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Introduction to Probability theory

§Basic Definitions:

• Random variables: e.g. tossing one die, or two dice, or n dice! (dice is
the plural of die!!)

• Sample space. Number of points in sample space NS

• Events E

• Probability of an event P (E) = NE

NS
.

§First example Single die:

Sample space = h, t with NS = 2
Event h or t
Probability of heads P (h) = 1/2, tails P (t) = 1/2.

§Next example Two dice:

Sample space: (just list and then count all possibilities).

hh, ht, th, tt

NS = 4

.
Events: (1) Single h (2) Two h’s (3) At least one h etc

P (single h) =
1

2

P (two h′s) =
1

4
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P (at least one h) =
3

4
.

We thus see that there is an element of “word power” here, precise words
are key to many basic problems in this field.

§ Three dice:

Sample space:

hhh, hht, hth, thh, htt, tht, tth, ttt

NS = 8

P (no h) = 1/8

P (one h) = 3/8

P (two h) = 3/8

P (three h) = 1/8

P (no successive, h) =
1

4

P (successive h) =
3

8

P (at least one h) =
3

8

Hence we can cook up many detailed events that live in the sample space.
Every definable event has a calculable probability!
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§Successive events:

We can have successive events that are either independent or dependent
on each other. Both can be considered in a simple context. Let us take 15
billiard balls in a box, 5 are red and 10 are white. We dip into the box and
draw out balls of various colors.

§Independent events problem:

I want the probability P (AB) of two successive events A with probability
P (A), is where I pick a white ball on my first dip. I then replace the ball
into the box and then the second event B with probability P (B), is where I
pick a white ball on my next dip.

We can prove easily in this case.

P (AB) = P (A)P (B) = P (B)P (A)

§Dependent events problem:

I want the probability P (AB) of two successive events A with probability
P (A), is where I pick a white ball on my first dip. I then do not replace
the ball into the box and then the second event B with probability P (B), is
where I pick a white ball on my next dip.

We can check

P (AB) = P (A)PA(B)

where PA(B) is a conditional probability, where event A is supposed to
have occurred already.

Similarly

P (BA) = P (B)PB(A) = P (AB).

Symmetric...
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§Permutations, Combinations, Number of ways...:

A classic set of twin problem is as follows:
A club of physics students has 10 members. (More generally 10 → N)

(Incidentally two of them are John and Sarah)
a)In how many ways can we we choose two office bearers. (More generally

2→ n).
b)In how many ways can we we choose two office bearers, one a president

and the other the vice president of the club.
Before solving this simple problem, note the difference between the two

cases. In (a) we do not worry about what the role of the two members is,
while in (b) we do. This leads to different answers.

Solution
(a) Here we want to ignore the rank of the chosen pair. Hence the number

of ways is 10× 9/2, i.e. Nb = N !
(N−n)!n! . The probability of choosing John and

Sarah is therefore 2/90, which is consistent with above.
We call NCn = N !

(N−n)!n! , (usually called N choose n). This is the number
of ways of choosing n identical objects out of a group of N .

This is a binomial coefficient since

(1 + x)N =
N∑
n=0

xn NCn.

(b) To choose the first member i.e. the president, we have 10 choices.
Having made that choice the second member i.e. the vice-president can be
chosen from the rest, i.e. 9 choices.

Hence Na = 10 × 9. More generally Na = N !
N−n! . This number is called

NPn ≡ N !
(N−n)! - check that this is true here.

Connecting to probabilities, this means that the probability of John and
Sarah being president and vice president is 1

90
and the reverse choice also has

the same probability.
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Another problem: Four boxes are populated (one per box) from a
group of red and white billiard balls that are mixed up thoroughly, so each
time we pick a ball, it could be equally red or white.

The sample set of this consists of 16 states

rrrr, rrrw, rrwr, rwrr, wrrr, rrww, rwrw, rwwr

and 8 more by switching

r ↔ w

What is the probability of finding n reds, where n = 0, 1, . . . , 4?
Answer: P (r) =4 Cr

1
16

. (Recall
∑

r=0,4
4Cr = 16 is the total number of

configurations.)

r = 0, P = 1/16

r = 1, 4C1 = 4, P = 1/4

r = 2, 4C2 = 6, P = 3/8

r = 3, 4C3 = 4, P = 1/4

r = 4, 4C4 = 6, P = 1/16

Total P=1.
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§ The urn problem of Maxwell-Boltzmann, Bose-Einstein, and
Fermi-Dirac:

§ Sample space for putting 2 particles in 3 boxes:

More generally 3→ N and 2→ n.
Comment: In quantum statistical mechanics, the boxes are the states into

which we put our particles.
a) Maxwell-Boltzmann
Labelled particles- say “r” and “b” and no restrictions:
Sample space:

rb|0|0, 0|rb|0, 0|0|rb, r|b|0, b|r|0, 0|r|b, 0|b|r, r|0|b, b|0|r

9 configurations.
Note that although r|b|0 and b|r|0 are counted separately, we do not

distinguish between rb|0|0 and br|0|0.

(b) Bose-Einstein:
Particles have lost all labels, i.e. identical particles. No other restrictions.
Sample space:

xx|0|0, x|x|0, x|0|x, 0|xx|0, 0|x|x, 0|0|xx

6 configurations.

ν =
(N − 1 + r)!

r!(N − 1)!

(S = kB log ν is the entropy of this system).

(c) Fermi-Dirac:
Particles have lost all labels, i.e. identical particles. Single occupancy

restriction.

x|x|0, x|0|x, 0|x|x,

3 configurations.

ν =
N !

n!(N − n)!

(S = kB log ν is the entropy of this system too.)
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§Random variables and probability distribution: Discrete case:

Example: x = ±1 with P (1) = .6 and P (−1) = .4. This is a loaded coin.
P = 1

2
for both would be a unloaded coin.

Similarly we can think of a m-state die where

x = {x1, x2, . . . xm}

with probabilities P (xj) =

P (xj) = {p1, p2, . . . pm}

.
We must have two conditions for this to be a well defined probability:

P (xj) ≥ 0, and
∑
j

P (xj) = 1

We can define the mean, the variance and the standard deviation as
follows. ∑

j

xjP (xj) = x̄ = Mean value of x

∑
j

x2jP (xj) = x̄2 = Mean square value of x

We can define the variance

Variance = V ar(x) = x̄2 − (x̄)2

We can define the Standard deviation as

Standard Deviation =
√
V ar(x) =

√
x̄2 − (x̄)2

§Random variables and probability distribution: Continuous
case: The Gaussian:

PG(x) =
1

σ
√

2π
e−(x−µ)

2/(2σ2)
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x̄0 =

∫ ∞
−∞

dxPG(x) = 1.

x̄ =

∫ ∞
−∞

dx xPG(x) = µ

x̄2 =

∫ ∞
−∞

dx x2PG(x) = µ2 + σ2

Hence Variance of the Gaussian is σ2 and the standard deviation is σ.
More convenient notation is

〈A〉 = Ā.

Note the general result:

〈(x− 〈x〉)2〉 = 〈x2〉 − 〈x〉2

Key result: Central Limit theorem.
We consider a composite variable

y =
N∑
j=1

xj,

where N � 1 and the xj have any distribution whatsoever, and all we ask is
that these are un-correlated.

Question: What does that mean?
In such a case, the central limit theorem says

lim
N�1

P (y)→ PG(y)

where PG(y|µ, σ) depends on some µ, σ, which can be found most easily from
experiments. The point is that y acts as a Gaussian variable.

In experimental physics, and also in engineering, this is a crucial result.
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