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I. INTRODUCTION

In elementary classes you met the concept of a scalar, which is described as something with a
magnitude but no direction, and a vector which is intuitively described has having both direction and
magnitude. In this part of the course we will:

1. Give a precise meaning to the intuitive notion that a vector “has both direction and magnitude.”

2. Realize that there are more general quantities, also important in physics, called tensors, of which
scalars and vectors form two classes.

Most of the handout will involve somewhat formal manipulations. In Sec. VI we will discuss the main
utility of tensor analysis in physics. The student should make sure that he/she understands this section.
Tensors are particularly important in special and general relativity.

For most of this handout will will discuss Cartesian tensors which in which we consider how things
transform under ordinary rotations. However, in Sec. VII we will discuss tensors which involve the
Lorentz transformation in special relativity. In this handout we will not discuss more general tensors
which are needed for general relativity.

This set of extra notes is from an earlier course given by Professor Young. It might be useful to supplement the discussion in the book. 

Skip Section VII and Appendix C for our course.
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II. WHAT IS A VECTOR?

Earlier in the course we discussed the effects of rotations on the coordinates of a point, and we review
this work here.

After a rotation, the coordinates1, x1, x2, x3, of a point x⃗ become x′1, x
′

2, x
′

3, where
⎛

⎝

x′1
x′2
x′3

⎞

⎠ = U

⎛

⎝

x1
x2
x3

⎞

⎠ , (1)

and U is a 3× 3 rotation matrix. In terms of components this can be written

x′i =
3

∑

j=1

Uijxj . (2)

Note that the repeated index j is summed over. This happens so often that we will, from now on, follow
the Einstein convention of not writing explicitly the summation over a repeated index, so Eq. (2) will
be expressed as

x′i = Uijxj . (3)

Let us emphasize that Eqs. (2) and (3) mean exactly the same thing, but Eq. (3) is more compact and
“elegant”.

In order that the matrix U represents a rotation without any stretching or “shearing” it must be
orthogonal, as proved in Appendix A. Orthogonality means that

UUT = UTU = I , (4)

where UT is the transpose of U and I is the identity matrix.
A 3 × 3 real orthogonal matrix has three independent parameters.2 These are often taken to be

the three Euler angles, defined, for example in Arfken and Weber, p. 188–189. Euler angles are a bit
complicated so, to keep things simple, we will here restrict ourselves to rotations in a plane. Hence
vectors have just 2 components and U is a 2× 2 matrix. Clearly there is just one angle involved,3 the
size of the rotation about an axis perpendicular to the plane, see Fig. 1.

As shown in class and in Boas p. 127, the relation between the primed and the unprimed components
is

(

x′1
x′2

)

=
(

cos θ sin θ
− sin θ cos θ

)(

x1
x2

)

, (5)

i.e.

x′1 = x1 cos θ + x2 sin θ , (6)

x′2 = −x1 sin θ + x2 cos θ (7)

1 We prefer the symbols xi, i = 1, 2, 3 rather than x, y and z, because (i) we can generalize to an arbitrary number of
components, and (ii) we can use the convenient summation symbol to sum over components.

2 To see this note that there are 9 elements altogether, but there are 6 constraints: 3 coming from each column being
normalized, and 3(3 − 1)/2 = 3 more coming from distinct columns having to be orthogonal. Hence the number of
independent parameters is 9− 6 = 3.

3 If you want to see this mathematically using similar reason to that in footnote 2 for 3 components, note that a 2 × 2
real orthogonal matrix has four elements but there are three constraints, since there are two column vectors which must
be normalized and 2(2 − 1)/2 = 1 pairs of distinct column vectors which must be orthogonal. Now 4− 3 = 1, so there
is just one parameter as expected.
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FIG. 1: A rotation in a plane through an angle θ. The components of a point x⃗ can either be expressed relative
to the original or rotated (primed) axes. The connection between the two is given by Eq. (5).

so

U =
(

cos θ sin θ
− sin θ cos θ

)

. (8)

In terms of components we have

U11 = U22 = cos θ, U12 = −U21 = sin θ. (9)

We are now in a position to give a precise definition of a (Cartesian) vector:

A quantity A⃗ is a vector if its components, Ai, transform into each other under rotations
in the same way as the components of position, xi.

In other words, if

x′i = Uijxj , (10)

where U describes a rotation, then the components of A⃗ in the rotated coordinates must be given by

A′

i = UijAj . (11)

This is the precise meaning of the more vague concept of “a quantity with direction and magnitude”.
For two components, the transformation law is

A′

1 = cos θ A1 + sin θ A2

A′

2 = − sin θ A1 + cos θ A2. (12)

Similarly, a scalar is a quantity which is invariant under a rotation of the coordinates.
It is easy to see that familiar quantities such as velocity and momentum are vectors according to this

definition, as we expect. Since time is a scalar4 (it does not change in a rotated coordinate system),

4 Note that time is not a scalar in special relativity where we consider Lorentz transformations as well as rotations. We
will discuss this later. However, for the moment, we are talking about Cartesian tensors, where we are only interested
in the transformation properties under rotations.
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then clearly the components of velocity vi, defined by

vi =
dxi
dt

, (13)

transform under rotations in the same way as the components of position. Velocity is therefore a vector.
Also, the mass, m, of an object is a scalar5 so the momentum components, given by

pi = mvi, (14)

transform in the same way as those of the velocity, (and hence in the same way as those of position),
so momentum is also a vector.

