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Series solution of Differential Equations

Legendre, Bessel equations

§Differential equations arising often in applications: Differential

equations of great importance have the form

h(x)y′′ + f(x)y′ + g(x)y = 0,

• Legendre Equation h(x) = 1− x2, f(x) = −2x, g(x) = l(l+ 1). Integer
l

• Bessels equations h(x) = x2, f(x) = x and g(x) = x2 − p2. Integer p

§Basic scheme of series solution: i) Assume a power series

f(x) = a0 + a1x+ a2x
2 + . . . ,

ii) Find recursion relations for an.
iii) Solve recursion relation by iteration.
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§Warm-up with a simpler equation:

y′ + 2xy = 0,

Plug in y =
∑∞

n=0 anx
n. Hence y′ =

∑∞
n=0 nanx

n−1, and hence

y′ + 2xy =
∞∑
n=0

nanx
n−1 + 2

∞∑
n=0

anx
n+1

=
(
a1 + 2a2x+ 3a3x

2 + 4a4x
3 + . . .

)
+ 2

(
a0x+ a1x

2 + a2x
3 + a3x

4 + . . .
)

0 = (a1) + x(2a2 + 2a0) + x2(3a3 + 2a1) + x3(4a4 + 2a2) + . . . .

Now we equate each power of x to zero. §Why ?

a1 = 0, 2(a2 + a0) = 0, (3a3 + a1) = 0, (4a4 + 2a2) = 0, . . .

Odd indices

a2m+1 = 0,

because a1 = 0 (only one term with power x1).!!
Even indices. Call αn = an

a0
Recursion relation

am+2 = − 2

m+ 2
am, m = 0, 2, 4, . . .

α2 = −2/2, α4 = 4/(2.4), α2n = (−1)n/n!

Hence the solution is
y = a0e

−x2

.
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§Legendre equation:

(1− x2)y′′ − 2xy′ + l(l + 1)y = 0,

Plug in

y = a0 + a2x
2 + a4x

4 + . . .+ a1x+ a3x
3 + a5x

5 + . . .

Calculate and find recursion relations

an+2 = −an ×
(l − n)(l + n+ 1)

(n+ 2)(n+ 1)
,

With two starter values a0, a1 we get the rest in terms of these.

y = a0

(
1− l(l + 1)

2!
x2 +

l(l + 1)(l − 2)(l + 3)

4!
x4 + . . .

)
+a1

(
x− (l − 1)(l + 2)

3!
x3 + . . .

)
Thus we get two series with two starter coefficients, which we can tune

as we like. The series converge for |x| < 1 and diverge for |x| ≥ 1 from the
ratio test.

§Truncation of series:

If l is an integer, one of the two series truncates. We get polynomials

• l = 0 We set a1 = 0 so that

y = a0

• l = 1 We set a0 = 0 so that

y = a1x

• l = 2 We set a1 = 0 so that

y = a0(1− 3x2)

• l = 3 We set a0 = 0 so that

y = a1(x− 5/3x3)
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If we normalize these polynomials to Pn

∣∣
x=1

= 1, we get the Legendre
polynomials.

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1), . . .

In general Pl(x) is a polynomial in x of degree l.

§These satisfy Rodrigue’s formula:

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l

§ Generating Function: These can be found from a neat generating

formula valid for |h| < 1

Φ(x, h) = (1− 2xh+ h2)−
1
2 .

Φ(x, h) =
∞∑
l=0

hlPl(x).

Origin of Legendre polynomials and the generating function. Connection
to multipole expansion.

Consider two charges located at ~r and ~r′ and let r = |~r| � r′(= |~r′|).
Coulomb potential

U(~r, ~r′) =
e2

|~r − ~r′|
=

e2√
r2 + r′2 − 2~r.~r′

(1)

If we call x = ~r.~r′/(rr′) = cos(θ), then −1 ≤ x ≤ 1. Let us call

h = r′/r,

and assuming h� 1 we now expand to generate the multipole expansion.

