
Physics 116B- Spring 2018

Mathematical Methods 116 B

S. Shastry, April 24, 2018
Notes on Differential Equations-III

§ Summary of last two lectures: Linear first order equations and
integrating factors and Exact differentials:

a) We discussed linear first order ODE’s

y′ + P (x)y = Q(x) (1)

where, as an example, P = x2 and Q = ex, and hence

y′ + x2y = ex.

We use the separation of variables and solve the homogeneous equation
(i.e. setting Q = 0 temporarily)

dy

y
= −x2 dx

(2)

which is solved by integration

y = Ae−x
3/3.

and putting it in the form

y(x) = Ae−R(x) (3)

R = −x3/3 is the integrating factor, used in the assumed functional form

y(x) = e−R(x)φ(x) (4)

where φ(x) is determined by plugging into the differential equation Eq. (1),
which now gives

φ′(x) = eR(x)Q(x)

= ex
3/3ex, (5)
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and hence the ‘formal’ solution is

φ(x) =

∫ x

0

ex
′3/3ex

′
dx′ + A (6)

where A is a constant of integration.
Writing back in the original variables we get

y(x) = e−x
′3/3

(∫ x

0

ex
′3/3ex

′
dx′ + Y0.

)
(7)

b) We also learned about exact differential equations, a special class of
solvable ODE’s.

dy

dx
= −P (x, y)

Q(x, y)
,

(8)

or, by cross-multiplication

Pdx+Qdy = 0.

The basic observation is that if we can find a function F (x, y) in terms of
which we can write

dF (x, y) = eR(x,y) (Pdx+Qdy)

(9)

then the problem is easily solved. This means we should be able to find the
integrating factor eR such that the condition

RyP −RxQ = Qx − Py

is fulfilled. Here Ry is the partial derivative wrt y etc. Remember that R = 0
is allowed. We are just looking for any R such that this condition is solved.
We saw several examples of such equations.

§Homogeneous Equations:

We can solve rather complicated ODE’s, if P and Q have the property of
homogeneity with the same degree! Definition and examples of homogeneity:

A(hx, hy) = hmA(x, y) (10)

2



Here m is the degree of homogeneity. If this property is true then we can be
sure that we can write

A(x, y) = xmα(v), v =
y

x
(11)

where α can be found from A easily.
Let us consider an example

A(x, y) = 3x3 + 2x2y + 6xy2 + 11y3, (12)

which clearly satisfies Eq. (10) with m = 3, and

α(v) = 3 + 2v + 6v2 + 11v3. (13)

Let us now go back to the equation

P (x, y)dx+Q(x, y)dy = 0, (14)

with

P (tx, ty) = tmP (x, y), P (x, y) = xmP̃ (v)

Q(tx, ty) = tmQ(x, y), Q(x, y) = xmQ̃(v),

(15)

where
v =

y

x
.

Here comes the important point, we can rewrite Eq. (14) by canceling the
common factor xm, as

P̃ (v)dx+ Q̃(v)dy = 0. (16)

we now trade the variable y in favor of v by writing y = vx. This implies

dy = vdx+ xdv, (17)

and plugging into Eq. (16) we get an equation in terms of x, v as

(vQ̃(v) + P̃ (v))dx+ xQ̃(v)dv = 0. (18)

This is separable and can be written as

dx

x
+

Q̃(v)

(vQ̃(v) + P̃ (v))
dv = 0. (19)
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We can simplify the notation by writing a new function

f(v) =
Q̃(v)

(vQ̃(v) + P̃ (v))
(20)

so that the Eq. (19) becomes

dx

x
+ f(v) dv = 0. (21)

We have learnt how to solve this by integration, we get the solution as

x = x0e
−

∫ v
c dv

′f(v′) (22)

where x0, c are initial values to be fixed later (x = x0 when v = c), and we
should convert back to y by using v = y/x.

§An example:

xydx+ (y2 − x2)dy = 0. (23)

Clearly P = xy and Q = y2 − x2 are homogeneous of degree m = 2.
With y = vx,

P̃ (v) = v, Q̃(v) = v2 − 1,

and

f(v) =
v2 − 1

v(v2 − 1) + v
=

1

v
− 1

v3

Hence ∫ v

c

f(v) = log(v/c) +
1

2
(

1

v2
− 1

c2
)

where c is some initial value of v. Notice that in this case c = 0 would be a
bad choice.