Now we know that
(

x
y

)

(15)

is a vector but what about
(

−y
x

)

, i.e.
A1 = −y
A2 = x

? (16)

Under rotations we have

A1 → A′

1 = −y′

= −(cos θ y − sin θ x)

= cos θ A1 + sin θ A2. (17)

Similarly

A2 → A′

2 = x′

= (cos θ x+ sin θ y)

= cos θ A2 − sin θ A1. (18)

Eqs. (17) and (18) are just the desired transformation properties of a vector, see Eq. (12), hence Eq. (16)
is a vector. Physically, we started with a vector (x, y) and rotated it by 90◦ (which still leaves it a vector)
to get Eq. (16).

However, if we try

(

x2

y2

)

, i.e.
A1 = x2

A2 = y2
, (19)

then

A1 → A′

1 = (x′)2

= cos2 θ x2 + 2 cos θ sin θ x y + sin2 θ y2

̸= cos θ A1 + sin θ A2

(

= cos θ x2 + sin θ y2
)

, (20)

5 This also needs further discussion in special relativity.
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A2 → A′

2 = (y′)2

= sin2 θ x2 − 2 cos θ sin θ x y + cos2 θ y2

̸= − sin θ A1 + cos θ A2

(

= − sin θ x2 + cos θ y2
)

. (21)

Eqs. (20) and (21) do not correspond to the transformation of vector components in Eq. (12). Hence
Eq. (19) is not a vector.

Let us emphasize that a set of quantities with a subscript, e.g. Ai, is not necessarily a vector. One
has to show that the components transform into each other under rotations in the desired manner.

Another quantity that we have just assumed in the past to be a vector is the gradient of a scalar
function. In Appendix C we show that it really is a vector because U is orthogonal, i.e.

(

U−1
)T

= U .
However, in Sec. VII we will discuss other types of transformations, in particular Lorentz transforma-
tions, for which

(

U−1
)T

̸= U . We shall then need to define two types of vectors, one transforming
like the xi and the other transforming like the derivatives ∂φ/∂xi, where φ is a scalar function. The
transformation properties of derivatives under more general transformations are also discussed in Ap-
pendix C.

III. WHAT IS A TENSOR?

We have seen that a scalar is a quantity with no indices that does not change under a rotation,
and that a vector is a set of quantities, labeled by a single index, which transform into each other in
a specified way under a rotation. There are also quantities of importance in physics which have more
than one index and transform into each other in a more complicated way, to be defined below. These
quantities, as well as scalars and vectors, are called tensors. If there are n indices we say that the tensor
is of rank n. A vector is a special case, namely a tensor of rank one, and a scalar is a tensor of rank 0.
Firstly I will give an example of a second rank tensor, and then state the transformation properties of
tensors.

Consider an object of mass m at position x⃗ moving with velocity v⃗. The angular velocity, ω⃗, is
related to these in the usual way:

v⃗ = ω⃗ × x⃗. (22)

The angular momentum6 is given by

L⃗ = mx⃗× v⃗

= mx⃗× (ω⃗ × x⃗)

= m
(

x2ω⃗ − (x⃗ · ω⃗) x⃗
)

, (23)

where x2 ≡ xkxk, and the last line uses the expression for a triple vector product

A⃗×
(

B⃗ × C⃗
)

=
(

A⃗ · C⃗
)

B⃗ −
(

A⃗ · B⃗
)

C⃗. (24)

Eq. (23) can be expressed in components as

Li = m
[

x2ωi − xjωj xi
]

(25)

= Iijωj , (26)

6 Remember the rate of change of angular momentum is equal to the torque. Thus, angular momentum plays, for rotational
motion, the same role that ordinary momentum plays for translational motion.
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where repeated indices are summed over, and Iij , the moment of inertia7, is given by

Iij = m
[

x2δij − xixj
]

. (27)

We shall see that the moment of inertia is an example of a second rank tensor. The elements of the
moment inertia can be written as a 3× 3 matrix:

I = m

⎛

⎝

y2 + z2 −xy −xz
−xy z2 + x2 −yz
−xz −yz x2 + y2

⎞

⎠ . (28)

Typically one is interested in the motion of inertia of a rigid body rather than an single point mass.
To get the moment of inertia of a rigid body one takes Eq. (27), replaces m by the density ρ, and
integrates over the body, so

Iij =
∫

dx1dx2dx3
[

x2δij − xixj
]

ρ(x⃗), (29)

where x2 =
∑

i x
2
i .

Note that Eq. (26) is the analogue, for rotational motion, of the familiar equation for translational
motion, p⃗ = mv⃗, where p⃗ is the momentum, which can be written in component notation as

pi = mvi. (30)

An important difference between translational and rotational motion is that, since m is a scalar, p⃗ and v⃗
are always in the same direction, whereas, since Iij is a second rank tensor, L⃗ and ω⃗ are not necessarily
in the same direction. This is one of the main reasons why rotational motion is more complicated and
harder to understand than translational motion.

