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Notes on Differential Equations-II

§Solution of a simple non linear ODE of first order

dy

dt
= −ay3 (1)

We expect that a single IC should suffice since this is a first order ODE.
This is like the population decay problem

dy

dt
= −ay,

with solution

y(t) = y0e
−at, (2)

but with a different power of y on the right hand side.
Solution: Since the RHS involves only y and not t, we can use the sepa-

ration idea

dy

y3
= −a dt∫ y

y0

dy

y3
= −a

∫ t

0

dt

1

2

(
1

y20
− 1

y2

)
= −a t (3)

The solution can be rewritten as

y(t) = y0

(
1

1 + 2a t y20

) 1
2

(4)

§Physical interpretation of solution:
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At very long times we see that the solution Eq. (4) behaves as

y(t) ∼ 1√
2at

,

which is independent of y0 and much slower than Eq. (2), the population
problem solution.

Another remarkable feature of this non-linear equation is found if we
switch the sign of a → −|a|. Observe that Eq. (4) will now diverge at a
finite time

t∗ =
1

2|a|y20
. (5)

The population problem Eq. (2) with this sign of a will also diverge, but
at t→∞ instead of a finite time t∗.

§Another non-linear but separable ODE:

Another example of a separable non linear equation is as follows: §MB
398. 3

y′ sinx = y log y,

with one condition y = e when x = π/3.
Using separation we write

dy

y log y
=

dx

sinx
,

which can be further simplified by using φ = log y so that dφ = dy/y and
hence

dφ

φ
= d(log φ) =

dx

sinx
,

Now we calculate, on a separate line the integral on right. We verify

d log tanx/2 = dx/ sinx,

and hence

d(log φ) = d(log tanx/2),

and hence
log φ = log tanx/2 + A
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or
φ = A′ tanx/2

with A′ = eA, thus

y = eA
′ tanx/2.

We now use the initial condition at x = π/3. Note that tanπ/6 = 1/
√

3
and hence we get y = e provided

A′ =
√

3.

Hence the particular solution required is

y = e
√
3 tanx/2.

§ Harmonic oscillator:

Let us study the general solution of a 2nd order ODE

ÿ = −ω2y,

which can be integrated immediately as

y = Aeiωt +Be−iωt

= A′ cosωt+B′ sinωt

= C sin(ωt+ φ). (6)

All three forms are equivalent. In the last form, φ is the “phase shift”.
In any of these forms of the general solution, we see that there are two

constants, say C, φ which need to be fixed. We can fix them to get a particular
solution. For example we could say y = 0 at t = 0, thereby fixing φ = 0.
( φ = π leads to the same answer since sin(x + π) = − sin(x) and we can
absorb the sign into C.) We could then say that ẏ|t=0 = 1 which would fix
Cω = 1.

§Particle dropped from a height h under gravity:

This is an example of Newton’s laws. A particle of mass m is dropped
from a height h measured from the earth, and falls to the ground at a later
time. We want to calculate the time it takes to fall down.
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Set up equation: A few initial comments. We will imagine the x axis
along the ground and the y axis increasing upwards. The dropping mass has
a decreasing height, so the velocity v < 0 and also the acceleration v̇ < 0.

Newton’s law gives
mÿ = −mg,

with y(0) = h. To repeat the convention of signs: the height y decreases
as time progresses, hence the velocity and acceleration are both negative.
Canceling m and integrating once

ẏ(t) = ẏ(0)− gt

Since we dropped the particle (rather than flinging it down or up), the initial
velocity is zero, hence we can drop the term ẏ(0) and get

ẏ(t) = −gt

so that integrating one more time

y(t) = −gt
2

2
+ y(0),

with y(0) = h, the initial height.
This is the solution, and is valid until the particle hits the ground. That

happens when y = 0, i.e. t =
√

2h/g.

§ Linear first order equations and integrating factors.:

We now learn the systematic way of solving two related problems

y′ + P (x)y = 0 (7)

y′ + P (x)y = Q(x) (8)

these are respectively, homogeneous and inhomogeneous equations.
§Homogeneous equation
We use the separation of variables and write

dy

y
= −P (x) dx

(9)

Let us call the indefinite integral R(x) =
∫
P (x)dx; note that R is a

function of x. Hence we have a solution

log y(x) = −R(x) + A′ (10)
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where A′ is a constant of integration. Taking exponentials of both sides we
rewrite as

y(x) = Ae−R(x) (11)

where A is the constant of integration in a disguised form.
§Inhomogeneous equation using an integrating factor
This case Eq. (8) can be solved by using (a) the solution of the homoge-

neous equation Eq. (7) as an integrating factor, and (b) convert to a simpler
equation solvable by separation of variables.

