
Physics 116B- Spring 2018

Mathematical Methods 116 B

S. Shastry, May 8, 10, 2018
Notes on Di↵erential Equations-V

§ Summary of last lecture: Linear di↵erential equations with
constant coe�cients:

§Damped Harmonic oscillator:

This is an example with a drag, or frictional force in addition to the
spring.

d2y

dt2
= �!2y � 2b

dy

dt
. (1)

The ODE can be cast in the form

(D2 + 2bD + !2)y = 0. (2)

Now the roots of the auxiliary polynomial (D ! d)

d2 + 2bd+ !2 = (d� �1)(d� �2),

where

�1 = �b+
p

b2 � !2 (3)

�2 = �b�
p

b2 � !2. (4)

The solutions are:

y = Ae�1t +Be�2t. (5)

Due to damping, the solutions die away at long times provided b 6= 0.
For b = 0 the undamped case, the solution oscillates at all later times as

y = y0 sin(!t+ �).
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§ Driven i.e. forced damped oscillator:

d2y

dt2
+ !2y + 2b

dy

dt
= F sin(!0t) (6)

where !0
6= !.

Linear ODE with constant coe�cients and a non-zero RHS.
We could take the previous solution and add something to it:

y = Ae�1t +Be�2t + y
p

,

this is plugged in to give

d2y
p

dt2
+ !2y

p

+ 2b
dy

p

dt
= F sin(!0t) (7)

If we can find any single solution of this equation, we are done since A
and B have given two constants already, so we will have the most general
solution.

y
p

= Particular solution.

We now make it simpler by making it complex!!

sin(!0t) = =mei!
0
t (8)

We will solve

d2Y
p

dt2
+ !2Y

p

+ 2b
dY

p

dt
= Fei!

0
t (9)

and take imaginary part of both sides of the equation. This will guarantee
that

=mY
p

= y
p

.

Guess for solution in complex domain.....?????
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Try
Y
p

= Cei!
0
t

Derivatives:

DnY
p

= (i!0)nY
p

Hence

(!2
� !02 + 2ib!0)C = F

C =
F

(!2
� !02) + 2ib!0 =

Fe�i�

p
(!2

� !02)2 + 4b2!02

� is a phase shift.

Hence

y
p

= =m (Y
p

) =
F sin(!0t� �)p

(!2
� !02)2 + 4b2!02

Tuning the TV is to adjust ! to match !0.

§ Other examples of non-zero RHS:

Section 6 Chapter 8..
Example problem:

(D � 2)(D � 5)y = sin(3t)

Try

y = Ae2t +Be5t + y
p

,

where

y
p

= Any old solution, no matter how simple, of given equation

One way:
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Complexify and put
y
p

= Y
p

= Cei3t

satisfying

(D � 2)(D � 5)Y
p

= ei3t

or

C(i3� 2)(i3� 5) = 1

and hence (pl check this)

y
p

= � sin(3t� arctan(21))/
p

442.

Another method to find the particular solution: Successive integration:
We can call

(D � 2)y = W (t),

so the equation for W is

dW/dt� 5W = sin(3t).

Linear equation with constant term on right. Use integrating factor

W = e5t
Z

dte�5t sin(3t) + Ae5t

or

W (t) = �

1

34
e�5t(3 cos(3t) + 5 sin(3t)) + Ae5t

we can now get back to y using

dy/dt� 2y = W (t)

Solution of this is straightforward but tedious:

y(t) =

⇢
442Ae5t + 3 sin(3t) + 63 cos(3t)

1326
+ c1e

2t

�

Question: Is this y or y
p

?
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§Exponential RHS:

If we have an equation

(D � a)(D � b)y = kecx (10)

we can solve this much more easily. Let c 6= a and c 6= b for now.
Note that

Decx = cecx

D2ecx = c2ecx

etc
We can now get more adventurous,and justify rigor later...
Let us try to invert:

(D � a)ecx = (c� a)ecx

i.e.

ecx =??
(c� a)

(D � a)
ecx

Check this by series expansion of denominator
Yes...
Hence as long as we do not hit a zero in the denominator we can invert:
i.e. to be more precise

(D � a)y = kecx =) y = k
1

D � a
ecx = k

1

c� a
ecx

provided c 6= a.
Hence the solution of Eq(10) is obvious now

y
p

=
k

(c� a)(c� b)
ecx

if c 6= a and c 6= b.
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Caution

(D � a)ecx 6= ecx(D � a)

Ordering is important in handling the derivative operators.
This is the first example of non-commutative objects in Quantum theory,

where p ! �i~@
x

.

§What about coincident c=a?:

We want to solve

(D � a)(D � b)y = keax (11)

so we cannot be too cavalier!!
Any ideas?
Think perturbation...

Put c = a+ ✏ where ✏ is small. As long as it is non-zero we have the old
solution for c 6= a, c 6= b.

