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1. (a) If the atoms given below are arranged in a hypothetical 1-d
lattice, list the ones expected to be metals. ([Ar] stands for Argon)

(i) Sc: [Ar]3d14s2 (ii) V: [Ar]3d34s2 (iii) Cr: [Ar]3d44s2 (iv) Cu: [Ar]3d104s1 . . . . . . [10]

Except for Cr all other atoms have an odd number of electrons in the
d-s combined levels. Hence they are all metals except Cr, in this 1-d
example.

(b) Consider a 2-d square lattice with 2 electrons per atom. Assum-
ing that the periodic potential is negligible, calculate kF . How much
is the area of the Fermi circle relative to the area of the first Brillouin
zone? . . . . . . [15]

Area AF = πk2F follows from equation for the number electrons Ne =
2 × L2 × AF/(4π

2), where the factor of 2 is from spin. However we
have 2 electrons per atom, and the number of atoms NA = L2/a2 for
the square lattice. Hence Ne = 2L2/a2, and so comparing the two
equations for Ne we get

AF = πk2f = 4π2/a2.

This is also the area of the first Brillouin zone where both kx and ky
range between −π/a to π/a.

(c) Give a brief argument explaining if the system in (b) is a metal
or an insulator. . . . . . . [5]

This is a metallic state since the circle cannot be made to coincide with
the square :-)

2. Consider a 1-d tight binding model with nearest neighbor hopping t and
energy dispersion εk = −2t cos(ka), where a is the lattice constant.

(a) Calculate the Fermi energy εF and Fermi velocity vF as a func-
tion of the electron density n = N/L, where N (or L) is the electron
number (or length) of the system. . . . . . . [15] We first calculate
kF = πN/(2L), so that εF = εkF = −2t cos(πNa/2L). The Fermi
velocity vF = ∂εk/(~∂k)/kF = 2at/~ sin(πNa/2L).



(b) Show that the density of states in this model is given by

g(ε) =
2L

aπ

1√
4t2 − ε2

. . . . . . . [25]

As we saw in class, the density of states is expressible from g(ε)dε =
2 × L/(2π)(dk/dε)dε so that g(ε)L/π = |dk/dε| (absolute value since
g is positive). We thus require an expression for dk/dε in terms of ε.
The easiest way to get the required answer is to write the dispersion
relation in an inverted form

k = (1/a)× arccos [εk/(−2t)].

Using the standard identity d/dx arccosx = −1/
√

1− x2, we obtain the
required density of states. Another somewhat longer method is to write
(dk/dε) = 1/(~vF ), and convert the earlier expression for vF to the
energy by using sin(x) =

√
1− cos2(x).

3. (a) Calculate the bandwidth (i.e. difference between the highest
and lowest energies in the band) of the tight binding model in 1-d (from
the energy dispersion given) and for the 2-d square lattice. . . . . . . [5]
From the known dispersions the bandwidth W is given as W = 4t in
1-d, 8t in 2-d for the square lattice.

(b) Consider the tight binding model on the triangular lattice.
Write down the nearest neighbor list. Taking the usual definition, show
that the energy dispersion is

εk = −2t cos(kxa)− 4t cos(kxa/2) cos(
√

3kya/2). . . . . . . [15]

(c) Show that near the bottom of the band ~k = {0, 0}, the effective
mass is given by

m∗ = ~2/(3ta2). . . . . . . [10]

The 6 nearest neighbors ~η are in units of a the lattice constant ±{1, 0},
±{1/2,

√
3/2} and ±{−1/2,

√
3/2}. Hence the dispersion is

εk = −2t{cos(kxa) + cos(kxa/2 +
√

3/2kya) + cos(kxa/2−
√

3/2kya)}.

Now using the trig identity Cos(A+B)+Cos(A−B) = 2Cos(A)Cos(B),
we get the required answer.

Near ~k ∼ 0 we can Taylor expand εk. Collecting the various terms
we find the isotropic result εk = −6t + 3/2a2k2 + O(k4). Ignoring the
constant and equating the rest to ~2k2/(2m∗) we get the required result.


