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§ Quotient Rule for Tensors: Rapid summary :

Two vectors U, V' are related by

If every vector V is mapped into a vector U, then T;; is a second
rank tensor.

Here we recall that a vector V' transforms under rotation as V' — V. =
a;;V; and likewise with U, where a is a rotation matrix.

The proof is straightforward, please read the book. The main thing to
keep in mind is that we are trying to show that under the rotation a, T must
transform as

T/

i = ik T,

and for this purpose the validity of Eq. (1) for every V is necessary.
§ Brief introduction to partial derivatives.:
Since we skipped Chapter 4 in Boas’s book, we need to master some

elementary facts about partial derivatives.
Recall the (standard) derivative of a function f(z) of a single variable

iy = ) Fe )~ 1)

dx e—0 €
Examples:
Now if we have a function of two variables
f(z,y),



we can define a partial derivative

fo(z,y) = — oy~ lm p
and likewise with the y derivative, and also higher order derivatives:

Gf(:c,y) f(x,erE)—f(SE,y)

I Il

oy e—0 €

fy(z,y)

Examples:
1)Separable case: f = e” cos(y)

fo=e"eos(y): fy=—e"sin(y); fry = —€"C05(y); fay = Fpo = —€"si(y); fur =

2)Non-separable case: f = e~ cos(xy)
fo = "V {cos(xy) — ysin(zy)}.
fy = "V {—2y cos(zy) — zsin(zy).}

Rule:
While taking partial derivative w.r.t. a particular variable, think of every
other variable as a constant, and take the usual derivative.

8Some important partial derivatives in tensor analysis: From

definition
/
fL‘i = aijxj, XT; = CL]‘Z'ZL'Z-,

we will calculate

ox’

=7
0;13j
and
ox'.

J

§ Vector calculus made easier using tensor notation:
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We come across the V operator often in E&M, elasticity theory etc

voi2 ;932
~or "oy T oz
Let us rewrite this as
- 0
V == Ai )
¢ al'z

with the usual change of notation é; =i etc.
Therefore we can write a few vector calculus relations in compact tensor
notation

o 0
04,
8% )

V.V =

6 X A' = él X éj
Therefore on taking the & component

- 0A;
V) = el
( k ok ox;
The book gives a more easy-to-remember, but completely equivalent re-

labeling of this equation:

- 0
V x A) P
( i ik 8xj F
where the Ay is written to the right of the z; derivative.
A nice application is given in the book in (5.14)

-,

V x (Vx A)=V(V.A) - (V.V)A.

§Dual tensor:

In 3-dimensions we can write any anti-symmetric tensor in terms of a
single vector!
Antisymmetric tensor

iJ —Lge



has 3 non-zero components T'9, 1] 3, T3, the diagonals are zero and the other
components are found from Ty, = —Tiy etc. We can call Tho, T} 3, Tos —
Vi, Va, V3, or more elegantly as

Tij = Eijka-

The vector V is called the dual of the tensor T'. Note this happens only
in 3-dimensions.

Moment of inertia revisited:

Lo

Constitutives:

L =mrxv, L;=me;rvg

U=0XT, T=¢€wjTk
Hence
Li/m = €ijk€kimT ;W T
or

Lz/m = (62'5(5]' — 5im5jl)xjwlxm

Hence

Iy = m((silfsjm - 5im5jl)$j$m

We may rewrite this component-wise i.e. without the Einstein summation

convention:
2
Lii=m E T,
J#
and for i # j
Ii; = —mz;z;.

tPseudo tensors and pseudo vectors:



We have discussed the difference between physical quantities under rota-
tions versus rotations plus reflections. On this basis we can distinguish be-
tween regular and pseudo objects. Notation in physics often replaces pseudo
by axial (pseudo) and polar (regular). These are not computational topics,
but rather those of classifications. For example parity was a holy cow until
it was shown that parity is violated in weak interactions in 1956-57. C N
Yang and T D Lee won the Nobel prize for a theory that predicted parity
violation. Ms. Chien-Shiung Wu performed experiments in the same year to
confirm the predictions.

