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Notes on Complex-Functions-I

§Complex Functions: What are they :

Transiting from real to complex is mainly straightforward:

r— z=(x+1iy)

Polar form
z=pe, x=pcos(¢), y = psin(¢p).
When ¢ winds through 27 z returns to its original value.

i27r:1

f(@) = f(z)

We have seen e*,sin(z), cos(z), tanh(z) etc. These are complex functions
Complex functions have real and imaginary parts.

f(2) = u(z,y) +iv(z,y)
and we say that u = Ref(z) and v = Smf(2).

§Complex Functions: Properties of interest: Single versus mul-
tivalued functions:

Single valued example:

22 = (x +iy)* = (2% —v?) + i2zy,

Multivalued:



where ¢ — ¢+ 21 does not return z to its old value, we need to wind around
twice to get back.
This is said to have a square root branch point.

N|=

z

log z = log p + 19,

which never returns on winding around. Infinite fold branch point.
§Complex Functions: Analytic functions:

Can we differentiate a complex function uniquely?
This is a key question.
Quick reminder for real functions where the derivative at a point x is

defined by

: - flz+ Az) — f(x)
Fo==
Since x is real Ax must also be real. It can be positive or negative. If
we get the same answer from both sides, we say it has a unique derivative at
that point.
Similarly for complex functions we may define:

df A - f()

dz  Az50 Az

(1)

For complex functions the key point is that a corresponding Az can be
one of many things.

e.g.
Az = Ax
Az = iAy

Az =p Az +iq Ay

where p, ¢ are themselves complex numbers.

Pictorially this means we can wander away from any z in an infinite
number of directions.



If the derivative is unique, that would be special....it is special and leads
to the theory of analytic functions.

(i) Positive example.

f(z) = 2" = (v +1iy)?

Let us try
Az = Ax

flz+Az) = (z+ Az +1iy)* ~ (v +iy)* + 2(z + iy) Aw
Hence
i 12 80) = 1(2)

— 2z
Az—0 AZL‘

Similarly with Az = iAy

f(z+iAy) = (z + iy + iAy)? ~ (x + iy)? + 2iAy(z + iy)
Hence we get the same answer as above.

lim flz +iAy) — f(2)

— 2z
Ay—0 ’LAy

(i) Negative example

f(2) = |zl = Va? +y°

Let us try
Az = Ax
rAx
fz+Az) = /(2 + Az)2 4+ 32 ~ /22 + 200z + Y2 ~ (|z| + T + O(Ax))
Hence A
L fetAD () @
Az—0 Az ||
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Similarly with Az = iAy

flz+ily) = /(y +idy)? + 22 ~ \/y2 + 2iyAy + 22 ~ (|Z| +

Here we get a different answer from above

i S =)y
Ay—0 iAy |2|

Hence in the positive case we verified that

df (2)

dz

iyAy

2|

¥ omy))

can be calculated by any (small) variation of z, and we get the same answer.

This defines an analytic function.

In the negative case we get a different answer, so it is a non-analytic

function.



Recap
§Definition of an analytic function:

Given a function f(zo), we define its derivative at the point z as

df (z 20+ Az) — f(z

In general dz can take an infinite variety of “directions”, this is a property
of 2-dimensions, and corresponds to approaching the point zy in one of oo
ways.

See:Fig:
If
df (2)

dz z——20

obtained by a calculation with an arbitrary variation dz gives the same answer
it is an analytic function at the point zj.

Corollary In case we get a different answer depending on the variation
dz, it is a non-analytic function.

Comment We can have a function that is analytic at z; and not at z;

Example:

fe) = = or ©

sin(z) Z

are analytic at z = 1 but not at z = 0.
We will see soon that these functions are said to have a pole at z = 0, it
is a kind of a singularity of the function f.

§Cauchy-Riemann theorem:

One of the very important theorems:
If f(z) is analytic at some point z, and if f(z) = u(z,y) + iv(z,y) with
real u,v, then u,v satisfy the Cauchy-Riemann conditions



Opu = Oyv, 0,0 = —0yu, (3)

Note we will also write the partial derivatives more compactly for any
function a = a(z,y) as
Opa = a,, Oya = ay.

Proof:
Consider dz = dx
d(u + iv) ,
/
f (Z) - da:- }yﬁxed = U‘T + Z/Ul'
Now dz = idy
d(u + iv) :
f/(z) = zdy |xﬁxed = —1Uy + Uy
Equating
Uy + 10 = —1Uy + Uy,

Hence separately equating real and imaginary parts we get the required
result

P ()
Uy = —Vy. (5)

The reverse is also true, if Cauchy-Riemann conditions are true, the func-
tion is analytic. We skip the proof.