We define a second rank tensor, by analogy with a vector as follows:

A second rank tensor is a set of quantities with two indices, Tij , which transform into each
other under a rotation as

T ′

ij = UikUjlTkl, (31)

i.e. if x⃗ and X⃗ are two vectors the components Tij transform in the same way as
the products xiXj .

Note the pattern of indices in this last equation (which will persist for tensors of higher rank so you
should remember it):

• There is an element of the matrix U for each index of the tensor T .

• The first index on each of the U -s is the same as one of the indices of the rotated tensor component
on the left.

• The second index on each of the U -s is the same as an index of the unrotated tensor component
on the right.

7 It should be clear from the context whether Iij refers to the moment of inertia tensor and when to the identity matrix.
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Because a second rank tensor has two indices, we can represent a it as a matrix:

T =

⎛

⎝

T11 T12 T13

T21 T22 T23

T31 T32 T33

⎞

⎠ . (32)

Note also that we can write Eq. (31) as

T ′

ij = UikTklU
T
lj , (33)

or, in matrix notation

T ′ = UTUT . (34)

If T is a symmetric matrix, i.e. Tji = Tij , we know from our work on diagonalization of matrices,
that there is choice of rotation matrix U , which makes T ′ a diagonal matrix8. Hence, the moment of
inertia tensor, which is symmetric see Eq. (28), has a diagonal form (i.e. is only be non-zero if i = j)
in a particular set of axes, called the principal axes. Clearly it is simplest to use the principal axes
as the coordinate system. In many problems there is enough symmetry that the principal axes can be
determined by inspection (e.g. for a symmetric top, one principal axis is the axis of symmetry, and the
others are any two mutually-perpendicular axes which are perpendicular to the symmetry axis.)

We should emphasize that writing transformations in tensor notation is more general than matrix
notation, Eq. (34), because it can be used for tensors of higher rank. The definition of tensors of higher
rank follows in an obvious manner, e.g. a third rank tensor transforms in the same way as xixjxk, i.e.

T ′

ijk = UilUjmUknTlmn. (35)

An n-th rank tensor transforms in the same way as xi1xi2 · · ·xin , i.e.

T ′

i1i2···in = Ui1j1Ui2j2 · · ·UinjnTj1j2···jn . (36)

As noted earlier, for n > 2 tensors cannot be represented as matrices.
For rotations in a plane, a second rank tensor has 4 components, Txx, Txy, Tyx and Tyy. From Eq. (31),

T11 becomes, in the rotated coordinates,

T ′

11 = U11U11T11 + U11U12T12 + U12U11T21 + U12U12T22, (37)

(notice the pattern of the indices). From Eq. (8), this can be written explicitly as

T ′

11 = cos2 θ T11 + sin θ cos θ T12 + sin θ cos θ T21 + sin2 θ T22. (38)

Similarly one finds

T ′

12 = − cos θ sin θ T11 + cos2 θ T12 − sin2 θ T21 + cos θ sin θ T22 (39)

T ′

21 = − cos θ sin θ T11 − sin2 θ T12 + cos2 θ T21 + cos θ sin θ T22 (40)

T ′

22 = sin2 θ T11 − cos θ sin θ T12 − cos θ sin θ T21 + cos2 θ T22. (41)

8 When we diagonalize the matrix A we obtain D = CTAC, where D is a diagonal matrix with the eigenvalues of A
on the diagonal, and C is formed from the eigenvectors of A arranged as columns. Note that CT comes first and
C last in this expression, whereas UT and U are in the opposite order in Eq. (34). This is because C generates
an active transformation, where vectors are rotated in fixed coordinates, while we are here interested in a passive

transformation, where the coordinate system is rotated. Active and passive transformations are inverses of each other
so C = U−1 (= UT here).
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We can now verify that the components of the moment of inertia in Eq. (27) do form a tensor. From
Eq. (27), the moment of inertia can be expressed in matrix notation as (in units where m = 1)

I =
(

y2 −xy
−xy x2

)

, i.e.
I11 = y2, I12 = −xy
I21 = −xy, I22 = x2

. (42)

Hence, in the rotated coordinates,

I ′11 = y′2

= (− sin θ x+ cos θ y)2

= sin2 θ x2 − sin θ cos θ xy − sin θ cos θ xy + cos2 θ y2

= cos2 θ I11 + sin θ cos θ I12 + sin θ cos θ I21 + sin2 θ I22, (43)

which is indeed the correct transformation property given in Eq. (38). Repeating the calculation for
the other three components gives the results in Eqs. (39)–(41). This is a bit laborious. Soon we will see
a quicker way of showing that the moment of inertia is a second rank tensor.

If one repeats the above analysis for
(

y2 xy
xy x2

)

, (44)

where have just changed the sign of the off-diagonal elements, then one finds that the transformation
properties are not given correctly, so this is not a second rank tensor.

