − 1)3(exy) = exD3y, (4.5)

(D2 +D − 6)(e−3xy) = e−3x(D2 − 5D)y. (4.6)

(c) Replace D by D − a, to obtain

eaxP [D]y = P [D − a]eaxy. (4.7)

This is called the inverse exponential shift.

4.1 Solution Four

(a) Let’s work on the first identity:

D(eaxy) = aeaxy + eaxDy = eax(Dy + ay) = eax(D + a)y (4.8)

Now the second identity:

D2(eaxy) = D [eax(D + a)y] (4.9)

= aeax(D + a)y + eaxD(D + a)y (4.10)

= eax (D + a) (D + a)y (4.11)

= eax (D + a)2 y (4.12)

Let’s now prove that Dn(eaxy) = eax(D + a)ny. We will do this by mathematical
induction. First, we know that D(eaxy) = eax(D + a)y. Next, let’s assume that
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Dn(eaxy) = eax(D + a)ny is true. Now consider Dn+1(eaxy). Using the assumption
that Dn(eaxy) = eax(D + a)ny is true, we find that

Dn+1(eaxy) = DDn(eaxy) (4.13)

= Deax(D + a)ny (4.14)

= aeax(D + a)ny + eaxD(D + a)ny (4.15)

= eax [a(D + a)ny +D(D + a)ny] (4.16)

= eax (D + a) (D + a)ny (4.17)

= eax(D + a)n+1y (4.18)

Thus, if Dn(eaxy) = eax(D + a)ny is true, we have that Dn+1(eaxy) = eax(D + a)n+1y
must be true. Therefore Dn(eaxy) = eax(D + a)ny holds for all n ∈ N. Next let L[D] be
a polynomial of D:

L[D] =
N∑
n=0

anD
n (4.19)

Then consider L[D](eaxy):

L[D](eaxy) =
N∑
n=0

anD
n(eaxy) (4.20)

=
N∑
n=0

eaxan(D + a)ny (4.21)

= eax
N∑
n=0

an(D + a)ny (4.22)

= eaxL[D + a]y (4.23)

(b) Let’s work on the first expression (D − 1)3(exy). We can write this as L[D](exy) with
L[D] = (D − 1)3. Using the previous results, we find

(D − 1)3(exy) = L[D](exy) = exL[D + 1]y = exD3y (4.24)

Next, L[D] = D2 +D − 6 = (D + 3)(D − 2). Using this,

(D2 +D − 6)(e−3xy) = L[D](e−3xy) (4.25)

= e−3xL[D − 3]y (4.26)

= e−3x(D − 3 + 3)(D − 3− 2)y (4.27)

= e−3x(D2 − 5D)y (4.28)

(c) Using L[D](eaxy) = eaxL[D + a]y and replacing D → D − a, we find

L[D − a](eaxy) = eaxL[D − a+ a]y = eaxL[D]y (4.29)

Hence, eaxL[D]y = L[D − a](eaxy).
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5 Problem Five

[Boas, Ch.8, Sec.6, Problem 36] 429.36

Solve the following differential equations by using the principle of superposition [see the
solution of equation (6.29)]

(D2 + 1)y = 2 sin(x) + 4x cos(x) (5.1)

5.1 Solution Five

For convinience, let us define L[D] = D2+1. Our first step is to determine the complementary
solution. Guessing y = eαx, we find

L[D]eαx = eαxL[α] = eαx(α2 + 1) = 0 (5.2)

Thus, eαx is a solution for α = ±i. Therefore the complementary solution is

yc(x) = Aeix +Be−ix (5.3)

Now let’s determine the particular solution. First, let’s try to get the 2 sin(x) part of the
particular solution. We will guess a polynomial times sin(x). We know that sin(x) alone
wont work since L[D] sin(x) = 0. Let’s try Cx sin (x) + Dx cos (x). After some algebra, we
find

L[D] (Cx sin (x) +Dx cos (x)) = 2C cos (x)− 2D sin (x) (5.4)

Thus, we find that we can obtain the 2 sin (x) on the right-hand-side if y = −x cos (x). Next,
let’s determine what particular solution give 4x cos (x). We will guess a function of the form
(Cx+Dx2) sin(x) + (Ex+ Fx2) cos(x). After some work, we find that