(D � a)(D � b)y = ke(a+✏)x =) y =
k

(a+ ✏� b)✏
e(a+✏)x (12)

Firstly recall we are looking for particular solutions, which means we can
drop any additional things like ↵eax in

y = y
p

+ ↵eax

using the property that

(D � a)(D � b)↵eax = 0 (13)

where ↵ is arbitrary.
Now let us Taylor expand:

e(a+✏)x = eax(1 + ✏x+O(✏2))
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Hence

y
p

=
k

(a+ ✏� b)✏
eax(1 + ✏x+O(✏2))

!

k

(a� b)
xeax (14)

Summarizing:

(D � a)(D � b)y
p

= keax =) y =
k

(a� b)
xeax (15)

Similarly also

(D � a)(D � a)y
p

= keax =) y = 2k x2eax (16)

§ Theorem:

(D � a)(D � b)y = ecxP
n

(x) (17)

where P
n

is a polynomial of degree n

y
p

= ecxQ
n

(x) (18)

where Q
n

is a polynomial of same degree. It can be found by plug-n-play!!
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Other special cases/examples of solvable second order di↵erential equa-
tions.

§Newtonian equations of motion: Equations independent of the
independent variable!!:

Suppose we are given

y00 + �(y) = 0 (19)

where y0 = dy/dx, and �(y) is some function of y only, and not of x explic-
itly. Here x is the independent variable and we note that the Eq. (19) is
independent of x!!

We recognize this as Newtons laws by rewriting as

mẍ = �

@V (x)

@x
(20)

E
tot

=
1

2
m(ẋ)2 + V (x) (21)

where V is the potential energy and its derivative is the force. Eq. (21) is
the energy of the particle which is independent of x, i.e. the particle moves
in such a way that the kinetic and potential energies balance out their x
dependencies to give a constant energy. We can map Eq. (20) to the first
equation by dividing through with m and renaming objects. Let us do the
renaming in clear terms: alert: most confusions arise from forgetting the

details of this relabeling

y ! x, x ! t, �(y) !
1

m

@V (x)

@x
.

So the thing to note is that Eq. (19) is a second order di↵erential equation
where x is implicit and not explicit. We now erase the comment made above,
and try to solve the problem. We should of course discover all the good
things said above.

To solve Eq. (20) multiply both sides by y0, thus

y0y00 + y0�(y) = 0 (22)

Now

y0y00 =
1

2

d(y02)

dx
,

8



and

y0�(y) =
d

dx

Z
y

0

�(s) ds

We may thus write Eq. (22) as

d

dx

✓
1

2
(y0)2 +

Z
y

0

�(s) ds

◆
= 0, (23)

Now we relabel
R

y

0 �(s) ds = mV (y) therefore

1

2
(y0)2 +mV (y) = constant. (24)

Constant = ??

1

2
(y0)2 +mV (y) = mE. (25)

Energy
This almost solves the di↵erential equation Eq. (19), and we have discov-

ered the principle of energy conservation! We still need to solve it fully. For
this let us work out an example:

Example:
�(y) = �y + 2y3

Eqn:

y00 � y + 2y3 = 0

Observe no dependence on x
Step 1. Multiply by y0

y0y00 + y0(�y + 2y3) = 0

Becomes

d

dx

✓
1

2
(y0)2 �

1

2
y2 +

1

2
y4
◆

= 0

hence we have shown that
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✓
1

2
(y0)2 �

1

2
y2 +

1

2
y4
◆

=
1

2
E

where E is a constant. We know by now, that it is the Newtonian energy of
the particle, but we need not talk about the physical meaning as yet.

To get the full solution we need one more step.
Step 2. By transferring to one side we isolate the velocity y0

y0 = ±

p
E + y2 � y4

We can separate variables as

dyp
E + y2 � y4

= dx

This can be integrated, see MMA notebook for answer. It is a bit com-
plicated and involves elliptic functions, so we skip it here.

Let us take a more ”physical” way to understand the behavior without
solving it explicitly. Firstly let us solve for the turning points. These are the
maximum or least value of y at which the velocity is real are given by

y = ±y⇤(E), where y⇤(E) =

s
1

2
+

r
E +

1

4

There are two possible signs and both are allowed.
Physically we may describe the motion of the particle, now for convenience

think of y as the position of the particle and the independent variable as time.
See discussion on mathematica page on website.
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Anharmonic oscillator differential equation solution. May 10, 2018

Our problem is to solve
y’’-y+2 y3 = 0

This corresponds to aNewtonian equation of motion
1 /2 (y ')2 + V(y) = E
V(y) = 1 /2 � -y2 + y4�

See Eq. 25 in class notes of May 8, 10

The integral of the quartic is a well known elliptic function. We do not study it in this course, but it is a 
very well known function at an advanced level.
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To better understand these let us plot the potential V(y)= -y^2/2+y^4/2 
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The function u is the radical, i.e. y’= +- u1/2(y,E). I wrote A in place of E,because Mathematica is fussy 
about the symbol E, which is “reserved”.
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For a given A, the largest value of y that keeps u real is given by g(A) which is given next.
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In the 4 figures below we plot these s 
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2 ���  Demo-nonlinear-oscillator.nb



§ Second order equation independent of y (but depends on y0, y00

etc.):

As an example consider

y00 + 3y0 = f(x) (26)

and we will encounter other problems of this type in the HW#5. We can
solve this problem for any f(x) by a simple trick, which exploits the absence
of y in the equation.