Solution in terms of x, y is found by plugging in v = y/x into Eq. (22).
We get

y = cx0e
− 1

2
(x

2

y2
− 1

c2
)

(24)

At this point, we can also club together the three constant factors and
rewrite this more conveniently as

y = Ae
− 1

2
(x

2

y2
)
, (25)
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and we are at freedom to choose the initial condition, now at x = 0 we can
set y = y0 (and hence A = y0).

§Linear equations and Superposition of solutions versus Nonlin-
ear equations:

For linear “operators”, i.e. for linear equations written symbolically

Ly1 = 0

Ly2 = 0

Ly3 = 0

. . . = 0 (26)

This implies

L(c1y1 + c2y2 + c3y3 + . . .) = 0,

i.e. we can add solutions as we choose. This is superposition of solu-
tions and of crucial importance in Quantum Theory, where the Schrodeinger
equation is linear!

Not so for non-linear equations. Cannot add solutions, cannot even mul-
tiply solutions with constants.

§Riccati equation:

This is a remarkable non-linear equation, which can often be solved.
The generalized Riccati equation is given by

y′(x) = f(x)y2 + g(x)y + h(x) (27)

where f, g, h are functions of x.
Let us keep an example in mind

y′ = e−xy2 + y − ex.

Hence f = e−x, g = 1, h = −ex.
We need some starter information to solve this problem. Somehow (mostly

by inspection) if we have on particular solution, called yp(x) we can get the
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general solution. For the above special case, we see that yp = ex solves it. It
has unfortunately no additional parameters, so we cannot do much with it.
(Note that since this is no-linear, even a constant multiple of ex fails to solve
the equation.) But the trick of Riccati overcomes this.

Plug in

y = yp + u(x)

so that the equation reduces to a Bernoulli equation

u′ = (2ypf(x) + g(x))u(x) + f(x)u2(x),

which can be simplified to a linear equation by using Bernoulli’s trick.
You will recall that we can linearize certain non-linear ODE’s by redefining
the dependent variable suitably. Here it means setting u = 1/z and gives

z′(x) + z(2ypf + g) + f(x) = 0.

This is linear and can be solved as usual. In our example, the equation
reduces to

z′(x) + z(2exe−x + 1) + e−x = 0,

or

z′(x) + 3z + e−x = 0.

Simple enough!!

§ Linear differential equations with constant coefficients:

Simple but important class of ODE’s.
Let us define

D =
d

dx
, D2 =

d2

dx2
, Dm =

dm

dxm
.

so we can write the various ODE’s in terms of D in shorthand. We are
interested in ODEs that look like
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cmD
my + cm−1D

m−1y + . . . c1Dy = H(x) (28)

where cj are constants, i.e. independent of x. H(x) on the right is the
inhomogeneous term, which we set to zero initially. So we will first study the
homogeneous problem

cmD
my + cm−1D

m−1y + . . . c1Dy = 0. (29)

We can safely think of the Dn ↔ dn where d is a number (not a derivative)
because cj are constants and every term “commutes” with others.

Note that we can factorize a polynomial in d’s into its roots.

cmd
m + cm−1d

m−1 + + . . . c1d = cm(d− a1)(d− a2) . . . (d− am) (30)

We can divide out by cm and hence shall set it to 1 below. Here the poly-
nomial is written in terms of its (zeros) roots aj. The usual methods can be
used to find the zeros of the polynomials, in terms of the cj’s.

{cj} → {aj}.
Since cm are all real, am will be either all real or occur in complex conju-

gate pairs.

§Simple solutions:

§m=1

(D − a)y = 0

is solved by
y = y0e

ax.

§m=2

(D − a)(D − b)y = 0

Let us imagine a and b are unequal numbers- real or complex. One
solution is obvious, if we set

(D − b)y = 0,
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the equation is satisfied. This means one solution has been found, it is

y = Bebx.

The hunt moves on, we want to find all solutions, so there is one more
needed. We can solve for this equally easily by noting that the independence
of a, b on x implies the two terms are interchangeable. Hence we could have
written the equation as

(D − b)(D − a)y = 0,

and hence another solution is from the linear equation

(D − a)y = 0

i.e.
y = Aeax.

Combining, we write the general solution

y = Aeax +Bebx,

with two arbitrary parameters A,B.
§m=3

(D − a)(D − b)(D − c)y = 0

Do we need to calculate, or an we see the pattern above and write down
the exact answer directly?

§Complex roots:

Going back to m = 2 case: if a = b∗ we can write the cartesian represen-
tation of them as

a = α + iβ, b = α− iβ

The general real solution can be written in the convenient form

y = Ceαx sin(βx+ φ).
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This can be generalized easily to any number of complex roots. For every
conjugate pair we extract a α, β and write the same expression, and sum over
all roots.
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