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galaxy with very high extinction in the optical and ultraviolet. If the
companion is representative of young galaxies, massive star for-
mation at very high redshift will be visible primarily at millimetre
wavelengths. O
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QuasicrysTaLs' have a quasiperiodic atomic structure with sym-
metries (such as fivefold) that are forbidden to ordinary crys-
tals>*. Why do atoms form this complex pattern rather than a
regularly repeating crystal? An influential model of quasicrystal
structure has been the Penrose tiling*, in which two types of tile
are laid down according to ‘matching rules’ that force a fivefold-
symmetric quasiperiodic pattern. In physical terms, it has been
suggested' that atoms form two or more clusters analogous to the
tiles, with interactions that mimic the matching rules. Here we
show that this complex picture can be simplified. We present
proof of the claim® that a quasiperiodic tiling can be forced using
only a single type of tile, and furthermore we show that matching
rules can be discarded. Instead, maximizing the density of a
chosen cluster of tiles suffices to produce a quasiperiodic tiling. If
one imagines the tile cluster to represent some energetically
preferred atomic cluster, then minimizing the free energy would
naturally maximize the cluster density®. This provides a simple,
physically motivated explanation of why quasicrystals form.

Concerns about the complex atomic interactions required to
mimic the original Penrose matching rules have been a prime
motivation for alternative models for quasicrystals’. Each alter-
native model treated quasicrystals as some kind of disordered
phase that is thermodynamically metastable or stable only at high
temperatures. In recent years, through, quasicrystals have been
discovered whose diffraction properties, including dynamical
scattering effects, indicate near-perfect quasiperiodic order (as
perfect as the periodic order exhibited by the best metallic
crystals) and whose structure apparently remains thermo-
dynamically stable as temperature decreases®.

We first show that a quasiperiodic tiling can be forced using a
single type of tile combined with a matching rule; see Fig. 1. The
tiling is unconventional (perhaps a better term is a ‘covering’) as
the decagon tiles are permitted to overlap, but only in certain
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FIG. 1 A quasiperiodic tiling can be forced using a single tile, the marked
decagons shown in a. Matching rules demand that two decagons may
overlap only if shaded regions overlap and the overlap area is greater than
or equal to hexagonal overlap region in A. This permits two possible
overlaps between neighbours: either small (A-type) or large (B-type), as
shown in b. If each decagon is inscribed with a fat rhombus, as shown inc,
a tiling of overlapping decagons (d, left) can be transformed into a Penrose
tiling (d, right), where space for the thin rhombi is automatically
incorporated.

discrete ways, A- or B-type. As an analogy to a real atomic
structure, the overlaps should be construed as the sharing of
atoms between neighbouring clusters, rather than interpenetra-
tion of two complete clusters. Realistic atomic models of known
quasicrystals are known to incorporate clusters whose geometry
enables sharing of atoms without distortion of the cluster
shape™!!,

The decagon construction was originally proposed by Gummelt,
who presented an elaborate proof’. We offer a very simple,
alternative proof which makes clear the relation to Penrose tilings.
Our proof is based on inscribing each decagon with a large
Penrose ‘fat’ rhombus tile, as illustrated in Fig. 1c. The original
Penrose tiling is constructed from ‘fat’ and ‘thin’ rhombi with
marked edges such that two edges may join only if the type and
direction of arrows match®2. Gummelt showed that, in a perfect
decagon tiling, there are exactly nine ways a decagon can be
surrounded by neighbours which have A- or B-type overlaps with
it". We have mapped the allowed configurations of overlapping
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FIG. 2 The cluster C consists of 5 fat and 2 thin rhombi with two side
hexagons composed of 2 fat and 1 thin rhombus each. There are two
possible configurations for filling each side hexagon; the two possibilities
are shown with dashed lines on either side in a. Under deflation, each C-
cluster can be replaced by a single ‘deflated’ fat rhombus, as shown in b.
There is a configuration of nine C-clusters shown in ¢ (thin lines) which,
under deflation, forms a scaled-up C configuration (medium lines), called a
DC-cluster. Under double-deflation, each DC-cluster is replaced by a
‘doubly deflated’ fat rhombus (thick lines).

