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Notes on Tensors-II

§ Quotient Rule for Tensors: Rapid summary :

Two vectors U, V are related by

Ui = TijVj. {1.}

If every vector V is mapped into a vector U , then Tij is a second
rank tensor.

Here we recall that a vector V transforms under rotation as V → V ′i =
aijVj and likewise with U , where a is a rotation matrix.

The proof is straightforward, please read the book. The main thing to
keep in mind is that we are trying to show that under the rotation a, T must
transform as

T ′ij = aikajlTkl,

and for this purpose the validity of Eq. (1) for every V is necessary.

§ Brief introduction to partial derivatives.:

Since we skipped Chapter 4 in Boas’s book, we need to master some
elementary facts about partial derivatives.

Recall the (standard) derivative of a function f(x) of a single variable

f ′(x) ≡ df(x)

dx
= lim

ε→0

f(x+ ε)− f(x)

ε

Examples:
Now if we have a function of two variables

f(x, y),
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we can define a partial derivative

fx(x, y) ≡ ∂f(x, y)

∂x
= lim

ε→0

f(x+ ε, y)− f(x, y)

ε

and likewise with the y derivative, and also higher order derivatives:

fy(x, y) ≡ ∂f(x, y)

∂y
= lim

ε→0

f(x, y + ε)− f(x, y)

ε
.

Examples:
1)Separable case: f = ex cos(y)

fx = ex cos(y); fy = −ex sin(y); fyy = −ex cos(y); fxy = fyx = −ex sin(y); fxx =?

2)Non-separable case: f = ex−y
2

cos(xy)

fx = ex−y
2{cos(xy)− y sin(xy)}.

fy = ex−y
2{−2y cos(xy)− x sin(xy).}

Rule:
While taking partial derivative w.r.t. a particular variable, think of every

other variable as a constant, and take the usual derivative.

§Some important partial derivatives in tensor analysis: From

definition
x′i = aijxj, xi = ajix

′
i,

we will calculate

∂x′i
∂xj

=?

and

∂xi
∂x′j

=?

§ Vector calculus made easier using tensor notation:
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We come across the ∇ operator often in E&M, elasticity theory etc

~∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

Let us rewrite this as

~∇ = êi
∂

∂xi
,

with the usual change of notation êi = î etc.
Therefore we can write a few vector calculus relations in compact tensor

notation

~∇.~∇ =
∂

∂xi

∂

∂xi

~∇× ~A = êi × êj
∂Aj
∂xi

.

Therefore on taking the kth component(
~∇× ~A

)
k

= εijk
∂Aj
∂xi

.

The book gives a more easy-to-remember, but completely equivalent re-
labeling of this equation: (

~∇× ~A
)
i

= εijk
∂

∂xj
Ak,

where the Ak is written to the right of the xj derivative.
A nice application is given in the book in (5.14)

~∇× (~∇× ~A) = ~∇(~∇. ~A)− (~∇.~∇) ~A.

§Dual tensor:

In 3-dimensions we can write any anti-symmetric tensor in terms of a
single vector!

Antisymmetric tensor
Tij = −Tji
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has 3 non-zero components T12, T1,3, T23, the diagonals are zero and the other
components are found from T21 = −T12 etc. We can call T12, T1,3, T23 →
V1, V2, V3, or more elegantly as

Tij = εijkVk.

The vector V is called the dual of the tensor T . Note this happens only
in 3-dimensions.

Moment of inertia revisited:

~L↔ ~ω

Constitutives:

~L = m~r × ~v, Li = mεijkxjvk

~v = ~ω × ~r, xi = εijkωjxk

Hence

Li/m = εijkεklmxjωlxm

or

Li/m = (δilδjm − δimδjl)xjωlxm
Hence

Iil = m(δilδjm − δimδjl)xjxm
We may rewrite this component-wise i.e. without the Einstein summation

convention:

Iii = m
∑
j 6=i

x2j ,

and for i 6= j

Iij = −mxixj.

§Pseudo tensors and pseudo vectors:
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We have discussed the difference between physical quantities under rota-
tions versus rotations plus reflections. On this basis we can distinguish be-
tween regular and pseudo objects. Notation in physics often replaces pseudo
by axial (pseudo) and polar (regular). These are not computational topics,
but rather those of classifications. For example parity was a holy cow until
it was shown that parity is violated in weak interactions in 1956-57. C N
Yang and T D Lee won the Nobel prize for a theory that predicted parity
violation. Ms. Chien-Shiung Wu performed experiments in the same year to
confirm the predictions.

