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1. For the standard nearest neighbor one dimensional lattice (spectrum given
below in Notes), following Debye, we can rewrite the summation over wave
vectors as ∑

k

→
∫ ωD

0
gD(ω) dω.

Show that the Debye density of states gD(ω) is given by

gD(ω) = N/ωD, . . . . . . . . . [5]

and the Debye frequency by

ωD = 2π v/a, . . . . . . . . . [10]

where v is the velocity and a is the lattice constant. Assuming (without
proof) that the exact density of states g(ω) is given by

g(ω) = 2N/π
1√

ω2
max − ω2

,

show that at low ω the Debye result underestimates the density of states by
half , i.e.

lim
ω→0

gD(ω)→
1

2
g(ω). . . . . . . . . . [10]

Explain in brief how the above result and the divergence of g(ω) relative to
gD can be reconciled with the fact that both densities of states integrate to
the same number of degrees of freedom N. . . . . . . . . . [15]

{ Hint: For the last part, a rough sketch of the two functions can be helpful.}

Solution:

Since we are in 1-dimension ωk = vk is assumed for all k. The simplest
version of Debye’s treatment is to write dk = dω/v so that

N = L

∫
dk/(2π) = L/(2πv)

∫ ωD

0

dω = L/(2πv)ωD, (1)

giving us
gD = N/ωD and ωD = 2πv/a, (2)



where we used L = aN .

For the next part we note that g(0) = 2N/(πωmax). We learn from the
given dispersion that ωmax = 2

√
K/m, as well as v = a

√
K/m so that

ωmax = 2v/a. Combining we see that

g(0) = Na/(πv).

Comparing with the expression above, we see that

gD = 1/2g(0).

We note that gD is smaller than the exact value g(ω → 0), and all the
way up to ωmax. At the ωmax the true g(ω) truncates, but the Debye
function does not- and continues to be non zero up to ωD. However
the Debye theory gives the same total area since the magnitude of ωD

exceeds ωmax (by a factor of π), so it has a greater region of frequencies
to play with.

Special Comment If we use the fact that k and −k have the same
energy, then the third and fourth terms of Eq(1) will pick up an extra
factor of 2 and thereby change to

N = L

∫
dk/(2π) = L/(πv)

∫ ωD

0

dω = L/(πv)ωD, (1′)

giving us
g′D = N/ω′D and ω′D = πv/a, (2′)

this is smaller than the unprimed value by a factor of 2. Here again
the ω′D exceeds the ωmax. However now the excess is by a factor of π/2
rather than π. One can then verify that it has the same area, made
possible by a larger range of ω.

2. Using the Debye results of Problem 1, show that the heat capacity of a 1-D
lattice is

C = NkB, when T � TD, . . . . . . . . . [20]

where TD = ~ωD/kB and at low temperature T � TD

C = NkB × J × (T/TD) . . . . . . . . . [20]

where J =
∫∞
0 dxx2 exp (x)/(exp (x) − 1)2. { Hint: In this problem you

will need the formula for heat capacity per mode.}



Solution: This is very simple when we recall that with x = ~ω/kBT ,
the heat capacity per mode is

C(x) = kBx
2 expx/(expx− 1)2,

while the total heat capacity in the Debye model is

C = N/ωD

∫ ∞
0

C(ω) dω.

Changing variables in the integral ω = x (kBT )/~ we get

C/(NkB) = T/TD

∫ TD/T

0

x2 expx/(expx− 1)2 dx,

where TD = ~ωD/kB.

At high T/TD the integral is over a small interval and hence x � 1,
we can then Taylor expand the integrand as x2 expx/(expx − 1)2 =
1− (x2)/12. Plugging in we find

C ∼ NkB × (1− 1/(36)× (TD/T )3).

The correction to the leading term (1) is not required in the problem,
but it was pretty easy to get- right?

At low T/TD, we can extend the upper limit to infinity and hence get
the required result

C = NkB × J × (T/TD).

3. In the 1-d Harmonic lattice problem, assuming that ω reaches its maximum
allowed value, show that the amplitudes un satisfy a simple equation

un = −1

2
(un+1 + un−1). . . . . . . . . . [10]

What is the spatial solution of this equation? . . . . . . . . . [10]

Solution: This is very straightforward- we start with the equation of
motion for the displacements of the atoms

Mün = K(un+1 + un−1 − 2un).

We can now use the harmonic time dependence and deduce ün =
−ω2un. At the peak frequency ω → ωmax = 2

√
K/M . Plugging in

and cancelling K we get the required equation

un = −1

2
(un+1 + un−1).



The spatial solution of this is easy to guess- we write un = u0 × (−1)n

with an arbitrary amplitude u0. We see that un±1 = −un and hence
this guess satisfies the equation. Of course the solution found in the
class reduces to this simple form when we set k at the boundary of the
Brillouin zone.

***************************


