
Physics 116B- Spring 2018

Mathematical Methods 116 B

S. Shastry, May 23, 2018
Notes on Complex-Functions-III

Problem: #3/676
Calculate ∮

Γ

z2 dz

where
1) Γ is a closed contour in the form of a semi-circle closed by the real line.
2) Γ is a rectangular path with corners at z = −1, 1, 1 + i,−1 + i

1



Problem # 18/677 Calculate∮
Γ

sin(2z)

6z − π
dz,

where Γ is a circle |z| = 3.
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§Single valued and multivalued functions and poles versus branch
points:

In a domain D a function can be either of these.

• Single valued:Examples

Non-singular: Called entire functions:

ez, or sin(z)

Singular: With simple pole

1

z − w

: Simple pole at z = w of degree one. Also called meromorphic.

Singular: With simple poles

1

z − w1

1

z − w2

1

z − w3

: Simple poles at z = wj of degree one. Also called meromorphic.

Singular: With poles of higher degree:

1

(z − w)n

Pole of degree n.

• Multivalued: Example
log z or

√
z

. We can do some book-keeping and make them single valued.

√
z

3



log z

§ Cauchy’s residue theorem :

If f(z) is meromorphic (i.e. analytic except for a set of poles at w1, w2, . . . wm)
in the domain D and with a counter-clockwise Γ lying inside this domain

I =

∮
Γ

f(z) dz = 2πi
∑
j=1,m

Residue(j)

Here Residuej at pole z = wj of degree n is defined as

R =
1

(n− 1)!
lim
z→wj

dn−1

dzn−1
(z − wj)nf(z).

Simple examples:

Γ is a circle around origin of radius 3

f =
1

z − 4− i
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Γ is a circle around origin of radius 3

f =
sin(z)

(z − 4)(z + i)
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§ Connecting Cauchy’s integral formula to the Taylor expansion:

We will need the simple formula below. Let us record it here.

d

dw

1

(z − w)m
=

m

(z − w)m+1
. (Formula-1)

We saw the Cauchy integral formula: If f(z) is analytic inside a domain D,
i.e. for the same conditions as for the earlier theorem and a is some point
inside the domain, and Γ is a closed contour surrounding the point a lying
inside the domain D, then ∮

Γ

f(z)

z − a
dz = 2πif(a)

Let us switch variables and rewrite this more suggestively as

f(w) =

∮
Γ

f(z)

z − w
dz

2πi
,

where w is another name for a.
Now take a derivative of both sides w.r.t. w using the Formula-1 for

m = 1.

f ′(w) =

∮
Γ

f(z)

(z − w)2

dz

2πi
,

Take one more derivative:

f (2)(w) = 2

∮
Γ

f(z)

(z − w)3

dz

2πi
,

etc. Hence

f (n)(w) = n!

∮
Γ

f(z)

(z − w)n+1

dz

2πi
,
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We can “deduce” the Taylor expansion from this formula

f(z) =
∞∑
n=0

(z − w)n
1

n!
f (n)(w)

The Taylor series converges as long as both w, z are in the domain D.
For this we need a result we have already proven∮

Γ

(z − w)m
dz

2πi
= δm,−1.

§Laurent expansion or Laurent series by example:

Let us call Cx as a circle of radius x.
First example: Here f is analytic in a region between Cr with r � 1,

and C1.

f(z) =
1

z(1− z)
=

1

z
(1 + z + z2 + z3 + z4 + z5 + . . .),

=
1

z
+ 1 + z + z2 + . . . (1)

If we leave the first term out, the second term onwards converges for |z| < 1
from the ratio test.

This is an example of the Laurent series. Note it has positive and negative
exponents, and is convergent in the stated region.

The Laurent series depends on the region where we are expand-
ing the function.

To see this take same function and expand for |z| > 1, i.e. between C1

and C∞ We can write it more conveniently in this region as
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f(z) = − 1

z2(1− 1/z)
=

1

z2

(
1 +

1

z
+

1

z2
+

1

z3
+ . . .

)
= −

(
1

z3
+

1

z4
+

1

z5
+ . . .

)
(2)

Compare with other series for the same function valid for |z| < 1,

f(z) =
1

z
+ 1 + z + z2 + . . .

