Physics 116B- Spring 2018

Mathematical Methods 116 B

S. Shastry, May 21, 2018 Notes on Complex-Functions-II

§Scheme for working with Complex functions:

- Let us consider a domain D , e.g. some closed region in complex plane. Inside it:
- Given that $f(z)$ is analytic, its real and imaginary parts $f = u + iv$ have certain properties.
- $u_x = v_y$ and $u_y = -v_x$ Cauchy Riemann conditions,
- Both satisfy the Laplace equation $\nabla^2 u = 0$ and $\nabla v = 0$, where $\nabla^2 =$ $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ $\frac{\partial^2}{\partial y^2}$.

These also work in reverse as follows:

- Given a real function $u(x, y)$ The question: Is u part of an analytic complex function $f(z)$?
- This question is important since if the answer is yes, we can get a lot of results with little work.
- First check if it satisfies Laplace's equation. If it does not the answer is no. If yes we can dig deeper and get f
- Find v using Cauchy-Riemann equations
- Reconstruct $f = u + iv$.

§ Warm up problems with complex functions:

Problem: Take two closely related functions

$$
u_a = x^2 + y^2, \ \ u_b = x^2 - y^2,
$$

and check if they are the real parts of an analytic function. If yes, find that $f(z)$.

Problem: #61/674 Given

:

$$
u(x,y) = \frac{x}{x^2 + y^2},
$$

show that it is a harmonic function satisfying the Laplace equation, and hence can be viewed as the real part of a analytic function $f(z)$. Find the partner function $v(x, y)$ from the Cauchy Riemann conditions.

We saw in the last class that

$$
\oint_{\Gamma} z^n dz = 0, \text{ unless } n = -1.
$$

where Γ is a circle of radius R around the origin.

New Problem: Calculate

$$
\oint_{\Gamma} \bar{z}^n \, dz
$$

where Γ is a circle of radius R around the origin and $\bar{z} = z^*$, for $n = 1, 2$.

Problem: #3/676 Calculate

$$
\oint_{\Gamma} z^2 \, dz
$$

where

1) Γ is a closed contour in the form of a semi-circle closed by the real line.

2) Γ is a rectangular path with corners at $z=-1,1,1+i,-1+i$

§Proof of Cauchy's theorem: We compute the contour integral of an

analytic function $f(z)$, where the contour Γ lies within D the domain of its analyticity.

Note: Contour is the same thing a closed curve. What I callas a closed contour Γ os what Boas calls it a closed curve C.

We write

$$
\mathcal{I} = \oint_{\Gamma} f(z) dz = \oint_{\Gamma} (u(x, y) + iv(x, y)) (dx + i dy).
$$

By separating real and imaginary parts

$$
\mathcal{I} = \oint_{\Gamma} (u dx - v dy) + i \oint_{\Gamma} (v dx + u dy).
$$

Use Greens theorem. It equates a line integral to a surface integral for a simply connected domain

$$
\oint_{\Gamma} (A dx + B dy) = \int_{S} dx dy (B_x - A_y)
$$

where S is the surface area bounded by Γ and the direction of going around is counterclockwise, as in figure:

Figure:

Let us use Greens theorem and the Cauchy Riemann conditions, (dropping the symbols Γ, S)

$$
\int (u dx - v dy) \to \int dx dy \, (v_x + u_y) \to 0
$$

$$
\int (vdx + udy) \to \int dx dy (u_x - v_y) \to 0
$$

§ Cauchy's integral formula:

If $f(z)$ is analytic inside a domain D, i.e. for the same conditions as for the earlier theorem and a is some point inside the domain.

$$
\oint_{\Gamma} \frac{f(z)}{z - a} \, dz = 2\pi i f(a)
$$

Let us first see what it means or implies, and then prove it.

Remarks: Value of a (provided it is in the interior of D) and Γ are arbitrary.

Example of two circles of radii $R_1 > R_2$.

Pictorial proof.

§Some problems to get used to complex integrals.:

 $# 1/676$ Calculate

$$
\int_i^{1+i} z\,dz
$$

along a path parallel to the real axis.

 $# 11/677$ Calculate

$$
\oint_{\Gamma} (\bar{z} - 3) \, dz
$$

where Γ is closed path traversing $(0, 2)$ along real line, $(2, 2i)$ on a semicircle, $(2i, 0)$ on the y axis.

Problem $\# 14/677$ Show

$$
\int_0^{2\pi} e^{inx} e^{-imx} dx = 0, \ \ n \neq m
$$

from applying Cauchy's theorem to

$$
\oint_{\Gamma} z^{n-m-1} dz, \ \ n > m
$$

where Γ is the unit circle.

Problem # $18/677$ Calculate

$$
\oint_{\Gamma} \frac{\sin(2z)}{6z - \pi} \, dz,
$$

where Γ is a circle $|z|=3$.

§ Connecting Cauchy's integral formula to the Taylor expansion:

We will need the simple formula below. Let us record it here.

$$
\frac{d}{dw}\frac{1}{(z-w)^m} = \frac{m}{(z-w)^{m+1}}.
$$
 (Formula-1)

We saw the Cauchy integral formula: If $f(z)$ is analytic inside a domain D, i.e. for the same conditions as for the earlier theorem and a is some point inside the domain, and Γ is a closed contour surrounding the point a lying inside the domain D , then

$$
\oint_{\Gamma} \frac{f(z)}{z - a} \, dz = 2\pi i f(a)
$$

Let us switch variables and rewrite this more suggestively as

$$
f(w) = \oint_{\Gamma} \frac{f(z)}{z - w} \frac{dz}{2\pi i},
$$

where w is another name for a .

Now take a derivative of both sides w.r.t. w using the Formula-1 for $m = 1$.

$$
f'(w) = \oint_{\Gamma} \frac{f(z)}{(z-w)^2} \frac{dz}{2\pi i},
$$

Take one more derivative:

$$
f^{(2)}(w) = 2 \oint_{\Gamma} \frac{f(z)}{(z-w)^3} \frac{dz}{2\pi i},
$$

etc. Hence

$$
f^{(n)}(w) = n! \oint_{\Gamma} \frac{f(z)}{(z-w)^{n+1}} \frac{dz}{2\pi i},
$$

We can "deduce" the Taylor expansion from this formula

$$
f(z) = \sum_{n=0}^{\infty} (z - w)^n \frac{1}{n!} f^{(n)}(w)
$$

The Taylor series converges as long as both w, z are in the domain D . For this we need a result we have already proven

$$
\oint_{\Gamma} (z-w)^m \frac{dz}{2\pi i} = \delta_{m,-1}.
$$