We have already met a quantity with two indices, the Kronecker delta function, δij , which is 1 if
i = j and zero otherwise independent of any rotation. Is this a tensor? As we have just seen in the
last example, all quantities with two indices are not necessarily tensors, so we need to show, through its
transformation properties, that δij whether it a second rank tensor. Under a rotation, the Kronecker
delta function becomes

δ′ij = UikUjlδkl

= UikUjk = UikU
T
kj =

(

UUT
)

ij

= δij , (45)

where the last line follows since U is orthogonal, see Eq. (4). This is just what we wanted: the delta
function has the same properties independent of any rotation. Hence δij is an isotropic9 second rank
tensor, i.e. transforming it according to the rules for a second rank tensor it is the same in all rotated

frames of reference. Note that it is not a scalar because a scalar is a single number whereas the delta
function has several elements.

Clearly the sum or difference of two tensors of the same rank is also a tensor, e.g. if A and B are
second rank tensors then

Cij = Aij +Bij (46)

is a second rank tensor. Similarly if one multiplies all elements of a tensor by a scalar it is still a tensor,
e.g.

Cij = λAij (47)

9 Also called an invariant tensor.
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is a second rank tensor. Also, multiplying a tensor of rank n with one of rank m gives a tensor of rank
n+m, e.g. if A and B are third rank tensors then

Cijkmnp = AijkBmnp (48)

is a 6-th rank tensor. To see this note that both sides of Eq. (48) transform like xixjxkxmxnxp.
Frequently one can conveniently show that a quantity is a tensor by writing it in terms of quantities

that we know are tensors. As an example let us consider again the moment of inertia tensor in Eq. (27).
The second term, proportional to xixj , is, by definition a second rank tensor,10 and the first term is
the product of a scalar, mx2 (where x2 is the square of the length of a vector which is invariant under
rotation), and δij , which we have just shown is a second rank tensor. Hence the moment of inertia must

also be a second rank tensor. This is a much simpler derivation than the one above, where we verified
explicitly that the transformation properties are correct.

In general the order of indices i, j in a second rank tensor is significant. However, for certain tensors
there is a close correspondence between Tij and Tji. In particular, a symmetric second rank tensor is
defined to be one that satisfies

Tji = Tij , (49)

and an antisymmetric second rank tensor is defined by

Tji = −Tij . (50)

The symmetry of a tensor has significance because, it is easy to see from the transformation properties
that a symmetric tensor stays symmetric after rotation of the coordinates, and an antisymmetric tensor

stays antisymmetric.
An example of a symmetric second rank tensor is the moment of inertia tensor, see Eqs. (27) and

Eq. (42), discussed earlier in this section. As an example of an antisymmetric second rank tensor
consider two vectors, A⃗ and B⃗, and form the combinations

Tij = AiBj −AjBi, (51)

which are clearly antisymmetric, and also form a second rank tensor because the components transform
like products of components of vectors. In matrix form this is

T =

⎛

⎝

0 T12 T13

−T12 0 T23

−T13 −T23 0

⎞

⎠ . (52)

But, you might say:

“Isn’t this a vector product? This should surely be a vector, but now you tell me that it is
an antisymmetric second rank tensor. What is going on?”

In fact, your observation is correct, and, as we shall see in Sec. V, a vector and an antisymmetric second
rank tensor are (almost) the same thing. If we write the vector product

C⃗ = A⃗× B⃗, (53)

10 See the discussion below Eq. (31).
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then the correspondence is

C1 = T23 = −T32

C2 = T31 = −T13

C3 = T12 = −T21 (54)

See Sec. V for further discussion of vector products.
When discussing the symmetry or antisymmetry of tensors of higher rank it is necessary to specify

which indices are involved. For example, if Tijk = Tjik = −Tikj then T is symmetric with respect to
interchange of the first two indices and antisymmetric with respect to the interchange of the last two
indices. Later, we will discuss a third rank tensor ϵijk which is fully antisymmetric with respect to the
interchange of any pair of indices, i.e. ϵijk = −ϵjik = −ϵikj = −ϵkji.

IV. CONTRACTIONS (OR WHY IS A SCALAR PRODUCT A SCALAR?)

Consider a quantity which transforms like a second rank tensor, Aij say. Then suppose that we set
the indices equal and sum to get Aii. How does Aii transform? (Note that the repeated index, i, is
summed over.) To answer this question note that

A′

ii = UijUikAjk

= UT
jiUikAjk

=
(

UTU
)

jk
Ajk

= δjkAjk (55)

= Ajj , (56)

where Eq. (55) follows because U is orthogonal. Hence Aii is invariant and so it is a scalar. Hence,
setting two indices equal and summing has reduced the the rank of the tensor by two, from two to zero
(remember, a scalar is a tensor of rank 0). Such a process is called a contraction.

Following the same argument one sees the rank of any tensor is reduced by two if one sets two
indices equal and sums, e.g. Aijkil is a third rank tensor (only the unsummed indices, j, k, l, remain).
Consequently, the transformation properties of a tensor are determined only by the unsummed indices.
This also applies to products of tensors which, as we discussed at the end of the last section, also
transform as tensors. Thus, if A,B,C,D and F are tensors (of rank 2, 1, 1, 1 and 4 respectively), then

BiCi (scalar product) (57)

∂Bi/∂xi (divergence) (58)

AijBj

FijklAkl

FijklBjCkDl

transform as tensors of rank, 0 (i.e. a scalar), 0, 1, 2, and 1 respectively. Note that Eq. (57) is just the
scalar product of the vectors B⃗ and C⃗, and Eq. (58) is a divergence. In the past you always assumed that
the scalar product and divergence are scalars but probably did not prove that they are really invariant
on rotating the coordinates.
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V. WHY IS A VECTOR PRODUCT A VECTOR?

