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! Miller indices are used to specify directions and planes. 
!  These directions and planes could be in lattices or in crystals. 
!  (It should be mentioned at the outset that special care should be given to 

see if the indices are in a lattice or a crystal). 
!  The number of indices will match with the dimension of the lattice or the 

crystal: in 1D there will be 1 index and 2D there will be two indices etc. 
!  Some aspects of Miller indices, especially those for planes, are not 

intuitively understood and hence some time has to be spent to familiarize 
oneself with the notation. 

Miller Indices 

Directions Planes 

Miller Indices 

Lattices Crystals 

Note: both directions and planes are imaginary constructs 



Miller indices for DIRECTIONS 

A vector r  passing from the origin to a lattice point can be written
 as:  r = r1 a + r2 b + r3 c 

Where, a, b, c → basic vectors 

•  Basis vectors are unit lattice translation vectors which define the
 coordinate axis (as in the figure below).  

•  Note their length is not 1 unit! (like for the basis vectors of a coordinate axis). 



Miller indices → [53] 

Miller Indices for directions in 2D 



Another 2D example 



The index represents a set of all such parallel vectors (and not just one vector) 
(Note: ‘usually’ (actually always for now!)  

originating at a lattice point and ending at a lattice point) 

Set of directions represented 
by the Miller index  



!  Consider the example below 
!  Subtract the coordinates of the end point from the starting point of the vector denoting the 

direction → If the starting point is A(1,3) and the final point is B(5,-1) → the difference 
would be (4, -4) 

How to find the Miller Indices for an arbitrary direction? → Procedure 

!  Enclose in square brackets, remove comma and 
write negative numbers with a bar →  

!  Factor out the common factor → 

!  If we are worried about the direction and 
magnitude then we write →  

!  If we consider only the direction then we 
write → 

!  Needless to say the first vector is 4 times 
in length 

!  The magnitude of the vector  
is  



Further points 

!  General Miller indices for a direction in 3D is written as [u v w] 

!  The length of the vector represented by the Miller indices is:  



[010] 
[100] 

[001] 

[110] 

[101] 

[011] 

[110] [111] 

Procedure as before: 
•  (Coordinates of the final point - coordinates of the initial point) 
•  Reduce to smallest integer values 

Important directions in 3D represented by Miller Indices (cubic lattice) 

Face diagonal 

Body diagonal 

X 

Y 

Z 
Memorize these 



The concept of a family of directions 

!  A set of directions related by symmetry operations of the lattice or the crystal is 
called a family of directions 

!  A family of directions is represented (Miller Index notation) as: <u v w> 
!  Hence one has to ask two questions before deciding on the list of the members of 

a family: 
1" Is one considering the lattice or the crystal? 
2" What is the crystal system one is talking about  

 (and what are its symmetries; i.e. point group)? 

Miller indices for a direction in a lattice versus a crystal 

!  We have seen in the chapter on geometry of crystals that crystal can have 
symmetry equal to or lower than that of the lattice. 

!  If the symmetry of the crystal is lower than that of the lattice then two members 
belonging to the same family in a lattice need not belong to the same family in a 
crystal → this is because crystals can have lower symmetry than a lattice 
(examples which will taken up soon will explain this point). 



Family of directions Examples 

Let us consider a square lattice: 
"  [10] and [01] belong to the same family → related by a 4-fold rotation 
"  [11] and         belong to the same family → related by a 4-fold rotation 
" [01] and         belong to the same family → related by a 2-fold rotation 

      (or double action of 4-fold) 
Writing down all the members of the family 

Essentially the 1st and 2nd index can 
be interchanged and be made 
negative (due to high symmetry) 

4mm 



Let us consider a Rectangle lattice: 
"  [10] and [01] do NOT belong to the same family  
"  [11] and         belong to the same family → related by a mirror 
"  [01] and         belong to the same family → related by a 2-fold rotation 
" [21] and [12] do NOT belong to the same family  

2mm 

The 1st and 2nd index can NOT be 
interchanged, but can be made 
negative 

Writing down all the members of the family 



Let us consider a square lattice decorated with a rotated square to give a 
SQUARE CRYSTAL (as 4-fold still present): 
"  [10] and [01] belong to the same family → related by a 4-fold 
"  [11] and         belong to the same family → related by a 4-fold 
"  [01] and         belong to the same family → related by a 4-fold  (twice) 
" [12] and         do NOT belong to the same family  

4 

! 