decagons into configurations of inscribed rhombi (H.-C.J. and
P.J.S., manuscript in preparation). For any two overlapping
decagons, the inscribed rhombi share at least one vertex and
sometimes share an edge. Where the rhombi join at a vertex only,
there is an open angle formed by the edges which are the location
and shape where rhombi can be fitted according to the Penrose
matching rules. Seven of the nine decagon configurations corre-
spond to completely surrounding a fat tile by neighbouring tiles. In
the other two cases, one rhombus vertex is incompletely sur-
rounded; but, there are only two allowed ways of adding over-
lapping decagons so that the inscribed rhombi complete the
vertex. Counting all of these, the decagon overlap rules map
into 11 ways of completely surrounding a central fat tile with fat
and thin tiles, precisely the number and types allowed by the
Penrose arrow rules. Restricting the surroundings of every fat tile
to these 11 types is equivalent to enforcing the Penrose arrow rules
for fat and thin tiles; and, thus, the proof is completed. An
important corollary is that the two-tile Penrose tiling can be
reinterpreted in terms of a single, repeating motif, similar to
periodic crystal (H.-C.J. and P.J.S., manuscript in preparation).

Next we show that a Penrose tiling can be constructed without
imposing matching rules. Instead, the tiling can arise simply by
maximizing the density of some chosen tile-cluster, C. The notion
is that C represents some low-energy, microscopic cluster of
atoms, and that minimizing the energy naturally maximizes the
cluster density and forces quasiperiodicity. We first imagine all
possible tilings constructed from fat and thin rhombi with no
matching rules and show that the Penrose tiling uniquely has the
maximum density. (Two tilings are considered equivalent if they
differ by patches whose density has zero measure.)

We use the cluster C shown in Fig. 2. This choice is motivated by
the fact that the C-clusters in a Penrose tiling and the decagons in
a decagon tiling are in one-to-one correspondence. Although they
have different shapes, their important similarity is that two
neighbouring C-clusters can share tiles in two ways isomorphic
to the A- and B-overlaps of decagons. (The hexagon sidewings in
Fig. 2 are introduced to prevent other kinds of overlaps.) Hence,
we know the Penrose tiling has the unique property that every C-
cluster has an A- or B-overlap with its neighbours. However, this
does not prove that it has the maximum p, defined as the number
of C-clusters per unit area in units where the thin rhombus has
area equal to unity.

Our formal proof uses the concept of ‘deflation’. ‘Deflation’
corresponds to replacing each complete C-cluster by a larger,
‘deflated’ fat rhombus (see Fig. 2). The deflated rhombus has ©
times the sidelength and t* times the area of the original, where
7 = (1 + +/5)/2 is the ‘Golden Ratio’. Because Penrose tilings are
self-similar, the density of deflated fat rhombi equals 7™ times
the density of original fat rhombi which equals the density of C-
clusters: p2 =1/(3t+1). The deflation operation can be
repeated: identify all configurations of deflated rhombi which
form a scaled-up version of the C-cluster (we call this configura-
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tion a DC-cluster) and replace each with a yet-larger fat tile (see
Fig. 2). Due to self-similarity, ppe = p%/7° for a Penrose tiling. For
non-Penrose tilings, deflation corresponds to the same replace-
ment wherever nine fat rhombi form a complete C-cluster, but the
deflated tiling is not necessarily similar to the original and may
include voids. Our proof is by contradiction: if a tiling existed with
pc > 1/(37 + 1), then deflating it repeatedly increases the density
without bound—an impossibility.