L[D]
(
(Cx+Dx2) sin(x) + (Ex+ Fx2) cos(x)

)
(5.5)

= 2 [(C + F + 2Dx) cos (x) + (D − E − 2Fx) sin (x)] (5.6)

We can immediately see that we need C = F = 0. This leaves us with

2 [2Dx cos (x) + (D − E) sin (x)] (5.7)

(note that at this point we can see that we could have taken care of the entire 2 sin (x) +
4x cos (x) with D = 2, E = 0.) To remove the sin (x), we need D = E. To get the 4x cos (x),
we set D = 1. Thus, to get the 4x cos (x), we need y = x2 sin(x) + x cos(x). Now, by the
superposition principle (or linearity of the differential equation), we have the the particular
solution is

yp = −x cos (x) + x2 sin(x) + x cos(x) = x2 sin(x) (5.8)
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Therefore, our entire solution is

y = x2 sin(x) + Aeix +Be−ix (5.9)

Or, if we want a purely real solution (with potentially complex coefficients), we replace

Aeix +Be−ix = A cos (x) + iA sin (x) +B cos (x)− iB sin (x) (5.10)

= (A+B) cos (x) + i(A−B) sin (x) (5.11)

= A′ cos (x) +B′ sin (x) (5.12)

Thus, the real solution is

y = x2 sin(x) + A′ cos (x) +B′ sin (x) (5.13)
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6 Problem Six

[Boas, Ch.8, Sec.7, Problem 3]

Solve the following differential equation by method (a) or (b) from Sec.(7) in Boas:

2y
d2y

dx2
=

(
dy

dx

)2

(6.1)

6.1 Solution Six

To solve this differential equation, we use method (b), since the independent variable x is
missing. That is, we set

v(x) =
dy

dx
(6.2)

and

dv

dx
=
dv

dy

dy

dx
= v

dv

dy
(6.3)

Plugging these into the differential equation, we find a new, seperable differential equation
for v(y):

2yv
dv

dy
= v2 (6.4)

Seperating the differential equation and integrating both sides, we find that

ln(v) = ln(
√
y) + C =⇒ dy

dx
= v = C

√
y (6.5)

Now to find y(x), we integrate the above result obtaining:

y =
1

4
(Cx+D)2 (6.6)
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7 Problem Seven

[Boas, Ch.8, Sec.7, Problem 5]

The differential equation of a hanging chain supported at its ends is(
d2y

dx2

)2

= k2

(
1 +

(
dy

dx

)2
)

(7.1)

Solve the equation to find the shape of the chain.

7.1 Solution Seven

To solve this equation, we let dy/dx = v. Then, we have

d2y

dx2
=
dv

dx
(7.2)

Plugging this in, we find (
dv

dx

)2

= k2
(
1 + v2

)
(7.3)

Taking the squared root, we find

dv

dx
= ±k

√
1 + v2 = ηk

√
1 + v2 (7.4)

Where η = ±1. Now let’s integrate this equation∫
dv√

1 + v2
= ηk

∫
dx = ηkx+D (7.5)

To integrate the left-hand-side, we make the change of variable v = sinh(u). Note that
cosh (u)2 = 1 + sinh2 (u)∫

dv√
1 + v2

=

∫
cosh (u)du√
1 + sinh (u)2

=

∫
cosh (u)du

cosh (u)
= u = sinh−1 (v) (7.6)

Therefore, we find

v = sinh(ηkx+D) =
dy

dx
(7.7)

Integrating once more, we find

y(x) =
1

ηk
cosh (ηkx+D) + C (7.8)

Note that

cosh (−kx+D) = cosh (−(kx−D)) = cosh (kx−D) = cosh (kx+D′) (7.9)

Thus, the full solution is

y(x) = ±1

k
cosh (kx+D) + C (7.10)
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8 Problem Eight

[Boas, Ch.8, Sec.7, Problem 11] 436.11

In following problem, solve (7.14) to find v(x) and then x(t) for the given F (x) and initial
conditions:

F (x) = −2m/x5; v(t = 0) = −1, x(t = 0) = 1. (8.1)

8.1 Solution Eight

Our differential equation is

m
d2y

dx2
= −2

m

x5
(8.2)

This can be written as v′ = −2x−5. Using

dv

dt
=
dx

dt

dv

dx
= v

dv

dx
(8.3)

we find v(dv/dx) = −2x−5. Separating, we have

vdv = −2
dx

x5
(8.4)

Integrating, we find

1

2
v2 =

1

2x4
+

1

2
D (8.5)

Solving for v, we have

v = ±
√
D + x−4 = ±

√
Dx4 + 1

x2
(8.6)

Given that x(t = 0) = 1, v(t = 0) = −1 we find at at t = 0:

−1 = −
√
D + 1

1
=⇒ D = 0 (8.7)

Thus, we have that

v(x) =
dx

dt
= −x−2 (8.8)

Separating variables, we find

x2dx = −dt (8.9)
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Integrating, we obtiain

1

3
x3 = −t+

1

3
C (8.10)

Solving for x, we arrive at

x = (C − 3t)1/3 (8.11)

Using x(t = 0) = 1, we find that C = 1. Thus, the final solution is

x(t) = (1− 3t)1/3 (8.12)
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9 Problem Nine

[Boas, Ch.8, Sec.7, Problem 13] 436.13

The exact equation of motion of a simple pendulum is d2θ/dt2 = −ω2
0 sin(θ) where ω2

0 = g/l.
By method (c) in Chap. 8, Sec.7 of Boas, integrate this equation once to find dθ/dt if
dθ/dt = 0 when θ = 90◦. Write a formula for t(θ) as an integral. See Problem 5.34.

9.1 Solution Nine

Let ω = dθ/dt. Then we have that

dω

dt
= −ω2

0 sin(θ) (9.1)

Using dω/dt = ω(dω/dθ), this becomes

ω
dω

dθ
= −ω2

0 sin (θ) (9.2)

Integrating both sides, we find

1

2
ω2 = ω2

0 cos (θ) +
1

2
D (9.3)

Solving for ω, we find

ω =
dθ

dt
=
√

2ω2
0 cos (θ) +D (9.4)

Using the initial condition, we find that D = 0. Now we have that

dθ

dt
=
√

2ω0

√
cos (θ) (9.5)

Separating variables,

dθ√
cos (θ)

=
√

2ω0dt (9.6)

Integrating both sides, we find that

t =
1√
2ω0

∫
dθ√

cos (θ)
(9.7)
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10 Problem Ten

[Boas, Ch.8, Sec.7, Problem 26]

For the following problem, verify the given solution and then, by method (e) from Chap.8,
Sec.7 of Boas, find a second solution of the given equation.

(x2 + 1)
d2y

dx2
− 2x

dy

dx
+ 2y = 0, u = x. (10.1)

10.1 Solution Ten

We are told that u = x is a solution. We can easily check this:

(x2 + 1)
d2u

dx2
− 2x

du

dx
+ 2u =(x2 + 1)× 0− 2x× 1 + 2x = −2x+ 2x = 0 (10.2)

To solve for the second solution, we set y = u(x)v(x). Doing so, we find the following
differential equation for v(x):

x(1 + x2)
d2v

dx2
+ 2

dv

dx
= 0 (10.3)

This is just a first order differential equation, which we can see by setting h(x) = dv/dx:

x(1 + x2)
dh

dx
+ 2h(x) = 0 (10.4)

This is a seperable differential equation. Separating variables, we obtain

dh

h
= − 2dx

x(1 + x2)
(10.5)

Integrating, we find

ln(h) = log

(
1 + x2

x2

)
+ C (10.6)

Exponentiating, we find that

dv

dx
= h(x) = C ′

(
1 + x2

x2

)
(10.7)

Integrating once more to find v(x), we arrive at

v(x) = C ′
(
x− 1

x

)
+D (10.8)

Thus, our second solution is

y(x) = u(x)v(x) = C ′
(
x2 − 1

)
+Dx (10.9)

which is in fact our entire solution.
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