Writing down all the members of the family 



Let us consider a square lattice decorated with a triangle to give a 
RECTANGLE CRYSTAL: 
"  [10] and [01] do NOT belong to the same family  

 → 4-fold rotation destroyed in the crystal 
"  [11] and         belong to the same family → related by mirror 
"  [11] and         do NOT belong to the same family  
" [01] and        do NOT belong to the same family 

m 

Thought

provoking
 example 

m0 Writing down all the members of the family m½ 



Important Note 
Hence, all directions related by symmetry (only) form a family 



Family of directions 

Index Members in family for cubic lattices Number 

<100> 3 x 2 = 6 

<110> 6 x 2 = 
12 

<111> 4 x 2 = 8 

Symbol Alternate 
symbol 

[ ] → Particular direction 

< > [[ ]] → Family of directions 

the ‘negatives’ (opposite direction) 



!   Find intercepts along axes → 2 3 1 
!   Take reciprocal → 1/2 1/3 1* 
!   Convert to smallest integers in the same ratio → 3 2 6 
!   Enclose in parenthesis → (326) 
"  Note: (326) does NOT represent one plane but a set of parallel planes passing 

through lattice points. 
"  Set of planes should not be confused with a family of planes- which we shall consider next. 

Miller Indices for PLANES Miller indices for planes is not as intuitive as 
that for directions and special care must be 
taken in understanding them 

Illustrated here for the cubic lattice 

* As we shall see later- reciprocals are taken to avoid infinities in the ‘defining indices’ of planes 



Thus we see that Miller indices does the following: 
!  Avoids infinities in the indices (intercepts of (1, ∞, ∞) becomes (100) index). 
!  Avoids dimensioned numbers  

" Instead we have multiples of lattice parameters along the a, b, c directions (this 
implies that 1a could be 10.2Å, while 2b could be 8.2Å). 

Funda Check !  Why do need Miller indices (say for planes)? 
!  Can’t we just use intercepts to designate planes? 



The concept of a family of planes 

!  A set of planes related by symmetry operations of the lattice or the crystal is called a 
family of planes (the translation symmetry operator is excluded→ the translational 
symmetry is included in the definition of a plane itself*). 

!  All the points which one should keep in mind while dealing with directions to get the 
members of a family, should also be kept in mind when dealing with planes. 

* As the Miller index for a plane line (100) implies a infinite parallel set of planes. 



Intercepts → 1 ∞ ∞ 
Plane → (100) 
Family → {100} → 6 

Intercepts → 1 1 ∞ 
Plane → (110) 
Family → {110} → 6 

Intercepts → 1 1 1 
Plane → (111) 
Family → {111} → 8 
(Octahedral plane) 

Cubic lattice 

X 

Y 

Z 

The purpose of using 
reciprocal of intercepts and 
not intercepts themselves in 
Miller indices becomes clear 
→ the ∞ are removed 

Do NOT pass plane through origin.
 Shift it by one unit 



!  Unknown/general direction → [uvw] 
 Corresponding family of directions → <uvw> 

!  Unknown/general plane → (hkl) 
 Corresponding family of planes → {hkl} 

!  Double digit indices should be separated by commas → (12,22,3) 
!  In cubic lattices/crystals [hkl] ⊥ (hkl). E.g. [111] ⊥ (111). 

Points about planes and directions 

Interplanar spacing (dhkl) in cubic lattice (& crystals) 

or 

(12 22 3) 



Funda Checks 

!  What does the ‘symbol’ (111) mean/represent? 

The symbol (111) represents Miller indices for an infinite set of parallel planes, with 

intercepts 1, 1 & 1 along the three crystallographic axis (unit lattice parameter along these), 

which pass through lattice points. 

!  (111) is the Miller indices for a plane (?) (to reiterate) 

" It is usually for an infinite set of parallel planes, with a specific ‘d’ spacing. Hence, (100) 

plane is no different from a (–100) plane (i.e. a set consists of planes related by translational 

symmetry). 

However, the outward normals for these two planes are different. 