U(~r, ~r′) =
e2

r

1√
1 + h2 − 2hx

=
e2

r
Φ(x, h)

=
e2

r

∞∑
l=0

hlPl(x).

= e2
(

1

r
+
r′

r2
P1(x) +

r′2

r3
P2(x) + . . .

)
. (2)
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Reminder

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1), . . .

§Recursion relations:

xP ′n(x) = P ′n−1(x) + nPn(x) (R− I)

nPn = (2n− 1)xPn−1 − (n− 1)Pn−2 (R− II)

e.g. we can use the second of these to calculate P2 from P0, P1

2P2 = 3xP1 − P0 = 3x2 − 1. Works

§Usage of generating function to find Recursion relations:

Φ(x, h) = (1− 2xh+ h2)−
1
2 .

Φ(x, h) =
∞∑
l=0

hlPl(x).

(I) Take the derivative

∂Φ(x, h)

∂h
=

x− h
1− 2hx+ h2

Φ(x, h)

Now cross-multiply and plug in the expansion and equate powers of hn

(n+ 1)Pn+1 − 2xnPn + (n− 1)Pn−1 = xPn − Pn−1,

i.e.
(n+ 1)Pn+1 − (2n+ 1)xPn + nPn−1 = 0.

This is (R− II).
(II) Take the derivative

∂Φ(x, h)

∂x
=

h

1− 2hx+ h2
Φ(x, h)

Now cross-multiply and plug in the expansion and equate powers of hn

P ′n − 2xP ′n−1 + P ′n−2 = Pn−1
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§Orthonormality:

∫ 1

−1
Pl(x)Pm(x) dx = δl,m

2

2l + 1
.

We can show this using the differential equation.

d

dx
[(1− x2)P ′l (x)] + l(l + 1)Pl(x) = 0

{l(l + 1)−m(m+ 1)}PlPm = Pl
d

dx
[(1− x2)P ′m]− Pm

d

dx
[(1− x2)P ′l ]

=
d

dx
[(1− x2)(PlP

′
m − P ′lPm)]

Integrate w.r.t. x assuming l 6= m.

∫ 1

−1
dx

d

dx
[(1− x2)(PlP

′
m − P ′lPm)] = [(1− x2)(PlP

′
m − P ′lPm)]1−1 = 0.

Hence ∫ 1

−1
dxPlPm = 0, if l 6= m.

For l = m further simple calculation shows the important orthonormality
result.
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§Use of the orthonormality of the Legendre polynomials. The
Legendre series:

A highly useful result follows. Any function f(x) on the interval −1 ≤
x ≤ 1 can be expanded

f(x) =
∞∑
j=0

cjPj(x),

where

cj =
2j + 1

2

∫ 1

−1
dxf(x)Pj(x)

If f(x) is a polynomial of degree r, the cj vanish for j > r.
Example:
Problem (A)

F (x) = 2x2 + x− 1

Answer
c[0] = −1/3, c[1] = 1, c[2] = 4/3, c[3] = 0, . . .

Problem (B)
F (x) = |x|+ 3x4

Even function hence c[2n+ 1] = 0
Answer:

c[0] = 11/10, c[2] = 131/56, c[4] = 279/560, c[6] = 13/128, c[8] = −17/256

Problem (C)

F (x) = x2 + 3x4

Even function hence c[2n+ 1] = 0
Answer:

c[0] = 14/15, c[2] = 50/21, c[4] = 24/25, c[6] = 0, c[8] = 0
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§Bessel Functions- the bare facts:

x2y′′ + xy′ + (x2 −m2)y = 0

we solve it with a series

y = xm
(

1− 1

m+ 1
(
x2

22
) +O(x4) . . .

)
This is essentially a Bessel function....

Jm(x) =
1

m!
(
x

2
)m
(

1− 1

m+ 1
(
x2

22
) +O(x4) . . .

)
Why the starting index xm?
Plug in y ∼ xr and differentiate and cancel xr. At small r we get a regular

solution

r2 = m2, r = ±m

8