We substitute into Eq. (8)

y(x) = e−R(x)φ(x) (12)

where φ(x) is undetermined. We know that if Q = 0 then φ would be a
constant, this is the real clue to what we are doing here. The factor e−R(x)

in Eq. (12) is called the integrating factor.
Taking derivative of Eq. (12)

y′ = −R′y + e−R(x)φ′(x),

and using R′ = P we see that y′ + Py = e−R(x)φ′(x).

Hence Eq. (8) becomes

e−R(x)φ′(x) = Q(x)

or φ′(x) = eR(x)Q(x), (13)

and hence the ‘formal’ solution is

φ(x) =

∫ x

0

eR(x′)Q(x′) dx′ + A (14)

where A is a constant of integration, and therefore the solution for y is

y(x) = e−R(x)

(∫ x

0

eR(x′)Q(x′) dx′ + A

)
(15)

This is the general solution.
It may help if we specialize to the case where the solutions required satisfy

some initial condition: y(0) = Y0 at x = 0. In this case we rewrite the above
equation, changing to primed variables for clarity.
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y(x) = e−R(x)

(∫ x

0

eR(x′)Q(x′) dx′ + Y0.

)
, (16)

R(x) =

∫ x

0

P (x′) dx′. (17)

Note that in this particular solution, we can easily verify R(0) = 0, and
hence y(0) = Y0. It is conventional to be somewhat vague in writing general
solutions, but to be very precise when writing particular solutions.

§First example:

One example of inhomogeneous problem (in silent mode- i.e. with no
commentary)

P = 2x,Q = sinx,

y′ + 2xy = sin(x).

Solving homogeneous equation

R(x) = e−x
2

Hence writing y = e−x
2
φ(x)

φ′(x) = ex
2

sinx,

Hence the solution is:

y(x) = e−x
2

(
y(0) +

∫ x

0

ex
′2

sinx′ dx′
)

§A falling mass in a viscous medium:

MB. 400.26
A particle of mass m falls in a long tube filled with a viscous medium. It

motion is described by modifying Newton’s laws to include viscous slowing
down:

m
dv

dt
= −mg − ηv,
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where η > 0 is a viscosity constant representing drag due to the medium. To
see its effect, note that when v < 0 the viscous force is positive, i.e. upwards,
due to the sign convention used. Similarly, if we threw the ball up, i.e. if
v > 0, the drag force would point downward. Hence whatever we want to do
is opposed by this drag force, hence the name.

Note that under changing the sign of both v and t, the equation is not
invariant, unlike the problem with zero viscosity.

Let u s solve the problem using the method of an integrating factor.
We may analyze the motion under this equation and show that it has a

terminal velocity.

Solution:
v(t) = v0e

−ηt/m − mg

η
(1− e−ηt/m)

§Terminal velocity:

vterminal = −mg
η
.

§Bernoulli’s trick:

Some non-linear equations can be reduced to linear ones by a change of
variables of the dependent variable. See Sec 4. in MB.

y′ + P (x)y = Q(x)yn,

AKA

dy + y P (x) dx = ynQ(x) dx

can be linearized by changing variables y → z

z = y1−n,

dy = dz yn /{(1− n)}

We substitute and cancel yn to find
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dz/{1− n}+ y1−nP (x) dx = Q(x) dx

i.e.

z′ + (1− n)P (x)z = (1− n)Q(x).

Rest is as seen before.

§Exact Equations: Integrating factors:

Suppose we are given an equation

dy

dx
= −P (x, y)

Q(x, y)
, (18)

which can be rewritten as

Pdx+Qdy = 0.