Sometimes, it is also used for a specific plane. 

!  Are the members of the family of {100} planes: (100), (010), (001), (–100), (0–10), (00–1)? 

" This is a meaningless question without specifying the symmetry of the crystal. The above is 

true if one is referring to a crystal with (say)             symmetry. A ‘family’ is a symmetrically 

related set (except for translational symmetry– which is anyhow part of the symbol (100)). 



Funda Check !  What about the plane passing through the origin? 

Plane passing through origin 

Intercepts → ∞ 0 ∞ 
Plane → (0 ∞ 0) 

We want to avoid infinities in Miller indices 
In such cases the plane is translated by a unit distance along the non zero axis/axes 

and the Miller indices are computed 

Hence use this plane 

Plane passing through origin 

Intercepts → 0 0 ∞ 
Plane → (∞ ∞ 0) 



Funda Check 
!  What about planes passing through fractional lattice spacings? 

(We will deal with such fractional intersections with axes in X-ray diffraction). 

Intercepts → ∞ ½ ∞ 
Plane → (0 2 0) 

Actually (020) is a superset of planes as compared to 
the set of (010) planes 

(020) has half the spacing as (010) planes 

Note: in Simple cubic lattice this 
plane will not pass through lattice 
points!! But then lattice planes have 
to pass through lattice points!  

Why do we consider such planes?  We 
will stumble upon the answer later. 



Funda Check !  Why talk about (020) planes? Isn’t this the same as (010) planes as we 
factor out common factors in Miller indices? 

!  Yes, in Miller indices we usually factor out the common factors. 
!  Suppose we consider a simple cubic crystal, then alternate (020) planes will not have any 

atoms in them! (And this plane will not pass through lattice points as planes are usually 
required to do). 

!  Later, when we talk about x-ray diffraction then second order ‘reflection’ from (010) 
planes are often considered as first order reflection from (020) planes. This is (one of) the 
reason we need to consider (020) {or for that matter (222)≡2(111), (333), (220)} kind of 
planes. 

!  Similarly we will also talk about ½[110] kind of directions. The ½ in front is left out to 
emphasize the length of the vector (given by the direction). I.e. we are not only concerned 
about a direction, but also the length represented by the vector. 



Funda Check !  In the crystal below what does the (10) plane contain? Using an 2D example of a crystal. 

!  The ‘Crystal’ plane (10) can be thought of consisting of ‘Lattice’ plane (10) + ‘Motif’ plane (10). I.e. 
the (10) crystal plane consists of two atomic planes associated with each lattice plane.  

!  This concept can be found not only in the superlattice example give below, but also in other crystals. 
E.g. in the CCP Cu crystal (110) crystal plane consists of two atomic planes of Cu. 

Note the the origin of these
 two planes 

Note the origin of these two
 planes 



Funda Check !  Why do we need 3 indices (say for direction) in 3-dimensions? 

!  A direction in 3D can be specified by three angles- or the three direction cosines. 
!  There is one equation connecting the three direction cosines: 

!  This implies that we required only two independent parameters to describe a direction. 
Then why do we need three Miller indices? 

!  The Miller indices prescribe the direction as a vector having a particular length (i.e. this 
prescription of length requires the additional index) 

!  Similarly three Miller indices are used for a plane (hkl) as this has additional information 
regarding interplanar spacing. E.g.: 



Funda Check 
1)  What happens to dhkl with increasing hkl?  
2)  Can planes have spacing less than inter-atomic spacings? 
3)  What happens to lattice density (no. of lattice points per unit area of plane)? 
4)  What is meant by the phrase: ‘planes are imaginary’? 

1)  As h,k,l increases, ‘d’ decreases ⇒ we could have planes with infinitesimal spacing. 
2)  The above implies that inter-planar spacing could be much less than inter-atomic spacing. 

With increasing indices the
 interplanar spacing decreases 

Note: the grey lines do not mean anything
 (consider this to be a square lattice) 

3)  With increasing indices (h,k,l) the lattice 
density (or even motif density) decreases. 
(in 2D lattice density is measured as no. of lattice points per 
unit length). 
• E.g. the (10) plane has 1 lattice point for 
length ‘a’, while the (11) plane has 1 lattice 
point for length a√2 (i.e. lower density). 