Vectors:

Pseudo vectors

G: =W XT,
L=71xp.

Pseudo-tensor

€ijk; recall Lz = €ijkT Pk

gCurvilinear orthogonal co-ordinates:

§ = displacement from origin

The arc is defined as

d§ = idx + jdy + kdz {Eq2}

Change from z—y— 2z to curvilinear coordinates. Examples are cylindrical
and spherical co-oridnates, and “worse”, i.e. more complicated cases!!
Let us focus on one case: cylindrical coordinates.

We change to r, 0, z given as

x =rcos(f), y=r sin(d), z
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Hence

dx = cos(0) dr — rsin(6) db

dy = sin(6) dr + r cos(0) d.
Hence we can rewrite
d§=é,.dr +égrdf + é,dz {Eq3}

where

é, = 1icosf+ jsin6
g = —isinf+ jcosd
e, =k

It is easily seen that these vectors are unit vectors

érbr =1, €9.6g=1, é,.6,=1.
They are also orthogonal to each other:
ér.g =0, ég.6,=0, é.6,=1.

Hence this is another orthonormal set of vectors. But these are curvilin-
ear, and not rectangular.

Pictures:
Now calculate the length of the arc:

d5.ds = ds* = da® + dy® + d2?,
in the new coordinates from { Eq.3 }
ds* = dr? + r2d6? + d2°.

Here r plays the role of a scale factor in the second term. Let us picture
this equation.

More generally if we change variables from z, y, 2 to another triad x1, xs, T3
(note that z; # x now, but rather z; are some generalized co-ordinates.
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We can then write

ox
d[E = Q_%d%

and similarly for dy, dz. Hence from { Eq 2.}

ds = idx + jdy + kdz
= Elexl + C_L'QdZLQ + 63d$3 {Eq4}

Here 9 P P
~ 0T ~ OY ~ 02
oz, +J ox,, * ké’xn

—

Qp =1

Now
;-5 = Gij,

where the object g;; is not necessarily orthogonal. Hence we get
d82 = gz]de’l d(L’j.

This object g;; is a symmetric second rank tensor, it is called the metric
tensor.
In the case of cylindrical co-ordinates we saw
ds* = dr* + r*d6? + d2?,

so the metric tensor is diagonal. ¢, = 1, ggg = r* and g., = 1.

Generally we write for any orthogonal but curvilinear co-ordinate system:

ds = élhl del + éghg dl‘g + éghg dl’g

This defines the scale factors hq, ho, hs.

Hence for cylindrical co-ordinates:

h, =1
h@ = T
h, =



§Spherical co-ordinates:

This is very useful in problems having spherical symmetry, e.g. orbits of
planets, Hydrogen atom,...

r = rcosfsing
= rsinfsin ¢
r = Trcoso

We can easily calculate:

dr = dr(cosfsin¢) — df (rsinfsin @) + dp(cos b cos @)
dy = dr(sinf@sin¢) + df (r cosfsin ¢) + do(sin 6 cos ¢)
dz = drcos¢ —rsinodp (1)

Substituting into Eq. (4), we find:

ds = é,dr + égrsin0df + é,rdo

Problem in HW # relates to the details of calculating the unit vectors éy
ete.
Picture this:

Hence the volume element is
dV = dx dydz = r*sin @ dr df do,
and the square of the arc length

ds* = dr® + r*sin® 0 + rd¢°.

Hence we can summarize the spherical co-ordinate system by giving the
scale factors

h, = 1
hg = rsinf
h¢ = T



What can we do with this machinery?

Recall the definition of a gradient:

- . Of
Vf = Zeja_sj

where s; is the arc length in the j™ direction.
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In cylindrical coordinates

Vf=

V="

In spherical co-ordinates:



