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Notes on Complex-Functions-I

§Complex Functions: What are they :

Transiting from real to complex is mainly straightforward:

x→ z = (x+ iy)

Polar form

z = ρeiφ, x = ρ cos(φ), y = ρ sin(φ).

When φ winds through 2π z returns to its original value.

ei2π = 1.

f(x)→ f(z)

We have seen ez, sin(z), cos(z), tanh(z) etc. These are complex functions
Complex functions have real and imaginary parts.

f(z) = u(x, y) + iv(x, y)

and we say that u = <ef(z) and v = =mf(z).

§Complex Functions: Properties of interest: Single versus mul-
tivalued functions:

Single valued example:

z2 = (x+ iy)2 = (x2 − v2) + i2xy,

ez

Multivalued:
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where φ→ φ+ 2π does not return z to its old value, we need to wind around
twice to get back.

This is said to have a square root branch point.

log z = log ρ+ iφ,

which never returns on winding around. Infinite fold branch point.

§Complex Functions: Analytic functions:

Can we differentiate a complex function uniquely?
This is a key question.
Quick reminder for real functions where the derivative at a point x is

defined by

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x
.

Since x is real ∆x must also be real. It can be positive or negative. If
we get the same answer from both sides, we say it has a unique derivative at
that point.

Similarly for complex functions we may define:

df

dz
= lim

∆z→0

f(z + ∆z)− f(z)

∆z
. (1)

For complex functions the key point is that a corresponding ∆z can be
one of many things.

e.g.

∆z = ∆x

∆z = i∆y

∆z = p ∆x+ iq ∆y

where p, q are themselves complex numbers.

Pictorially this means we can wander away from any z in an infinite
number of directions.
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If the derivative is unique, that would be special....it is special and leads
to the theory of analytic functions.

(i) Positive example.

f(z) = z2 = (x+ iy)2

Let us try
∆z = ∆x

f(z + ∆x) = (x+ ∆x+ iy)2 ∼ (x+ iy)2 + 2(x+ iy)∆x

Hence

lim
∆x→0

f(z + ∆x)− f(z)

∆x
→ 2z

Similarly with ∆z = i∆y

f(z + i∆y) = (x+ iy + i∆y)2 ∼ (x+ iy)2 + 2i∆y(x+ iy)

Hence we get the same answer as above.

lim
∆y→0

f(z + i∆y)− f(z)

i∆y
→ 2z

(ii) Negative example

f(z) = |z| =
√
x2 + y2

Let us try
∆z = ∆x

f(z+∆x) =
√

(x+ ∆x)2 + y2 ∼
√
x2 + 2x∆x+ y2 ∼

(
|z|+ x∆x

|z|
+ o(∆x)

)
Hence

lim
∆x→0

f(z + ∆x)− f(z)

∆x
→ x

|z|
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Similarly with ∆z = i∆y

f(z+i∆y) =
√

(y + i∆y)2 + x2 ∼
√
y2 + 2iy∆y + x2 ∼

(
|z|+ iy∆y

|z|
+ o(∆y)

)
Here we get a different answer from above

lim
∆y→0

f(z + i∆y)− f(z)

i∆y
→ y

|z|

Hence in the positive case we verified that

df(z)

dz

can be calculated by any (small) variation of z, and we get the same answer.
This defines an analytic function.

In the negative case we get a different answer, so it is a non-analytic
function.
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Recap

§Definition of an analytic function:

Given a function f(z0), we define its derivative at the point z0 as

f ′(z0) =
df(z)

dz

∣∣∣
z0

= lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z
. (2)

In general dz can take an infinite variety of “directions”, this is a property
of 2-dimensions, and corresponds to approaching the point z0 in one of ∞
ways.

:
See:Fig:
If

df(z)

dz

∣∣∣
z−→z0

obtained by a calculation with an arbitrary variation dz gives the same answer
it is an analytic function at the point z0.

Corollary In case we get a different answer depending on the variation
dz, it is a non-analytic function.

Comment We can have a function that is analytic at z0 and not at z1

Example:

f(z) =
1

sin(z)
, or

1

z

are analytic at z = 1 but not at z = 0.
We will see soon that these functions are said to have a pole at z = 0, it

is a kind of a singularity of the function f .

§Cauchy-Riemann theorem:

One of the very important theorems:
If f(z) is analytic at some point z, and if f(z) = u(x, y) + iv(x, y) with

real u, v, then u, v satisfy the Cauchy-Riemann conditions
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∂xu = ∂yv, ∂xv = −∂yu, (3)

Note we will also write the partial derivatives more compactly for any
function a = a(x, y) as

∂xa = ax, ∂ya = ay.

Proof:
Consider dz = dx

f ′(z) =
d(u+ iv)

dx

∣∣
y fixed

= ux + ivx

Now dz = idy

f ′(z) =
d(u+ iv)

idy

∣∣
x fixed

= −iuy + vy

Equating

ux + ivx = −iuy + vy,

Hence separately equating real and imaginary parts we get the required
result

ux = vy, (4)

uy = −vx. (5)

The reverse is also true, if Cauchy-Riemann conditions are true, the func-
tion is analytic. We skip the proof.