4)  Since we can draw any number of planes 
through the same lattice (as in the figure), 
clearly the concept of a lattice plane (or 
for that matter a crystal plane or a lattice 
direction) is a ‘mental’ construct 
(imaginary).  

2D lattice has been considered for easy visualization. 
Hence, planes look like lines! 



1 more view with more planes and unit cell overlaid In an upcoming slide we will see
 how a (hkl) plane will divide the

 edge, face diagonal and body
 diagonal of the unit cell 

In this 2D version you can already
 note that diagonal is divided into

 (h + k) parts 



!  In the figure below a direction and plane are marked. 
!  In principle       and       are identical vectorally- but they are positioned differently w.r.t to the origin. 
!  Similarly planes      and      are identical except that they are positioned differently w.r.t to the 

coordinate axes. 
!  In crystallography we usually use      and       (those which pass through lattice points) and do not 

allow any parallel translations (which leads to a situation where these do not pass through lattice 
points) . 

!  We have noted earlier that Miller indices (say for planes) contains information about the interplanar 
spacing and hence the convention. 

Funda Check !  Do planes and directions have to pass through lattice points? 



!  Here we illustrate the concept involved using the (11) plane, but can be applied equally well to 
directions as well. 

!  The (11) plane has intercepts along the crystallographic axis at (1,0) and (0,1). 
!  In a given lattice/crystal the ‘a’ and ‘b’ axis need not be of equal length (further they may be inclined 

to each other). This implies that thought the intercepts are one unit along ‘a’ and ‘b’, their physical 
lengths may be very different (as in the figure below). 

Funda Check !  For a plane (11) what are the units of the intercepts? 

(11) 

a 

b 



(111) 

Family of {111} planes within the cubic unit cell 
(Light green triangle and light blue triangle are 
(111) planes within the unit cell). 
The Orange hexagon is parallel to these planes. 

The Orange hexagon Plane cuts the cube into 
two polyhedra of equal volumes 

The (111) plane trisects the body diagonal 

Further points about (111) planes 

Blue and green 
planes are (111) 

Orange 
plane 
NOT 
part of 
(111) set 



The portion of the central (111) plane as intersected 
by the various unit cells 

The central (111) plane (orange colour) is not a ‘space filling’ plane! 
Further points about (111) planes 

Suppose we want to make a calculation of areal density 
(area fraction occupied by atoms) of atoms on the (111) 
plane- e.g. for a BCC crystal. 

Q) Can any of these (111) planes be used for the 
calculation? 

A) If the calculation is being done within the unit cell then 
the central orange plane cannot be used as it (the hexagonal 
portion) is not space filling → as shown in the figure on the 
right. 

Portion of the (111) 
plane not included 
within the unit cell 

Video: (111) plane in BCC crystal 

Solved 
Example 

What is the true areal fraction of 
atoms lying in the (111) plane of 
a BCC crystal? 

Video: (111) plane in BCC crystal 
Low resolution 



Tetrahedron inscribed inside a cube with 
bounding planes belonging to the {111}cubic lattice 

family (subset of the full family) 

8 planes of {111}cubic lattice family 
forming a regular octahedron 

Further points about (111) planes 



Index 
Number of 

members in a 
cubic lattice 

dhkl 

{100} 6 
{110} 12 The (110) plane bisects the 

face diagonal 

{111} 8 The (111) plane trisects the 
body diagonal 

{210} 24 
{211} 24 
{221} 24 
{310} 24 
{311} 24 
{320} 24 
{321} 48 

Members of a family of planes in cubic crystal/lattice 



Summary of notations 

Symbol Alternate 
symbols 

Direction 
[ ] [uvw] → Particular direction 

< > <uvw> [[ ]] → Family of directions 

Plane 
( ) (hkl) → Particular plane 

{ } {hkl} (( )) → Family of planes 

Point 
. . .xyz. [[ ]] → Particular point 

: : :xyz: → Family of point 

A family is also referred to as a symmetrical set 



Entity being divided 
(Dimension containing the entity) 

Direction number of parts 

Cell edge (1D) a [100] h 

b [010] k 

c [001] l 

Diagonal of cell face (2D) (100)  [011] (k + l) 

(010) [101] (l + h) 

(001) [110] (h + k) 

Body diagonal (3D) [111] (h + k + l) 

Points about (hkl) planes 

For a set of translationally equivalent lattice planes will divide: 



The (111) planes: 

Condition (hkl) will pass through 

h even midpoint of a 

(k + l) even 
face centre (001) 

midpoint of face diagonal (001) 

(h + k + l) even 
body centre 

midpoint of body diagonal  

In general 



Hexagonal crystals → Miller-Bravais Indices 

!  Directions and planes in hexagonal lattices and crystals are designated by the  
4-index Miller-Bravais notation. 

!  The Miller-Bravais notation can be a little tricky to learn. 
!  In the four index notation: 

" the first three indices are a symmetrically related set on the basal plane 
" the third index is a redundant one (which can be derived from the first two as 
in the formula below) and is introduced to make sure that members of a family of 
directions or planes have a set of numbers which are identical 
" this is because in 2D two indices suffice to describe a lattice (or crystal) 
" the fourth index represents the ‘c’ axis (⊥ to the basal plane). 

!  Hence the first three indices in a hexagonal lattice can be permuted to get the 
different members of a family; while, the fourth index is kept separate. 

(h k i l) 
i = -(h + k) 



Related to ‘k’ index 

Related to ‘h’ index Related to ‘i’ index 

Related to ‘l’ index 

Miller-Bravais Indices for the Basal Plane 

Intercepts → ∞ ∞ ∞ 1 
Plane → (0 0 0 1) 

Basal Plane 



(h k i l) 
i = -(h + k) 

a1 

a2 

a3 

Intercepts → 1 1 - ½ ∞ 
Plane → (1 12  0) 

The use of the 4 index notation is to bring out the equivalence between 
crystallographically equivalent planes and directions (as will become clear in coming slides) 

Planes which have ∞ intercept along c
-axis (i.e. vertical planes) are called

 Prism planes 



a1 

a2 

a3 

Intercepts → ∞ 1 –1  ∞ 
Miller → (0 1 0)  
Miller-Bravais → (0 11  0) 

Intercepts → 1 –1 ∞ ∞ 
Miller → (1 1  0 ) 
Miller-Bravais → (1 1  0 0 ) 

Examples to show the utility of the 4 index notation Obviously the ‘green’ and 
‘blue’ planes belong to the 
same family and first three 
indices have the same set of 

numbers (as brought out by the 
Miller-Bravais system) 

Planes which have ∞ intercept along c-axis
 (i.e. vertical planes) are called Prism

 planes 



a1 

a2 

a3 

Intercepts → 1 1 – ½ ∞ 
Plane → (1 12  0) 

Intercepts → 1 –2 –2 ∞ 
Plane → (2 11   0 ) 

Examples to show the utility of the 4 index notation 



Intercepts → 1 1 - ½ 1 
Plane → (1 12  1) 

Intercepts → 1 ∞ - 1 1 
Plane → (1 01  1) 

Inclined planes which have finite intercept
 along c-axis are called Pyramidal planes 



Directions 
!  One has to be careful in determining directions in the Miller-Bravais system. 
!  Basis vectors a1, a2 & a3 are symmetrically related by a six fold axis. 
!  The 3rd index is redundant and is included to bring out the equality between equivalent directions (like in 

the case of planes). 
!  In the drawing of the directions we use an additional guide hexagon 3 times the unit basis vectors (ai). 

Guide Hexagon 



•  Trace a path along the basis vectors as required by the direction. In the current example move 
1unit along a1, 1unit along a2 and -2 units along a3. 

•  Directions are projected onto the basis vectors to determine the components and hence the Miller-
Bravais indices can be determined as in the table. 

Directions 

a1 a2 a3 

Projections a/2 a/2 −a 

Normalized wrt LP 1/2 1/2 −1 

Factorization 1 1 −2 

Indices [1 1 2 0] 



We do similar exercises to draw other directions as well 

a1 a2 a3 

Projections 3a/2 0 –3a/2 

Normalized wrt 
LP 3/2 0 – 3/2 

Factorization 1 0 −1 

Indices [1 0 –1 0] 



Some important directions 



Overlaying planes and directions 

!  Note that for planes of the type (000l) or (hki0) are perpendicular to the respective directions [0001] or 
[hki0] → (000l) ⊥ [0001], (hki0) ⊥ [hki0]. 

