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Mathematical Methods 116 A

S. Shastry, April 3, 2018
Notes on Tensors

§ Scalars, Vectors, Tensors,..., Pseudo Scalars, Pseudo Vectors,
Pseudo Tensors:

These are defined by the behavior under rotations and reflections of var-
ious physical quantities.

§Refresher on Notation and Rotations:

Let us take 3-d and write a point in space represented by ~r, a vector
joining it to the origin O. We will write the components of this vector in the
form

~r = xî+ yĵ + zk̂

where î etc are unit vectors in the three directions. For convenience we will
map

î→ ê1, x→ x1

ĵ → ê2, y → x2

k̂ → ê3, z → x3

and so our vector can be written compactly as

~r =
∑
j

êjxj → êjxj, (1)

where we introduce the Einstein convention to simplify writing.

In any equation with (tensor) indices, sum over any repeated index, the
sum being over its natural range.

We will take the “passive viewpoint”, i.e. keep the point we are describing
fixed, and rotate the frame of reference. The new frame gives us new basis
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vectors êj and new coordinates x′j. This means that in the new frame of
reference the same point can be written as

~r = ê′jx
′
j (2)

Thus comparing the two equations

~r = ê′jx
′
j = êjxj. (3)

Note that the new frame is reached by some rotation or reflection and hence
it remains orthogonal, or to be more precise, a cartesian frame defined by
the condition

êi.êj = δij = ê′i.ê
′
j.

Here an later we use the Kronecker delta function

δij = 1, if i = j

= 0, if i 6= j.

(4)

In order to fill in the details, I would need to express the new basis vectors
in terms of the old ones. Thus we need the transformation rules

ê′1 = l1ê1 +m1ê2 + n1ê3

ê′2 = l2ê1 +m2ê2 + n2ê3

ê′3 = l3ê1 +m3ê2 + n3ê3 (5)

Question: What is the meaning of the coefficients? (Figure)

A matrix method of describing the same transformation next. Let us
rewrite the transformation of the components asx′1x′2

x′3

 = A.

x1x2
x3

 ,
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where

A =

l1 m1 n1

l2 m2 n2

l3 m3 n3


We have seen that the rotation matrices A can be easily calculated for

rotations about the main axes, e.g. a rotation about the z axis by angle θ
gives us

Az(θ) =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 .
Similarly we can write the rotation about the old y axis

Ay(γ) =

 cos(γ) 0 sin(γ)
0 1 0

− sin(γ) 0 cos(γ)

 .
In fact an important theorem, which we will not pursue here, is due to

Euler who showed that an arbitrary rotation can be written in the form

R(α, β, γ) = A′′
z(γ)A′

y(β)Az(α)

where A′
y is a rotation about the new y axis (after performing the first z

rotation) and A′′
z is a rotation about the newest y axis (after performing the

second y rotation). The three angles α, β, γ are known as the Euler angles.
We will bypass the details of this construction- it is the core part of a

graduate course- and merely note that for all rotations

Det(A) = 1.

If we also add in a reflection, the transformation leads to matrices such as

Π =

−1 0 0
0 1 0
0 0 1


Clearly the determinant is now −1.

Let us note that the rotation matrices are orthogonal,

ATA = 1.

This remains true if we add reflections.

§Reconnecting and simplifying the notation:
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In the tensor notation we map the transformation matrix

A→ aij

and
AT → aji

We can thus write for any vector ~V = Vj êj the transformation V ↔ V ′

under A or its inverse is simply written

V ′
i = aijVj

and the inverse is
Vi = ajiV

′
j .

Imagine next we had an object that is the direct product of two vectors

Qij = ViVj,

and we will see many examples soon in the physical world. Then it will
transform as

Q′
ij = aikajlQkl.

This is the transformation property of a second rank tensor!!

§Definitions: We will define various objects under proper rotations

(DetA = 1). Improper rotations (DetA = −1) involve reflections plus rota-
tions.

• Scalar - unchanged under proper rotations.