Let us call
p(x) = y0(x)

so that p0 = y00. Hence the equation simplifies to a first order equation for p.

p0 + 3p = f(x) (27)

We can solve this using the integrating factor trick for first order equa-
tions.

p(x) = e�3x

Z
e3x

0
f(x0) dx0 + Ae�3x (28)

where A is arbitrary.
We can now back up and find y by using

dy/dx = e�3x

Z
e3x

0
f(x0) dx0 + Ae�3x (29)

which is separable (note that y appears only on the left).

§Change of independent variable: Cauchy-Euler equations:

In equations of the type

x2 d2

dx2
y + bx

d

dx
y + c = d (30)

where b,c,d are independent of x (they could depend on y!!) we use a simple
trick.
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Call

x = et, hence x
d

dx
=

d

dt
.

Hence

d2

dt2
y + b

d

dt
y + c = d (31)

this can be solved more easily, because there are no longer the explicit trou-
blesome factors of x, x2.
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§Laplace Transforms and their application to solving ODE with
constant coe�cients:

What is the Laplace transform?
If we are given

f(t), t 2 [0,1)

we can define its Laplace transform L(f(t)) as F (p) where

F (p) $ f(t) (32)

where p > 0. The relationship is more precisely

L(f(t)) : F (p) =

Z 1

0

f(t)e�pt dt (33)

Inverting this to find F (p) from f(t) is a bit more complicated than in the
case of a similar Fourier transform. We will bypass this by consulting a set
of standard Laplace transforms if we need to invert, and perhaps after doing
complex integration, we can revisit this.

Let us take a few examples of Laplace transforms
(a)

f(t) = 1, =) F (p) =
1

p

(b)

f(t) = tn, =) F (p) =

Z 1

0

tne�ptdt = (�1)n
d

dp

1

p

Thus

f(t) = tn, =) F (p) = �(1 + n)
1

p1+n

(c)

f(t) = e�at, =) F (p) =
1

p+ a

This is true as long as <e (p + a) > 0, and includes the case when a = i↵
with real ↵.
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§A short break from calculations:

Let us see what the Laplace transform is doing. It is simply an integration
of the given function f(t) after multiplying by e�st. Hence the following
(linearity) properties are obvious -

f(t) = c1f1(t) + . . .+ c
n

f
n

(t), =) F (p) = c1F1(p) + . . .+ c
n

F
n

(p) (34)

§ Back to calculations of Laplace Transforms:

Let us use this right away.
Want the Laplace transform of sin(!t) and we are given (c), i.e.

f(t) = e�at, =) F (p) =
1

p+ a

Now write

sin(!t) =
1

2i
ei!t �

1

2i
e�i!t

Therefore

L(sin(!t)) : F (p) =
1

2i

1

p� i!
�

1

2i

1

p+ i!

=
!

p2 + !2
(35)
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§Using Laplace transform to solve ODE with constant coe�-
cients:

Idea is simple:
a) Start with ODE- Take Laplace transform of both sides
b) Now equation is algebraic and not an ODE at all, thanks to Laplace
c)Solve algebraic equation
d) To get back required solution of ODE, find the inverse Laplace trans-

form of algebraic solution.
Take a truly simple example:

y0 + 3y = sin(!t) (36)

Let

L(y) : Y (p) =

Z 1

0

e�pty(t) dt

Multiply Eq. (36) by e�pt dt and integrate. Hence

Z 1

0

e�pty0(t) dt+ 3Y (p) =
!

p2 + !2
(37)

where we used our recent example to write down the RHS i.e. L(sin).
For the first term we use integration by parts:

Z 1

0

e�pty0(t) dt = [e�pty(t)]10 + p

Z 1

0

e�pty(t) dt = pY (p)� y(0).

Notice that the initial condition of y has made an explicit appearance
here.

Hence the algebraic equation resulting from Laplacing the original equa-
tion is now:

(3 + p)Y (p) = y(0) +
!

p2 + !2

Y (p) =
y(0)

3 + p
+

1

3 + p
⇥

!

p2 + !2
(38)

The final step is to take the inverse Laplace transform. The first term is
easy: y(0)e�3t.

Second term can be done by looking up tables, or best by using partial
fractions.
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