In the last section we showed why a scalar product really is a scalar (as its name implies). In this
section we will prove the analogous result for a vector product. We will deal exclusively with three
dimensional vectors, because the vector product is not defined if the vectors are confined to a plane. In
Sec. 3, we showed that a second rank antisymmetric tensor looks like a vector product, see Eq. (54).
However, we always thought that a vector product is a vector, so how can it also be an antisymmetric
second rank tensor? To see that it is indeed (essentially) both of these things, note that the equation
for a vector product, Eq. (53), can be written

Ci = ϵijkAjBk, (59)

where ϵijk, called the Levi-Civita symbol, is given by

ϵ123 = ϵ231 = ϵ312 = 1

ϵ132 = ϵ213 = ϵ321 = −1

all other ϵijk = 0. (60)

Clearly ϵijk is totally antisymmetric with respect to interchange of any pair of indices. It is also invariant
under a “cyclic permutation” of the indices i → j, j → k, k → i.

Because of the effects of contractions of indices, discussed in Sec. IV, Ci will indeed be a vector under
rotations if ϵijk is an isotropic third rank tensor.11 Since the elements of ϵijk have fixed values, this
means that, in a rotated coordinate system,

ϵ′ijk = UilUjmUknϵlmn (61)

must be equal to ϵijk if the elements ϵijk form a third-rank tensor. This result is proved in Appendix D.
To be precise one finds (Eq. (D4))

ϵ′ijk = det(U) ϵijk , (62)

and we know that det(U) = 1 for a rotation. There are also orthogonal transformations with det(U) =
−1 which are discussed below.

Consequently, if one forms the antisymmetric second rank tensor

ϵijkAjBk, (63)

then the three components of it (specified by the index i) transform into each other under rotation like
a vector. Repeated indices do not contribute to the tensor structure as discussed in Sec. (IV). Hence
we have shown that a vector product really is a vector under rotations.

However, a vector product is not quite the same as a vector because it transforms differently un-
der an improper rotation which consists of reflection in a plane followed by a rotation about an axis
perpendicular to the plane. Whereas the matrix describing a rotation has determinant equal to +1,
that describing an improper rotation is has determinant −1 as discussed in Appendix B. Because the
determinant of the transformation has a negative sign for an improper rotation, the result of acting with
an improper rotation on an ordinary vector is different from that on a vector product. To illustrate

11 Note that it is not enough that the notation suggests it is a tensor. We have to prove that it has the correct transformation
properties under rotations.
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this it is useful to consider a special example of an improper rotation namely inversion12, xi → −xi, see
Appendix B, which can be thought of as a reflection about any plane followed by a 180◦ rotation about
an axis perpendicular to that plane. The corresponding transformation matrix is obviously

U =

⎛

⎝

−1 0 0
0 −1 0
0 0 −1

⎞

⎠ , (inversion). (64)

Whereas a vector changes sign under inversion, i.e. Ai → −Ai, the vector product does not because
both Aj and Bk in Eq. (63) change sign. If we wish to make a distinction between the transformation
properties of a true vector and a vector product under an improper rotation, we call a true vector a
polar vector and call a quantity which comes from a vector product a pseudovector .13 As examples, the
angular momentum, L⃗ = x⃗ × p⃗, and the angular velocity ω⃗, related to the polar vectors v⃗ and x⃗ by
v⃗ = ω⃗ × x⃗, are pseudovectors. We say that polar vectors have odd parity and pseudovectors have even

parity.
Similarly, we have to consider behavior of tensors of higher rank under improper rotations. If Ti1i2···in

transforms like xi1xi2 · · ·xin under inversion as well as under rotations, i.e. if

Ti1i2···in → (−1)nTi1i2···in , (65)

under inversion, we say that Ti1i2···in is a tensor of rank n, whereas if Ti1i2···in changes in the opposite
manner, i.e.

Ti1i2···in → −(−1)nTi1i2···in , (66)

then we say that it is a pseudotensor. As an example. the Levi-Civita symbol, ϵijk is a third rank
pseudotensor because, since its elements are constants, it does not change sign under inversion, whereas
it would change sign if it were a true tensor. Clearly the product of two pseudotensors is a tensor and
the product of a pseudotensor and a tensor is a pseudotensor.

Incidentally, relationships involving vector products can be conveniently derived from the following
property of the ϵijk:

ϵijkϵilm = δjlδkm − δjmδkl (67)

(i is summed over). The right hand side is 1 if j = l, k = m (j ̸= k), is −1 if j = m, k = l (j ̸= k), and
is zero otherwords. By considering the various possibilities one can check that the left hand side takes
the same values.