Because the C-clusters can overlap, a reliable scheme for
assigning, or at least bounding the area occupied by a given C-
cluster, is needed. A useful trick is to decorate each C-cluster as
shown in Fig. 3. The kite-shaped region, which has area 3t + 2, will
be called the ‘core-area’ of the C-cluster. Although C-clusters can
overlap to some degree, the only possibilities for close overlap are
A-overlaps, in which the core-areas meet along an edge; or B-
overlaps, in which there is a specific overlap of core-areas (Fig. 3).
In a Penrose tiling, these core-areas fill the entire plane without
holes. If the core-area of a C-cluster is not overlapped by any
neighbouring core-areas, it can be assigned (at least) the entire
core-area; for these cases, the C-clusters occupy area > 3t + 2, so
they decrease the density relative to the Penrose value
pc =1/(3t+1). Two C-clusters with B-overlaps are assigned
area less than 37+ 1 due to the overlapped core-areas. Hence
we reach an important conclusion: B-overlaps are the only
mechanism for exceeding Penrose density.

To exceed the Penrose density, a tiling must have a greater
density of B-overlaps than Penrose tiling. However, this condition
is not sufficient. In Penrose tiling, every B-overlap of two C-
clusters is surrounded by a DC-cluster (see Figs 2 and 3). In a non-
Penrose tiling, a fraction of B-overlaps may not be part of a DC-
cluster (that is, one or more of the seven other C-clusters that
compose a DC-cluster is not present). In these cases, it is
straightforward to show by explicit constructions that one can
always identify an area attached to the associated B-overlap which
does not belong to the core-area of any C-cluster and is not
associated with any other B-overlap (H.-C.J. and P.J.S., manu-
script in preparation). This ‘extra’, unassigned area occupies at
least as much area as saved by the B-overlap. Hence a B-overlap
which is not part of a DC-cluster does not contribute to increasing
the density of C-clusters above the Penrose value.

Suppose there was a tiling with a density of C-clusters greater
than the Penrose value. Then, we have just shown that it must have
a higher density of DC-clusters than in a Penrose tiling, Ry > 172,
where Ry is the number of DC-clusters divided by the number of
C-clusters. Under deflation and rescaling the area by 1%, each DC-
cluster becomes a C-cluster of the deflated tiling whose density is
T Rpcpe- As Rpe > 172, the deflated tiling has a density of C-
clusters that is strictly greater than the original tiling. Repeating
the deflation ad infinitum would lead to an impossible tiling with
an unbounded density of C-clusters.

A corollary is that if the C-cluster density equals the Penrose
value, then Ry, = 772 (the Penrose tiling value) and the C-cluster
density in the deflated tiling must equal the Penrose value. This is
useful in proving that the Penrose tiling is the unique tiling with
pc = 1/(31 + 1). Suppose there was a non-Penrose tiling with the

FIG. 3 Associated with each C-cluster is a core-area (with area 37 + 2)
consisting of a kite-shaped region, as shaded in a. In a Penrose tiling, core-
areas of neighbouring tiles either join edge-to-edge (A-overlap) or overlap by
a fixed amount (B-overlap), as shown with dark shading in b. ¢ shows a DC-
cluster, illustrating the core-areas of the nine C-clusters which it consists of.
An isolated DC-cluster contains one B-overlap (dark shading) surrounded by
A-overlaps.
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same density. We have argued that the only local configurations
that can increase the density above the Penrose value are DC-
clusters, and that the increase in density is due to the B-overlap of
core-areas, which is the same for each DC-cluster. The corollary is
that the hypothetical tiling has the same density of DC-clusters
and, hence, the same density of B-overlaps surrounded by DC-
clusters as Penrose tiling. But by definition, the non-Penrose tiling
must also have patches with non-zero area measure which violate
the Penrose matching rules, and so cannot belong to the core-area
of any C-cluster. As the DC-cluster density is the same but there
are these patches, it would appear that the average area per C-
cluster must be less than the Penrose density. The only concei-
vable exception would be if there happen to be additional B-
overlaps which do not belong to DC-clusters whose overlap area
exactly compensates the area of the patches. Even this possibility
can be eliminated because the corollary states that Rpe = 772,
which means that the density of C-clusters remains unchanged
under deflation and rescaling. Yet, the patches grow: a patch
excluded from a C-cluster must also be excluded from a DC-
cluster, but, also, some C-clusters that border the patches cannot
be part of a DC-cluster and add to the patch area (H.-C.J. and
P.J.S., manuscript in preparation). As the number of C-clusters
remains fixed but the patches grow, the C-cluster density in the
deflated tiling must be less than the Penrose value. This contra-
dicts the corollary; hence, uniqueness is established.