* Energy, mass, total charge

• Vector- Transforms as a vector under proper rotations. V ′
i = aijVj

* Position vector, momentum, angular momentum (pseudo vector),
dipole moment of a charge distribution

• Second Rank Tensor Transforms as a direct product of two vector under
proper rotations. T ′

ij = aikajlTkl

*Strain ∂ui
∂xj

, where ui is the displacement. Also stress, moment of

inertia, quadrupole moment of a charge distribution
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• Third Rank Tensor Transforms as a direct product of three vector under
proper rotations. T ′

ijm = aikajlamnTkln

* Higher multipole moment of a charge distribution.

§Examples of notation and contraction:

• aii =?

• aijbjk =?

• ∂u
∂xj

∂xj
∂xk

=?

• Let us define a transformed 4th rank tensor T ′
ijkl = aiαajβakγalδTαβγδ.

What is the meaning of T ′
ijkj =? Reduces rank to 2 from 4.

§Comments:

• Tensors- matrices. Rank1-vectors, Rank2-matrices

• Symmetric and antisymmetric tensors: Tij = ±Tji. Can decompose
any tensor into symmetric + antisymmetric pieces.

• Can add tensors of the same rank, not otherwise. Tij +AlAmQlimj =?

* BTW, is AlAmQlimj =? AlAmQlmij

§ Moment of Inertia tensor:

This is a good example of a second rank tensor. To remind you, when
a body rotates, it has angular momentum and the Newtonian equation says
~̇L = ~N the torque. At zero torque, we must have a constant (i.e. time

independent) ~L. We equate this to its angular velocity ~ω, the proportionalty
constant is the moment of inertia

Li = Iijωj.
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Clearly Iij must be a tensor of rank 2 to balance the equation.
For a point mass rotating about the origin, we can be more explicit. Let

the position of the mass be ~r, whose magnitude is fixed (rigid rotation) but
the angular position varies. Thus

~v = ~̇r, with ~v.~r = 0, so that d(~r.~r)/dt = 0.

We then define the angular velocity via

~ω × ~r = ~v,

so that its dot product with ~r vanishes. Hence

~L = m~r × ~v = m~r × (~ω × ~r) = m [~ω(~r.~r)− ~r(~ω.~r)] .

We see later that the tensor indices help us evaluate such triple products
more easily. For now let us write this in component form

{Lx, Ly, Lz} = m{ωx(y2+z2)−ωyxy−ωzxz, ωy(x2+z2)−ωxyx−ωzxz, ωx(x2+y2)−ωzzx−ωyyx}

We can read off the components of the moment of inertia tensor, which
is shown to be symmetric (hence less writing!!)

Izz = m(x2 + y2), Izy = −mzy, Izx = −mzx

For a set of particles we sum over each particle and hence

Izz =
∑
i

mi(x
2
i + y2i ), Izy = −

∑
i

miziyi, Izx = −
∑
i

mizixi

If the body is viewed as having a density of masses

M =

∫
d3rρ(x),

then we can generalize and write

Izz =

∫
d3r m(r)(x2+y2), Izy = −

∫
d3r m(r) zy, Izx = −

∫
d3r m(r) zx.

§A few problems involving the MOI:
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§Levi-Civita symbol:

{ Tullio Levi-Civita }

We define a useful tensor in 3 dimensions

εijk = −εjik = −εikj
It is more completely defined by saying any permutation ijk = P (123) gives
|εijk| = 1 otherwise it is zero. The sign is ±1 depending on the signature of
the permutation

§It is useful for defining cross products and all kinds of vector identities.

~A× ~B = ~C

implies

Ci = εijkAjBk.

We note that
εijkεimn = δjmδkn− δjnδkm

§Let us use Levi-Civita to express the triple cross:

[ ~A× ( ~B × ~C)]i = εijkAj( ~B × ~C)k

= εijkεklmAjBlCm

But εijk = εkij by cyclic permutation, and hence we can write

(LHS)i = εkijεklmAjBlCm = (δilδjm−δimδjl)AjBlCm = Bi(AjCj)−Ci(AjBj).

Therefore it follows that

~A× ( ~B × ~C) = ~B( ~A. ~C)− ~C( ~A. ~B) (6)

§It is also useful for defining the determinant in 3 dimensions.

DetA εijk = AilAjmAknεlmn.
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