As an application of this consider the triple vector productA⃗× (B⃗ × C⃗). Its i-th component is
[

A⃗× (B⃗ × C⃗)
]

i
= ϵijkAj(B⃗ × C⃗)k = ϵijkϵklmAjBlCm. (68)

The value of ϵijk is invariant under the “cyclic permutation” i → j, j → k, k → i, and so we can write
the last expression as

[

A⃗× (B⃗ × C⃗)
]

i
= ϵkijϵklmAjBlCm, (69)

and use Eq. (67), which gives
[

A⃗× (B⃗ × C⃗)
]

i
= (δilδjm − δimδjl)AjBlCm = Bi(A⃗ · C⃗)− Ci(A⃗ · B⃗) . (70)

12 Often called the parity operation in physics.
13 Also called an axial vector.
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Since this is true for all components i we recover the usual result for a triple vector product

A⃗× (B⃗ × C⃗) = B⃗(A⃗ · C⃗)− C⃗(A⃗ · B⃗) . (71)

Another result involving vector products which is obtained even more easily from Eq. (67) is

(A⃗× B⃗) · (C⃗ × D⃗) = (A⃗ · C⃗)(B⃗ · D⃗)− (A⃗ · D⃗)(B⃗ · C⃗) . (72)

VI. TENSOR STRUCTURE OF EQUATIONS

In this section we discuss briefly one of the main reasons why tensors are important in physics. It is
because tensors, and tensor notation,

enable us to write the equations of physics in a way which shows manifestly
that they are valid in any coordinate system.

This means that both sides of the equations must have the same tensor structure so they transform
in the same way if the coordinate system is rotated.

As an example, if the left hand side is a vector then the right hand side must also be a vector. This
is illustrated by the equation for angular momentum that we discussed earlier,

Li = Iijωj . (73)

Now the angular momentum, L⃗, is a (pseudo) vector, as is the angular velocity, ω⃗. As we showed earlier,
the moment of inertia, I, is a second rank tensor. Hence, because of the contraction on the index j, the
right hand side is a (pseudo) vector, the same as the left hand side. This tells us that Eq. (73) will be
true in all rotated frames of reference, as required.

Another example is provided by elasticity theory. The stress, σij , and strain, eij , are second rank
tensors, and the elastic constant, Cijkl, is a fourth rank tensor. Hence the usual equation of elasticity,
which states that the stress is proportional to the strain,

σij = Cijklekl, (74)

has the same tensor structure on both sides and so will be true in any coordinate system.
To summarize, if we know that the quantities in an equation really are tensors of the form suggested

by their indices, one can tell if an equation has the same transformation properties on both sides, and
hence is a valid equation, just by looking to see if the non-contracted indices are the same. No calculation
is required! This is an important use of tensor analysis in physics.

VII. NON-CARTESIAN TENSORS

It is also frequently necessary to consider the transformation properties of quantities under transfor-
mations other than rotation. Perhaps the most common example in physics, and the only one we shall
discuss here, is the Lorentz transformation in special relativity,

x′ =
x− vt

√

1− (v/c)2

y′ = y

z′ = z

t′ =
t− vx/c2

√

1− (v/c)2
. (75)

Skip section VII
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This describes a transformation between the coordinates in two inertial14 frames of reference, one of
which is moving with velocity v in the x-direction relative to the other. c is, of course, the speed of
light. It is more convenient to use the notation

x0 = ct

x1 = x

x2 = y

x3 = z, (76)

where xµ is called a 4-vector. We will follow standard convention and indicate an index which runs
from 0 to 3 by a Greek letter, e.g. µ, and an index which just runs over the spatial coordinates (1-3) by
a Roman letter, e.g. i. The Lorentz transformation, Eq. (75), can be written

x0
′

= γ
(

x0 − βx1
)

x1
′

= γ
(

x1 − βx0
)

, (77)

neglecting the components which do not change, where

β =
v

c
, and γ =

1
√

1− (v/c)2
. (78)

Note that this can be written as
(

x0
′

x1
′

)

= U
(

x0

x1

)

, (79)

where

U =
(

γ −βγ
−βγ γ

)

=
(

cosh θ − sinh θ
− sinh θ cosh θ

)

(80)

and θ, often called the rapidity, is given by15

tanh θ = β ≡
v

c
, (81)

which implies that γ = cosh θ. Eq. (79) is somewhat reminiscent of the rotation matrix that we discussed
in earlier sections. However, a significant difference is that the matrix is not orthogonal, since, from
Eq. (80),

U−1 =
(

cosh θ sinh θ
sinh θ cosh θ

)

̸= UT . (82)

Physically, the reason that U is not orthogonal is that xµxµ = r2+(ct)2 (where r2 =
∑

3
i=1 x

2
i ) is not

the same in different inertial frames, but rather it is

r2 − (ct)2 (83)

14 An inertial frame is one which has no acceleration.
15 Remember that 1− tanh2 θ = sech2 θ.
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which is invariant. This follows mathematically from Eq. (79), and physically because the speed of light
is the same in all inertial frames which is a basic assumption of special relativity.

To deal with this minus sign we introduce the important concept of the metric tensor, gµν , which is
defined so that

gµνx
µxν (84)

is invariant. For the Lorentz transformation, Eq. (83) gives16

gµν =

⎛

⎜

⎜

⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎠

. (85)

We also distinguish between the four vector xµ, introduced above, which we now call a contravariant

4-vector and the covariant 4-vector, xµ, defined by

xµ = gµνx
ν . (86)

It is important to distinguish between upper and lower case indices. For a Lorentz transformation, xµ

and xµ differ in the sign of the time component,

x0 = −ct (= −x0)

x1 = x (= x1)

x2 = y (= x2)

x3 = z (= x3). (87)

Furthermore, from Eq. (84) and (86) we see that the invariant quantity can be expressed as

xµx
µ, (88)

i.e. like the scalar product of a contravariant and covariant vector. As shown in Appendix A, a covariant
4-vector transforms with a matrix V =

(

U−1
)T

, i.e.

