Physics 155- Winter 2016

Introduction to Condensed Matter Physics

Solution of Test-2

100 points, Time 1.20 hours 8 February, 2016

1. (a) Sketch the unit cell of a centered rectangular lattice with $b/a=2$. \ldots [4]

See sketch (1-a).

Is this is a conventional cell or a primitive unit cell? . . . [3]

It is conventional since it has a regular shape and has more than one atom per cell.

(b) Sketch the primitive cell of the rhombic lattice and display its relationship, if any, to above problem (i.e. $Part(a)$). \ldots [8]

See sketch (1-b). Clearly the rhombic cell is a primitive unit cell of the centered rectangular lattice.

(c) Compute the packing fraction of the centered square lattice. . . . [20]

See sketch (1-c). The distance α *between the center of the square and the corner is clearly* $a/\sqrt{2}$ *from the geometry, where a is the lattice constant. The radius of the circle around each lattice point must be* $\alpha/2 \sim 0.353 a$, which is smaller than $a/2$.

The area A' inside the circles in a unit cell is $A' = 2 \times \pi \alpha^2 / 4$ *, where the factor* 2 *accounts for two circles inside the square. Computing further we get* $A' = \pi a^2/4$ *, while the area of the square is* a^2 *. Hence the packing fraction is* $\pi/4 \sim 78.5\%$.

2. (a) Using the attached graph paper, draw the parallel planes corresponding to the Miller indices $\{4,3\}$. The drawing should show that *every* shown lattice point has a plane passing through it. . . . [15] *every* shown lattice point has a plane passing through it.

See sketch (2-a).

*{*Hint: You will need to imagine some lattice points, not shown in the portion of the lattice given, to do this task.*}*

(b) Calculate the separation between the planes in units of the lattice constant using geometry and compare with the standard formula in the book for 2-dimensions namely $d = a/\sqrt{h^2 + k^2}$ [15].

See sketch (2-b)

3. (a) Show that the density of states of electrons (having spin half as usual) with dispersion $\varepsilon_k = \hbar^2 k^2/(2m)$ in two dimensions is given by

$$
g(\varepsilon) = A/\pi \ (m/\hbar^2), \ \ldots [10]
$$

where *A* is the area of the sample.

We see this as follows. Let $A = L^2$ *stand for the area,*

$$
g(\varepsilon)d\varepsilon = 2 \times L^2/(2\pi)^2 dk_x dk_y = (A/\pi)k dk,
$$

where the factor of 2 *is from spin and we converted to radial coordinates* $dk_x dk_y = k dk d\theta$ *and integrated out the angle* θ *giving a factor of* 2π . Now using $\varepsilon_k = \hbar^2 k^2/(2m)$ we get $k dk = m/\hbar^2 d\varepsilon$, and further *simplifying we get the required answer* $g(\varepsilon) = A/\pi$ (m/\hbar^2) *.*

(b) Further show that the Fermi wave vector is given by

$$
k_F = \sqrt{2\pi n}.\ \dots [10]
$$

Here we integrate over k upto k_F *to compute the number of particles*

$$
N = 2 \times A/(4\pi^2) 2\pi k_F^2/2 = Ak_F^2/(2\pi).
$$

Inverting we express k_F *in terms of the areal density* $n = N/A$ *to find* $k_F = \sqrt{2\pi n}$.

(c) A fluid has charged particles with density $n = 6 \times 10^{23}$ (*cm*)⁻³ traveling with a velocity of 10^5 (*cm/s*). What is the cross sectional area of the pipe so that the current carried is 1 Amp? . . . [15]

We write the current J in terms of the current density *j* as $J = j \times A$, *where A is the cross sectional area. Thus the formula* $A = J/(nvq_e)$ *can be used to compute the area, where* $J = 1$ *amp* = 1*Coulomb*/sec*, and* q_e *is the charge of the particle given as* $1.6 \times 10^{-23}C$ *, n is the density and v is the velocity. Plugging in the given values we get*

$$
A \sim 10^{-6} \, \text{cm}^2.
$$

Notes

- The charge of the fluid particles can be taken as $q_e = -1.6 \times 10^{-23}$ $Coulomb.$
- Please use a ruler and pencil for Problem 2 (a) .

Figure 1: The square lattice

 $Sketch (2-a)$

Milley indices (h,h) => intercepts are $(\frac{a}{h}, \frac{b}{h})$ Here $h \circ h \circ h$, $k = 3$... $\left\{\frac{a}{h}, \frac{a}{3}\right\}$ are the co-ords of the intercepts \therefore {3a, 4a} : From any paint I come take 3 steps to right 2, 4 sleps to "up" and matte off the 2 points through Which the Miller plane is drawn β CBlownp of circle (Skelch (2-h) $\mathcal{O}_{\mathcal{B}}$ Distance between planses = "OC" $\frac{\Delta}{4}$ Å = "OA" sino = $\frac{a}{4}$ x $\frac{OB}{AB}$ = $(\frac{a}{4}) \times (\frac{a}{3}) \frac{1}{\sqrt{a_{3}^{2} + a_{16}^{2}}} = \frac{a}{\sqrt{16} + 9}$ $=\frac{Q}{5}$