Homework #9 March 5, 2016

Problems (HH= Hook & Hall)

#1 HH 5.5

#2 HH 5.6

#3 Derive carefully Eq 5.49

#4 Derive the relation 5.44 and think about its importance

#5 We wrote down the equation for determining the chemical potential for the most general case in class as

$$ne + x_A f(E_A) = nh + x_D + (1-f(E_G-E_D))$$

(This is essentially the same as Eq 5.26 + 5.27 + 5.28 rolled into one)

where ne=Ne/V and nh= Nv/V, x_A = N_A/V, x_D = N_D/V etc are the densities. Also the book shows in Eqs 5.17 and 5.21 the dependence of Ne and Nv on various parameters.

Calculate the chemical potential numerically for T =0 to T= 1000 K assuming the following values of the parameters. v_0 = Unit cell volume = 27 x 10⁻³⁰ /m³

- 1) valence electron and hole mass = 1/10 bare electron mass
- 2) $x_A = .05$ (5 %)/ v_0 i.e. 5 out of 100 cells have an acceptor
- 3) $x_D=.02 (2\%)$
- 4) We may assume the band energies (all given in deg K for convenience) E_A =100, E_G = 350 , E_D = 50