(

x0′

x1′

)

= V
(

x0
x1

)

, (89)

where, from Eq. (82),

V =
(

cosh θ sinh θ
sinh θ cosh θ

)

. (90)

One can define other contravariant 4-vectors, Aµ say, as quantities which transform in the same way
as xµ, and other covariant 4-vectors, Aµ, which transform like xµ. We show in Appendix C that the
gradient of a scalar function with respect to the components of a contravariant vector is a covariant
vector and vice-versa. Hence frequently

∂φ

∂xµ
is written as ∂µφ, (91)

16 g is often defined to be the negative of this. Clearly either sign will work, but the sign in Eq. (85) seems more natural
to me.
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because the latter form directly indicates the tensor structure. Note that the index µ is superscripted
in the expression on the right but subscripted in the expression on the left. Similarly

∂φ

∂xµ
is written as ∂µφ. (92)

One can also define higher order contravariant tensors, which can transform like products of con-
travariant 4-vectors. These have upper case indices like Cµνλ. One can also define covariant tensors
which have lower case indices like Cµνλ. One can also define tensors with mixed covariant-contravariant
transformation properties. These have some upper case and some lower case indices, e.g. Cλ

µν .
Because xµxµ is invariant, contractions are obtained by equating a covariant index and a contravari-

ant index and summing over it. Some examples are

AµB
µ (scalar product, i.e. a scalar)

∂µB
µ ≡

∂Bµ

∂xµ
(divergence, a scalar)

CµνB
ν

Dµν
λσC

λσ, (93)

which give, respectively, a scalar (the scalar product of two vectors), a scalar (the divergence of a vector
function), a covariant 4-vector, and a contravariant second rank tensor.

You might say that we have generated quite a lot of extra formalism, such as the metric tensor and
two types of vectors, just to account for the minus sign in Eq. (83) when we deal with special relativity,
and this is true. Nonetheless, though not essential for special relativity, it is quite convenient to use
tensor formalism for this topic because the method is so elegant. Furthermore, in general relativity
one has a curved space-time, as a result of which the metric tensor does not have the simple form in
Eq. (85), and is a function of position. The situation is more complicated and tensor analysis is essential
for general relativity.
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Appendix A: Orthogonality of the Rotation Matrix

In this section we prove that a rotation matrix is orthogonal. We also use a similar argument to
show how a covariant vector, defined in Sec. VII, transforms.

We start by noting that, under a rotation, the length of a vector is preserved so

xixi = x′jx
′

j , (A1)

(remember i and j are summed over). Since x′j = Ujkxk, we find

xixi = UjkUjlxkxl, (A2)

which implies that

UjkUjl = δkl, (A3)

where δkl, the Kronecker delta function, is 1 if k = l and 0 otherwise. Eq. (A3) can be written

UT
kjUjl = δkl, (A4)

(where T denotes the transpose), which can be expressed in matrix notation as

UTU = I, (A5)

(where I is the identity matrix). Eq. (A5) is the definition of an orthogonal matrix.17

A similar argument shows how a covariant vector transforms. If a contravariant vector, xµ say,
transforms like

xµ′ = Uµνx
ν , (A6)

then a covariant vector, xµ, transforms according to

x′µ = Vµνxν , (A7)

say18. The goal is to determine the matrix V . According to Eq. (88) xµxµ is invariant, and so, from
Eqs. (A6) and (A7),

xνxν = xµ′x′µ

= UµλVµσx
λxσ. (A8)

which implies, as in Eq. (A5),

UTV = I, (A9)

Hence we obtain

V =
(

U−1
)T

. (A10)

Note that for Cartesian tensors, U is a rotation matrix, which is orthogonal, and so V = U . Hence
it is not necessary in this (important) case to distinguish between covariant and contravariant vectors.

17 Note that another, equivalent, definition of an orthogonal matrix is that the columns (and also the rows) form orthonor-
mal vectors. This follows directly from Eq. (A3).

18 The subscripts on U and V in this part are just indices and do not indicate covariant or contravariant character.
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Appendix B: The Determinant of an Orthogonal Matrix

An orthogonal matrix satisfies Eq. (4), i.e. UUT = I where UT is the transpose of U and I is the
identity matrix. Taking the determinant of both sides and noting that the determinant of a product is
the product of determinants we have

det(U) det(UT ) = 1 . (B1)

Furthermore the determinant of the transpose is the same as the determinant of the original matrix so

(detU)2 = 1, which implies detU = ±1 . (B2)

A rotation matrix matrix, such as that in Eq. (5) has determinant equal to +1.
An example of an orthogonal matrix which with determinant equal to −1 is that generated by a

reflection. For example, a reflection about a plane perpendicular to the x-axis is represented by the
matrix

U =

⎛

⎝

−1 0 0
0 1 0
0 0 1

⎞

⎠ (reflection about plane ⊥ to x) . (B3)

More generally an orthogonal matrix with determinant −1 represents a combination of a reflection in
a plane plus a rotation about an axis normal to the plane. This is called an “improper” rotation. A
special case is inversion, xi → −xi, which is represented by the following matrix:

U =

⎛

⎝

−1 0 0
0 −1 0
0 0 −1

⎞

⎠ , (inversion) . (B4)

Inversion can be thought of as a reflection about any axis followed by a rotation through 180◦ about
that axis.

