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Notes on Differential Equations-IV

§ Summary of last lecture: Linear differential equations with
constant coefficients:

Simple but important class of ODE’s.

D =
d

dx
, D2 =

d2

dx2
, Dm =

dm

dxm
.

The linear ODE with constant coefficients cj are written as

cmD
my + cm−1D

m−1y + . . . c1Dy = 0 (1)

and we also want to study the equations with H(x) on the right hand side.
We set cm = 1 so that we can factorize a polynomial in d’s into its roots.

(D − a1)(D − a2) . . . (D − am)y = 0 (2)

Here the polynomial is written in terms of its (zeros) roots aj.
We saw for m=1

(D − a)y = 0

Solution is

y = y0e
ax.

m=2

(D − a)(D − b)y = 0

The general solution

y = Aeax +Bebx,

with two arbitrary parameters A,B.
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§m=3 by analogy.

(D − a)(D − b)(D − c)y = 0

We also discussed complex roots.
§End of summary. —————————-

§Coincident (or double) roots:

What happens when a = b? Although one root is clearly found, the other
poses an interesting issue. Let us go back to m = 2 and write

(D − a)(D − a)y = 0, (3)

and one solution is

y = Aeax (4)

The other root, as per Boas’s book is written down as

y = Bxeax. (5)

Let us verify that this is true. Set B = 1 for convenience

(D − a)(D − a)xeax = (D − a) (−axeax + axeax + eax)

= (D − a)eax

= 0. (6)

We also need to verify the linear independence of Eq. (4) and Eq. (5).
Calculate the Wronskian. Recall

W (f, g) = fg′ − f ′g

and if W 6= 0 then f, g are linearly independent.
Applying it here:

W (Aeax, Bxeax) = ABe2ax (ax+ 1− ax) = ABe2ax 6= 0

hence the two solutions are linearly independent.
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§ A more systematic way to treat coincident roots:

A more systematic way to handle Eq. (3) is to do a perturbation around
the degeneracy, and consider the operator

Lη ≡ (D − a− η)(D − a+ η) = L0 − η2 (7)

L0 = (D − a)2. (8)

Here η is an arbitrary number, finally set to zero. We know that the solution
of Lη is

LηΦ(x, η) = 0 (9)

Φ(x, η) = Ae(a+η)x +Be(a−η)x (10)

We can Taylor expand Eq. (9) around η = 0. Let

Φ(x, η) = Φ(x, 0) + ηΦ′(x, 0) +
1

2
η2Φ′′(x, 0) + . . . .

Here we should keep in mind that Φ(x, η) is a function of two variables, x
and η, and the derivatives in the above expansion are with respect to η (at
a fixed x).

The coefficients are

Φ(x, 0) = (A+B)eax

Φ′(x, 0) = (A−B)xeax

. . . = . . . (11)

Hence a Taylor expansion in powers of η (at a fixed x) reads

(L0 − η2)(Φ(x, 0) + ηΦ′(x, 0) +
1

2
η2Φ′′(x, 0) + . . .) = 0 (12)

Since η is arbitrary, each power of η in Eq. (15) must vanish independently!
This is the key point. Let us expand out

O(η0) : L0Φ(x, 0) = 0 (13)

O(η1) : L0Φ
′(x, 0) = 0 (14)

O(η2) :
1

2
L0 Φ”(x, 0)− Φ(x, 0) = 0 (15)

... = ...

We can use Eq. (11) to substitute into this equation.
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Note that Eq. (13) is obviously true. Now Eq. (14) says there is another
solution for the same L0y = 0, namely

y = Φ′(x, 0) = (A−B)xeax, (16)

where the prefactor of A−B is arbitrary, given the linearity of the equations.
Hence we have shown that

(D − a)2(xeax) = 0

this agrees with the result quoted by Boas, but gives us a systematic way of
treating degenerate roots.

§Harmonic oscillator revisited:

This important problem can be treated by our formulas easily.
Let y be the displacement of an oscillator

ÿ = −ω2y, or

(D2 + ω2)y = 0 (17)

where D = ∂/∂t. We factorize and write

(D + iω)(D − iω)y = 0. (18)

Solution follows from our previous analysis. Two equivalent forms of the
solution are:

y = Aeiωt +Be−iωt = C sin(ωt+ φ).

§Damped Harmonic oscillator:

This is an example with a drag, or frictional force in addition to the
spring. Let the displacement be denoted by y again,

m
d2y

dt2
= −ky − l dy

dt
,

where l > 0 is like the viscous drag in earlier examples. The sign of the drag
term implies that it is directed opposite to that of the velocity, and hence
resists acceleration. We divide out by m and rewrite it, as in Boas,

d2y

dt2
= −ω2y − 2b

dy

dt
, (19)
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where

b =
l

2m
.

Thus the ODE can be cast in the form

(D2 + 2bD + ω2)y = 0. (20)

Now the roots of the auxiliary polynomial (D → d)

d2 + 2bd+ ω2 = (d− λ1)(d− λ2),

where

λ1 = −b+
√
b2 − ω2 (21)

λ2 = −b−
√
b2 − ω2. (22)

We will call the radical

R = b2 − ω2 (23)

The solutions are clearly

y = Aeλ1t +Beλ2t.

We look at the roots more closely and distinguish between three cases
depending on R

• (1) Underdamped i.e. oscillatory: R < 0

This implies damped oscillations

λ1 = −b+ iΩ

λ2 = −b− iΩ
Ω =

√
ω2 − b2 (24)

Clearly Ω =
√
−R.

Hence the solution is

y = e−btA sin(Ωt+ φ),
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• (2) Critically damped R = 0

By taking the case of double (or coincident) roots we can see that the
solution is

y = e−bt(A+ tB)

• (3) Overdamped R > 0

Here both roots λj are real and positive as long as b > 0. Hence the
general solution is

y = Aeλ1t +Beλ2t.
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