§A simple consequence: u, v satisfy Laplace’s equation in 2-d.:

Take x derivative of Eq. (4) and y derivative of Eq. (5) and add. since
vxy = vyx

∇2u = uxx + uyy = 0 (6)

∇2v = vxx + vyy = 0. (7)

These are Laplace’s equations that arise in electrostatics, where the po-
tential satisfies this equation in a region where there are no source of charge.
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Hence solution of most electrostatic problems in 2-d can be done using com-
plex functions.

Let us see a few examples.

f(z) = z2

f(z) = ez

Given one real solution u of Laplace’s equation, we can find its comple-
mentary solution v by finding an analytic function f = u + iv. Mostly this
is easy by guessing:

u = 3x2y − y3

vy = ux = 6xy vx = −uy = 3y2 − 3x2

Integrate the first of these

v = 3xy2 + a(x)

Now plug into second

a′(x) + 3y2 = 3y2 − 3x2

Hence
a = −x3

Hence
v = 3xy2 − x3.

Thus we have a complex function

f(z) = (3x2y − y3) + i(3xy2 − x3)
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or

f(z) = −iz3.

§Isolated singularities and regular points:

f(z) =
1

z − a
, f(z) =

1

(z − a)2
,

are examples of functions with isolated singular points- in tis case poles
of degree 1 and 2 respectively.

Here f(z) is analytic in a domain D which excludes the points z = a.
Pictured as below.

We can also have an infinite number of poles.

f(z) = cot(z) =
cos(z)

sin z
=

1

z
+
∑
n6=0

(
1

z − nπ
+

1

nπ

)
Here f(z) is analytic in a domain D which excludes the points z = 0,±nπ.

Pictured as below.

We will learn more about various types of singularities soon.
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§Another important pair of theorems:

(I) If f(z) is analytic in a domain D, then all its derivatives are also

analytic, i.e. dn(z)
dzn

are analytic.

(II) If f(z) is analytic in a domain D, then it can be Taylor expanded
about any point z0 in the domain. The Taylor series converges inside a
circle around z0 of a diameter that is given by the location of the nearest
singularity.

This is a very useful theorem even for real series.

1

1 + x2
= 1− x2 + x4 − x6 + . . .

Convergence circle is |x| = 1. Why is it so? We can now answer it.
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§ Big theorem: Cauchy’s theorem of integral of an analytic func-
tion: If f is analytic in a domain D, the closed contour integral of f

vanishes, provided the contour Γ lies entirely in D.∮
Γ

f(z) dz = 0

§A very useful warmup exercise:

We might wonder why the big fuss about zero! To lead up to this let us
do a few integrals.

f(z) = zn

and the contour Γ is a circle of radius R.

z = Reiφ, dz = iReiφ dφ

with
0 ≤ φ < 2π

Hence :∮
Γ

f(z) dz =

∫ 2π

0

iReiφ dφ×Rneinφ = iRn+1

∫ 2π

0

ei(n+1)φdφ

The answer is ∮
Γ

f(z) dz =
Rn+1

n+ 1

(
ei(n+1)2π − 1

)
= 0.

Vanishes regardless of R and also n. That is truly remarkable!
One other case, let n become negative. If n 6= −1 the same answer follows.
However if n = −1 we have a special case that is worth understanding.

10



∮
Γ

1

z
dz =

∫ 2π

0

iReiφ dφ× 1

Reiφ
= i

∫ 2π

0

dφ = 2πi.

This is also remarkable, it is non zero and is independent of R. This
means some non-analytic functions give interesting results on integration.
Let us get to the bottom of this.

We summarize the results For Γ a circle of radius R around the origin,
the integral for all n, both positive and negative, is calculated to be :∮

Γ

zn dz = (2πi)δn,−1

Cauchy theorem for Taylor expandable functions is clearly working here.
If I take a function f(z) =

∑
n cnz

n then its integral is also zero!!

§Proof of Cauchy’s theorem: We compute the contour integral of an

analytic function f(z), where the contour Γ lies within D the domain of its
analyticity. We write

I =

∮
Γ

f(z) dz =

∮
Γ

(u(x, y) + iv(x, y)) (dx+ idy).

By separating real and imaginary parts

I =

∮
Γ

(udx− vdy) + i

∮
Γ

(vdx+ udy) .

Use Greens theorem∮
Γ

(Adx+Bdy) =

∫
S

dx dy (Bx − Ay)

where S is the surface area bounded by Γ and the directions are as in
figure:

Figure:
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Let us use Greens theorem and the Cauchy Riemann conditions, (drop-
ping the symbols Γ, S)∫

(udx− vdy)→
∫
dxdy (vx + uy)→ 0∫

(vdx+ udy)→
∫
dxdy (ux − vy)→ 0
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