Second example:
Find a convergent (Laurent) expansion in the region 0 < |z| < R and

determine R.

f(z) =
z + 1

z3(z2 + 1)

This function has poles at z = 0,±i, and is analytic otherwise. We can
expand around z = 0 as follows:

f(z) =

(
1

z2
+

1

z3

)
1

(z2 + 1)

=

(
1

z2
+

1

z3

)
(1− z2 + z4 − z6 + . . .)

=
1

z3
+

1

z2
− 1

z
+ z + z2 − z3 − z4 + . . . (3)
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§Laurent expansion or Laurent series formal statement: In a

region between two circles Cr and Cr′ around point z0 where f is analytic, it
can be expanded in a convergent Laurent expansion

f(z) = a0 +
∑

n=1,2,...

an(z − z0)n

+
∑

n=1,2,...

bn(z − z0)−n. (4)

The coefficients can be calculated from the residue theorem as

an =
1

2πi

∮
C

f(z)dz

(z − z0)n+1

bn =
1

2πi

∮
C

f(z)dz

(z − z0)−n+1
. (5)

Easy to show by plugging in the Laurent expansion in Eq. (1) into Eq. (2).
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With A > 1 calculate

I =

∫ 2π

0

dθ

A+ cos(θ)
.

Convert to contour integral as follows:

z = eiθ, dz = ieiθdθ, i.e. dz = izdθ.

Integral corresponds to a full circle of radius 1, i.e. C1. Hence

I =
1

i

∮
C1

z−1

A+ 1
2
(z + z−1)

dz =
2

i

∮
C1

1

1 + 2Az + z2
dz

Simplifying and calling a± = −A±
√
A2 − 1

I =
2

i

∮
C1

1

(z − a+)(z − a−)
.

Now since |a−| > |a+| inside the circle we have one pole, and one pole is
outside the circle. Residue is simple: Result

I = 2π
1√

A2 − 1
.
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§ Cauchy’s residue theorem Revisited: Higher order poles:

If f(z) is meromorphic (i.e. analytic except for a set of poles at w1, w2, . . . wm)
in the domain D and with a counter-clockwise Γ lying inside this domain

I =

∮
Γ

f(z) dz =
∑
j=1,m

Ij

Ij = 2πi Rj (6)

Here Rj is the residue at pole z = wj of degree n. It is defined as

Rj =
1

(n− 1)!
lim
z→wj

dn−1

dzn−1
(z − wj)nf(z).

A good way to think about this theorem,

• Find or locate the m poles. Make sure they are isolated poles, i.e.
exclude things like log(z) which has no isolated singularity.

• Deform the contour Γ into a sum over circles of radius R → 0 around
each pole wj. Yes, this can be done! Use the Cauchy theorem to add
the smaller closed countours needed for this- see example.

• At each pole relabel things to make life easier. Call z = wj + v and
write dz = dv, The contour in the v variable is now a circle CR. The
function can be rewritten after translation as as

f(z) = f(wj + v) ≡ g(v).

The contribution Ij from this pole is now

Ij =

∮
CR

dv g(v).

• At each pole we now have a simpler problem, where we can use the
Laurent (Taylor) expansion:

g(v) = bn
1

vn
+ bn−1

1

vn−1
+ . . . .
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• Use the basic result
∮
CR

dv
vm

= 2πiδm,−1.

• Hence Ij = 2πib1

Problems

I =

∮
C1

dz
e3z

z3

By residue theorem I = 2πiR0.
Residue at z = 0 of e3z

z3
.

Use strategy described. We should expand

e3z

z3
=

1

z3
+

3

z2
+

9

2z
+ . . .

We can zoom into the needed term and throw out the rest. Hence answer
is

I = 2πi× 9

2
.

Check from formula

Rj =
1

(n− 1)!
lim
z→wj

dn−1

dzn−1
(z − wj)nf(z)

Here n = 3, wj = 0, and

f(z) =
e3z

z3
.

Rj =
1

2!
lim
z→0

d2

dz2
(z3f(z)) =

9

2
.
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§
I =

∮
C1

dz cot2(z)

§
I =

∮
C1

dz z cot2(z)

Problem # 14/677
Show ∫ 2π

0

einxe−imx dx = 0, n 6= m

from applying Cauchy’s theorem to∮
Γ

zn−m−1 dz, n > m

where Γ is the unit circle. For n = m show that the result is 2π.
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Residue problems

Residue at z = 1 of
ez

z2 − 1

#5/686

Residue at z = π of
1 + cos(z)

(z − π)2

#8/686

Calculate

I =

∫ ∞
−∞

dx

a2 + x2
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