In some cases, such an equation can be solved using a trick from partial
differentials. Suppose we can find two functions of both x and y, called
F (x, y) and R(x, y), with the property that

∂F

∂x
= P (x, y) eR(x,y)

∂F

∂y
= Q(x, y) eR(x,y). (19)

There is no guarantee in general that we can succeed in this task, but let us
assume we did succeed in finding such an F . The payoff is that we are now
on track for solving our Eq. (18). Let us see how this happens. By the way
eR(x,y) is called an integrating factor, and to start with, it is a good idea to
first check if R = 0 works. If it fails, we can learn enough from the failed
attempt to guess an R, as seen in the example below.

§Formal part of exact differentials:

To see this note that a variation of an given function of two variables
F (x, y), is given by

dF (x, y) =
∂F

∂x
dx+

∂F

∂y
dy (20)
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with the property following from the general principle of partial derivatives
(an no more), that

∂2F

∂x∂y
=

∂2F

∂y∂x
. (21)

Since we assumed success in finding an F with the property in Eq. (20)
satisfied, we can say

eR(x,y) (P (x, y)dx+Q(x, y) dy) = dF (x, y) (22)

Now comes the checking part: if our guess of R and F is to be meaningful,
we must make sure that the condition Eq. (22) is fulfilled. This means we
must check if these equivalent conditions are fulfilled

∂y(e
R(x,y)P ) = ∂x(e

R(x,y)Q)

RyP + Py = RxQ+Qx (23)

where we used ∂ye
R(x,y) = eR(x,y)Ry(x, y) etc, and canceled a factor of R. We

can rewrite this as

(Py −Qx) = RxQ−RyP. (24)

If it is fulfilled we have a solution, since the Eq. (18) is equivalent to

dF (x, y) = 0

F (x, y) = constant. (25)

§Simple example with R = 0:

dy

dx
= −y

x
or

ydx+ xdy = 0

Thus P = y and Q = x and hence we find Py = 1 = Qx and hence
Eq. (24) is fulfilled with R = 0.

We still need to find F , we know that ∂xF = y and ∂yF = x and so we
can integrate either of these to find:

F = xy + A,
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where A is a constant.

§Another problem: solved equivalently in MB:

dy

dx
=
y

x

ydx− xdy = 0 (26)

P = y and Q = −x here. Thus Py = 1 = −Qx and hence we need an R.
We now rewrite our Eq. (24) with the aim to find a possible R.

(Py −Qx) = RxQ−RyP

i.e. 2 = −Rxx−Ryy (27)

There is hope here. We can try to balance this equation by assuming R is a
function of (say) x only. (The other choice is to make R a function of y only
and gives the same answer at the end- we will check this.)

Since R(x, y)→ R(x), Ry = and Eq. (27) becomes

Rx = −2

x

i.e.

R = −2 log x

Therefore Eq. (26) is equivalent to Eq. (22) with

dF (x, y) =
−2

x2
(ydx− xdy)

= 2

(
dy

x
− y dx

x2

)
. (28)

We see that this corresponds to

F (x, y) = 2
y

x
,

and hence the family of solutions to the problem Eq. (26) is

y

x
= A.
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If we had chosen the other possibility, i.e. R is a function of y alone, then
we can grind through and conclude

x

y
= B,

which is the same solution.

§Another example of exact differentials:

Problem MB 403.13
We want to solve

dx+ (x− ey)dy = 0, (Problem # 2)

with P = 1 and Q = x − ey. Hence using our formalism, Py = 0 and
Qx = 1 and hence we need to find R from Eq. (24), which now reads

−1 = Rx(x− ey)−Ry.

We can choose R as a function of y alone to kill the first term and this
gives

R = y

and hence we rewrite the given (Problem #2) as

dF (x, y) = eydx+ (eyx− e2y)dy = 0

and since this is a consistent exact differential,

Fx = ey, . . . (I) Fy = (eyx− e2y) . . . (II)

Taking the first equation (I) we integrate it to find

F = xey + φ(y),

where ∂xφ(y) = 0 and hence we are allowed a function of y, to play the
role of a constant of integration of (I). We can now plug this into (II) and
find

xey + ∂yφ(y) = xey − e2y.

Canceling common terms we get an equation for φ as

∂yφ(y) = −e2y,
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and hence

φ(y) =
1

2
e2y + A

F = eyx− 1

2
e2y + A

where A is a constant that can be chosen as we wish.
Therefore we conclude that Problem #2 admits a family of solutions given

by

eyx− 1

2
e2y = constant.
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