An example of an exact differential equation where the function F is F= $1/2 (x^2 + y^2 + 10 (x^2 + y^2))$

The equation is

 $x(1+ 10 y^2) dx + dy (1+ 10 x^2)=0$

Since P = $x(1+10 y^2)$ and Q=y (1+ 10 x^2) we see that

Py=20 xy

also

 $Q_x = 20 xy = P_y$

Hence this is an exact differential equation. We can find the solution by setting $P = F_x$

and $Q = F_y$ where F can be found from integrating these equations

F= \integral dx P = 1/2 $x^2(1 + 10 y^2) + A(y)$ (Here A is an arbitrary function of y. It is allowed since the integration over x assumes that y is a constant)

Similarly integrating Q F= \integral dy Q= $1/2$ $y^2(1 + 10 x^2) + B(x)$

Equating the two we get

1/2 y^2 (1 + 10 x^2) + B(x)= 1/2 x^2 (1 + 10 y^2) + A(y)

This equation is easily soved by choosing $A(y) = 1/2$ y^2 and $B(x)=1/2$ x^2

Plugging in, we get

 $F=1/2 (x^2+y^2+10 x^2 y^2)$

Summarizing, our differential equation $x(1+ 10 y^2)$ dx + dy $(1+ 10 x^2)$ =0 is completely equivalent to saying that $F(x,y)=C_0$ where C_0 is an arbitrary constant and F is defined above.

To understand the meaning of this constant, and also of F, we have spoken of F as a height of a mountain, and the value of C₀ as specifying the height at which we are seeking a (x,y) curve. Let us see this in pictures.

We observe that the mountain has a steep climb away from (0,0), which the bottom of the valley.

We can now specify the height C_0 as we like and discover the curves at that height.

 $\ln[23]$: ContourPlot [f = 10, {x, -5, 5}, {y, -5, 5}, FrameLabel \rightarrow "Height C₀= 10"]

 $In [20]:$ ContourPlot [f = 20, {x, -5, 5}, {y, -5, 5}, FrameLabel \rightarrow "Height C₀= 20"]

 $\ln[26]$ = ContourPlot [f = 500, {x, -5, 5}, {y, -5, 5}, FrameLabel \rightarrow "Height C₀= 500"]