The two new approaches to Penrose tiling—a single tile type
and maximizing cluster density—can be continued. Together,
they suggest that relatively simple criteria can lead to quasicrystal

formation, shedding new light on an old mystery. They suggest
that quasicrystals can be understood by considering the energetics
of microscopic clusters and that cluster overlap is an important
structural element®. The concept can studied using the atom
clusters of known quasicrystals. Our two-dimensional tiling results
can most readily be applied to decagonal quasicrystals which have
periodically spaced layers with Penrose tiling structure. The
extension to three-dimensional, icosahedral symmetry is a future
challenge. If these principles can be established, they may enable
the reliable prediction of new quasicrystals. O
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SpHERICAL particles of carbon consisting of concentric graphite-
like shells (‘carbon onions’) can be formed by electron irradiation
of graphitic carbon materials'?. Here we report that, when such
particles are heated to ~700 °C and irradiated with electrons,
their cores can be transformed to diamond. Under these condi-
tions the spacing between layers in the carbon onions decreases
from 0.31 in the outer shells (slightly less than the 0.34-nm layer
spacing of graphite) to about 0.22nm in the core, indicating
considerable compression towards the particle centres. We find
that this compression allows diamond to nucleate—in effect the
carbon onions act as nanoscopic pressure cells for diamond
formation.

We found recently that electron-irradiation-induced damage to
carbon onions is annealed in situ at high specimen temperatures’.
This enables us to generate and observe onion-like particles with
essentially undistorted shells. We used a high-voltage trans-
mission electron microscope (Jeol ARM 1250) operating at
1,250kV, capable of heating the specimen up to 800°C. By
using a drift compensating system*, a point resolution of 0.12 nm
was achieved over the whole temperature range. A total pressure
of 2 x 107%Pa and a hydrogen partial pressure of 6 x 107 Pa
prevail in the microscope column. Hence, the influence of any
gaseous and other impurities can be neglected. Samples contain-
ing the well known carbon nanotubes and nanoparticles® were
irradiated and imaged at specimen temperatures between 650 and
750 °C. Onions with perfectly undistorted shells formed at these
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FIG. 1 Distance between the c layers of carbon onions generated at high
temperatures as a function of the radius of the shells. Onion 1 (M) has
graphitic shells down to the centre (generated at 700 °C). Onion 2 (O) hasa
hollow core of 2.5 nm diameter (generated at 400 °C). Onion 3 (A) has a
diamond core of 4.5 nm diameter (generated at 730 °C).

specimen temperatures under irradiation at high beam intensity
(200 Acm™?).

In all particles showing straight lattice fringes, such as the
nanotubes, the distance between the basal lattice planes is, as
expected, close to that of graphite, 0.34 nm. But in the onions, the
distance between the lattice planes decreases from outside to
inside (Fig. 1). The outermost shells already show a reduced
spacing. The lowest value we measured close to the centre was
0.22 nm. After these compressed onion structures are formed, less
than one hour of further irradiation at high or reduced beam
intensity (20 A cm?) results in the formation of crystallites in the
cores of many irradiated onions with more than 15 shells (Fig. 2).
The analysis of the lattice images and diffractograms showed that
the crystal structure fits precisely to that of cubic diamond.
Convergent beam electron diffraction (CBED) with a small
electron probe focused onto the diamond cores showed up to
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