Vectors:

~r, ~p

Pseudo vectors

~ω : ~v = ~ω × ~r,
~L = ~r × ~p.

Pseudo-tensor

εijk, recall Li = εijkrjpk

§Curvilinear orthogonal co-ordinates:

~s = displacement from origin

The arc is defined as

d~s = îdx+ ĵdy + k̂dz {Eq2}

Change from x−y−z to curvilinear coordinates. Examples are cylindrical
and spherical co-oridnates, and “worse”, i.e. more complicated cases!!

Let us focus on one case: cylindrical coordinates.

We change to r, θ, z given as

x = r cos(θ), y = r sin(θ), z
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Hence

dx = cos(θ) dr − r sin(θ) dθ

dy = sin(θ) dr + r cos(θ) dθ.

Hence we can rewrite

d~s = êr dr + êθ rdθ + êzdz {Eq3}

where

êr = î cos θ + ĵ sin θ

êθ = −î sin θ + ĵ cos θ

êz = k̂

It is easily seen that these vectors are unit vectors

êr.êr = 1, êθ.êθ = 1, êz.êz = 1.

They are also orthogonal to each other:

êr.êθ = 0, êθ.êz = 0, êr.êz = 1.

Hence this is another orthonormal set of vectors. But these are curvilin-
ear, and not rectangular.

Pictures:
Now calculate the length of the arc:

d~s.d~s ≡ ds2 = dx2 + dy2 + dz2,

in the new coordinates from { Eq.3 }

ds2 = dr2 + r2dθ2 + dz2.

Here r plays the role of a scale factor in the second term. Let us picture
this equation.

More generally if we change variables from x, y, z to another triad x1, x2, x3
(note that x1 6= x now, but rather xj are some generalized co-ordinates.
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We can then write

dx =
∂x

∂xj
dxj

and similarly for dy, dz. Hence from { Eq 2.}

d~s = îdx+ ĵdy + k̂dz

= ~a1dx1 + ~a2dx2 + ~a3dx3 {Eq4.}

Here

~an = î
∂x

∂xn
+ ĵ

∂y

∂xn
+ k̂

∂z

∂xn

Now
~ai.~aj = gij,

where the object gij is not necessarily orthogonal. Hence we get

ds2 = gijdxi dxj.

This object gij is a symmetric second rank tensor, it is called the metric
tensor.

In the case of cylindrical co-ordinates we saw

ds2 = dr2 + r2dθ2 + dz2,

so the metric tensor is diagonal. grr = 1, gθθ = r2 and gzz = 1.

Generally we write for any orthogonal but curvilinear co-ordinate system:

d~s = ê1h1 dx1 + ê2h2 dx2 + ê3h3 dx3

This defines the scale factors h1, h2, h3.

Hence for cylindrical co-ordinates:

hr = 1

hθ = r

hz = 1
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§Spherical co-ordinates:

This is very useful in problems having spherical symmetry, e.g. orbits of
planets, Hydrogen atom,...

x = r cos θ sinφ

y = r sin θ sinφ

x = r cosφ

We can easily calculate:

dx = dr(cos θ sinφ)− dθ (r sin θ sinφ) + dφ(cos θ cosφ)

dy = dr(sin θ sinφ) + dθ (r cos θ sinφ) + dφ(sin θ cosφ)

dz = dr cosφ− r sinφ dφ (1)

Substituting into Eq. (4), we find:

d~s = êrdr + êθr sin θdθ + êφrdφ

Problem in HW # relates to the details of calculating the unit vectors êθ
etc.

Picture this:

Hence the volume element is

dV = dx dy dz = r2 sin θ dr dθ dφ,

and the square of the arc length

ds2 = dr2 + r2 sin2 θ + r2dφ2.

Hence we can summarize the spherical co-ordinate system by giving the
scale factors

hr = 1

hθ = r sin θ

hφ = r
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What can we do with this machinery?

Recall the definition of a gradient:

~∇f =
∑

êj
∂f

∂sj

where sj is the arc length in the jth direction.

~∇f = ê1
1

h1

∂f

∂x1
+ ê2

1

h2

∂f

∂x2
+ ê3

1

h3

∂f

∂x3
.

In cylindrical coordinates

~∇f =?

In spherical co-ordinates:

~∇f =?
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