A simple consequence: u,v satisfy Laplace’s equation in 2-d.:
p q y Lap q

Take x derivative of Eq. (4) and y derivative of Eq. (5) and add. since
Vgy = Uyy

Vu = uy, + Uyy =0 (6)
V20 = Uy + vy = 0, (7)

These are Laplace’s equations that arise in electrostatics, where the po-
tential satisfies this equation in a region where there are no source of charge.



Hence solution of most electrostatic problems in 2-d can be done using com-
plex functions.
Let us see a few examples.

Given one real solution u of Laplace’s equation, we can find its comple-
mentary solution v by finding an analytic function f = u + 7v. Mostly this
is easy by guessing:

u=3zy — 1

Vy = Uy = 62y v, = —uy = 3y? — 322

Integrate the first of these
v = 3zy® + a(z)
Now plug into second

d(r) + 3y* = 3y* — 32°

Hence

Hence

v = 3xy? — 2.

Thus we have a complex function

f(z) = 32%y — y*) + i(3zy® — =)



or

f(z) = —i2®.

gIsolated singularities and regular points:

1 1
f(z)_z—a’ (@—m»

are examples of functions with isolated singular points- in tis case poles
of degree 1 and 2 respectively.

Here f(z) is analytic in a domain D which excludes the points z = a.
Pictured as below.

We can also have an infinite number of poles.

et = G- L B ()

n#0

Here f(z) is analytic in a domain D which excludes the points z = 0, £n.
Pictured as below.

We will learn more about various types of singularities soon.



§Another important pair of theorems:

(1) If f(z) is analytic in a domain D, then all its derivatives are also
an(2)
dzm

analytic, i.e. are analytic.

(11) If f(z) is analytic in a domain D, then it can be Taylor expanded
about any point zy in the domain. The Taylor series converges inside a
circle around zy of a diameter that is given by the location of the nearest
singularity.

This is a very useful theorem even for real series.

1
14 22
Convergence circle is |z| = 1. Why is it so? We can now answer it.

=1—2?+2*—ab+ ...




§ Big theorem: Cauchy’s theorem of integral of an analytic func-
tion: If f is analytic in a domain D, the closed contour integral of f

vanishes, provided the contour I lies entirely in D.

ygf(z) dz =0

A very useful warmup exercise:

We might wonder why the big fuss about zero! To lead up to this let us
do a few integrals.

fz) = 2"

and the contour I' is a circle of radius R.

2= Re", dz=1iRe" d¢

with
0<¢p<2m

Hence :
27 ) . 2 .
j{f(z) dz = / iRe'” dp x R"e™? = iR”“/ !9 g
r 0 0

The answer is

%f(z) dZ o Rn+1 (ei(n+1)27r - 1) o O
T T n41 o

Vanishes regardless of R and also n. That is truly remarkable!

One other case, let n become negative. If n # —1 the same answer follows.
However if n = —1 we have a special case that is worth understanding.
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1 2m ” 1 2
—dz = Re'? d — =1 do = 2.
]gz z /0 1Re ¢XR€7’¢ Z/o [0) g

This is also remarkable, it is non zero and is independent of R. This
means some non-analytic functions give interesting results on integration.
Let us get to the bottom of this.

We summarize the results For I' a circle of radius R around the origin,
the integral for all n, both positive and negative, is calculated to be :

j{z” dz = (2m1)6, 1
r

Cauchy theorem for Taylor expandable functions is clearly working here.
If I take a function f(z) =) c¢,2" then its integral is also zero!!

§Proof of Cauchy’s theorem: We compute the contour integral of an

analytic function f(z), where the contour I' lies within D the domain of its
analyticity. We write

7- jgf(z) iz = é (u(z,y) + iv(z, y)) (dz + idy).

By separating real and imaginary parts

I= 7{ (udx — vdy) —i—ij{ (vdx 4 udy) .
r r

Use Greens theorem
7{ (Adz + Bdy) = / dedy (B, — Ay)
r s

where S is the surface area bounded by I' and the directions are as in
figure:

Figure:
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Let us use Greens theorem and the Cauchy Riemann conditions, (drop-
ping the symbols T', S)

/(udm —vdy) — /dxdy (vz +uy) =0

/(vdm + udy) — /dwdy (uy —vy) =0
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