!  However, in general (hkil) is not perpendicular to [hkil], except if c/a ratio is√(3/2).  
!  The direction perpendicular to a particular plane will depend on the c/a ratio and may have high indices 

or even be irrational. 

Transformation between 3-index [UVW] and 4-index [uvtw] notations 

#  Directions in the hexagonal system can be expressed in many ways 
#  3-indices: 

By the three vector components along a1, a2 and c:  
rUVW = Ua1 + Va2 + Wc 

#  In the three index notation equivalent directions may not seem equivalent; while, 
in the four index notation the equivalence is brought out. 



!  If the Miller plane (hkl) contains (or is parallel to) the direction [uvw] then: 

Weiss Zone Law 

!  This relation is valid for all crystal systems (referring to the standard unit cell). 

Solved 
Example 



!  The direction common to a set of planes is called the zone axis of those planes. 
!  E.g. [001] lies on (110), (1-10), (100), (210) etc. 
!  If (h1 k1 l1) & (h2 k2 l2) are two planes having a common direction [uvw] then according to 

Weiss zone law: 
 u.h1 + v.k1 + w.l1 = 0 & u.h2 + v.k2 + w.l2 = 0  

!  This concept is very useful in Selected Area Diffraction Patterns (SADP) in a TEM. 

Zone Axis 

Note: Planes of a zone lie on a great circle in the stereographic projection 



Directions ⊥ Planes 

!  Cubic system*: (hkl) ⊥ [hkl] 

!  Tetragonal system*: only special planes are ⊥ to the direction with same indices: 
[100] ⊥ (100), [010] ⊥ (010), [001] ⊥ (001), [110] ⊥ (110) 
([101] not ⊥ (101)) 

!  Orthorhombic system*:  
[100] ⊥ (100), [010] ⊥ (010), [001] ⊥ (001) 

!  Hexagonal system*: [0001]  ⊥ (0001)  
► This is for a general c/a ratio 
► For a Hexagonal crystal with the special c/a ratio = √(3/2)  

 → the cubic rule is followed (i.e. all planes are ⊥ to all directions) 
!  Monoclinic system*: [010] ⊥ (010) 

!  Other than these a general [hkl] is NOT ⊥ (hkl) 

* Here we are referring to the conventional unit cell chosen (e.g. a=b=c, α=β=γ=90° for cubic) and not the symmetry of the crystal. 



Which direction is perpendicular to which plane? Funda Check 

!  In the cubic system all directions are perpendicular to the corresponding planes ((hkl) ⊥ [hkl]). 2D 
example of the same is given in the figure on the left (Fig.1). 

!  However, this is not universally true. To visualize this refer to Fig.2 and Fig.3 below. 

(Fig.1) 

(Fig.2) 

Note that plane normal to (11) plane is  
not the same as the [11] direction 

(Fig.3) 



Q & A What are the Miller indices of the green plane in the figure below? 

!  Extend the plane to intersect the x,y,z axes. 
!  The intercepts are: 2,2,2 
!  Reciprocal: ½, ½, ½ 
!  Smallest ratio: 1,1,1 
!  Enclose in brackets to get Miller indices: (111) 

!  Another method.  
!  Move origin (‘O’) to opposite vertex (of the cube). 
!  Chose new axes as: -x, -y, -z. 
!  The new intercepts will be: 1,1,1 



Cubic 
hkl hhl hk0 hh0 hhh h00 
48* 24 24* 12 8 6 

Hexagonal 
hk.l hh.l h0.l hk.0 hh.0 h0.0 00.l 
24* 12* 12* 12* 6 6 2 

Tetragonal 
hkl hhl h0l hk0 hh0 h00 00l 
16* 8 8 8* 4 4 2 

Orthorhombic 
hkl hk0 h0l 0kl h00 0k0 00l 
8 4 4 4 2 2 2 

Monoclinic 
hkl h0l 0k0 
4 2 2 

Triclinic 
hkl 
2 

* Altered in crystals with lower symmetry (of the same crystal class) 

Multiplicity factor Advanced Topic This concept is very useful in X-Ray Diffraction 