Appendix C: Transformation of Derivatives

In this section we discuss the tensorial properties of derivatives. First we discuss the case of trans-
formation under rotations, i.e. we consider Cartesian tensors.

Consider a scalar function φ. Its partial derivatives transform according to

∂φ

∂x′i
= Vij

∂φ

∂xj
, (C1)

where V is a matrix of coefficients which we want to determine. If V = U , then the gradient is indeed
a vector. To show that this is the case, start by noting that the chain rule for differentiation gives

∂φ

∂x′i
=

∂φ

∂xj

∂xj
∂x′i

. (C2)

Furthermore,

x⃗′ = Ux⃗, (C3)

so

x⃗ = U−1x⃗′, (C4)

Skip this appendix
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and hence

∂xj
∂x′i

=
(

U−1
)

ji
. (C5)

Consequently, Eq. (C2) can be written

∂φ

∂x′i
=

∂φ

∂xj

(

U−1
)

ji
, (C6)

or

∂φ

∂x′i
=

(

U−1
)T

ij

∂φ

∂xj
, (C7)

and comparing with Eq. (C1), we see that

V =
(

U−1
)T

(C8)

= U, (C9)

where the last equality follows because U is an orthogonal matrix and so the inverse is equal to the
transpose. Hence, when we are referring to transformations under ordinary rotations, the gradient of a
scalar field is a vector.

When the transformation is not orthogonal, as for example in the Lorentz transformation in special
relativity or the more general transformations in general relativity, the above derivation goes through
up to Eq. (C8), but we can no longer equate

(

U−1
)T

to U . Equation(C8) shows that, in this more
general case, the transformation of derivatives is given by the matrix

V =
(

U−1
)T

. (C10)

We show in Appendix A that if a contravariant vector, xµ, transforms with a matrix U , then a covariant
vector transforms with a matrix

(

U−1
)T

. Hence Eqs. (C1) and (C10) shows that the gradient of a scalar
function differentiated with respect to the contravariant vector xµ is a covariant vector. The converse
is also easy to prove.

Appendix D: Invariance of Levi-Civita Symbol

In this appendix we sketch a proof that ϵijk is an isotropic third rank tensor, i.e. one which is the
same in all rotated frames of reference. As a third-rank tensor it transforms quite generally under
rotations like Eq. (61). We have to show that this complicated looking expression actually leads to no

change.
Let us consider the case of i = 1, j = 2, k = 3. From Eq. (61) we have

ϵ′123 = U1lU2mU3nϵlmn (D1)

= U11U22U33 (l = 1,m = 2, n = 3)

− U11U23U32 (l = 1,m = 3, n = 2)

− U12U21U33 (l = 2,m = 1, n = 3)

+ U12U23U31 (l = 2,m = 3, n = 1)

+ U13U21U32 (l = 3,m = 1, n = 2)
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− U13U22U31 (l = 3,m = 2, n = 1) (D2)

=

∣

∣

∣

∣

∣

∣

U11 U12 U13

U21 U22 U23

U31 U32 U33

∣

∣

∣

∣

∣

∣

(D3)

= detU (D4)

= 1 (D5)

= ϵ123. (D6)

To verify Eq. (D3) just expand out the determinant and check that is the same as Eq. (D2). Eq. (D5)
follows because det(U) = 1 for U a rotation matrix, see Appendix B.

One can repeat the arguments which led to Eq. (D6) for other values of i, j and k all distinct. In
each case one ends up with ± detU = ±1, with, in all cases, the sign the same as that of ϵijk. If two or
more of the indices i, j and k are equal, then ϵ′ijk is clearly zero. To see this, consider for example

ϵ′11k = U1lU1mUknϵlmn. (D7)

Because ϵlmn is totally antisymmetric, contributions from pairs of terms where l and m are interchanged
cancel, and hence ϵ′

11k = 0. We have therefore proved that, for all elements,

ϵ′ijk = ϵijk. (D8)

(under rotations), i.e. the ϵ tensor remains unchanged under the transformation in Eq. (61) as required.
However, for improper rotations, for which detU = −1 as discussed in Appendix B, Eq. (D4) shows

that ϵijk would change sign if it were a genuine tensor. However its elements actually remain the same.
Hence the Levi-Civita symbol is an isotropic, completely antisymmetric, third rank pseudotensor. We
can include both rotations and improper rotations by writing the transformation relation as

ϵ′ijk = (detU)UilUjlUklϵlmn . (D9)

The transformation in Eq. (D9) leads to Eq. (D8) for both proper and improper rotations, whereas the
transformation in Eq. (61) only leads to Eq. (D8) for proper rotations.
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