Physics 155- Winter 2016

Introduction to Condensed Matter Physics

Solution of Test-3: 100 points, Time 1.20 hours 29 February, 2016

- 1. (a) If the atoms given below are arranged in a hypothetical 1-d lattice, list the ones expected to be metals. ([Ar] stands for Argon)
 - (i) Sc: $[Ar]3d^{1}4s^{2}$ (ii) V: $[Ar]3d^{3}4s^{2}$ (iii) Cr: $[Ar]3d^{4}4s^{2}$ (iv) Cu: $[Ar]3d^{10}4s^{1}$ [10] Except for Cr all other atoms have an odd number of electrons in the d-s combined levels. Hence they are all metals except Cr, in this 1-d example.
 - (b) Consider a 2-d square lattice with 2 electrons per atom. Assuming that the periodic potential is negligible, calculate k_F . How much is the area of the Fermi circle relative to the area of the first Brillouin zone?[15]

Area $A_F = \pi k_F^2$ follows from equation for the number electrons $N_e = 2 \times L^2 \times A_F/(4\pi^2)$, where the factor of 2 is from spin. However we have 2 electrons per atom, and the number of atoms $N_A = L^2/a^2$ for the square lattice. Hence $N_e = 2L^2/a^2$, and so comparing the two equations for N_e we get

$$A_F = \pi k_f^2 = 4\pi^2/a^2$$
.

This is also the area of the first Brillouin zone where both k_x and k_y range between $-\pi/a$ to π/a .

(c) Give a brief argument explaining if the system in (b) is a metal or an insulator.[5]

This is a metallic state since the circle cannot be made to coincide with the square :-)

- 2. Consider a 1-d tight binding model with nearest neighbor hopping t and energy dispersion $\varepsilon_k = -2t\cos(ka)$, where a is the lattice constant.
 - (a) Calculate the Fermi energy ε_F and Fermi velocity v_F as a function of the electron density n=N/L, where N (or L) is the electron number (or length) of the system.[15] We first calculate $k_F=\pi N/(2L)$, so that $\varepsilon_F=\varepsilon_{k_F}=-2t\cos(\pi Na/2L)$. The Fermi velocity $v_F=\partial \varepsilon_k/(\hbar \partial k)/_{k_F}=2at/\hbar\sin(\pi Na/2L)$.

(b) Show that the density of states in this model is given by

$$g(\varepsilon) = \frac{2L}{a\pi} \frac{1}{\sqrt{4t^2 - \varepsilon^2}}.$$
[25]

As we saw in class, the density of states is expressible from $g(\varepsilon)d\varepsilon = 2 \times L/(2\pi)(dk/d\varepsilon)d\varepsilon$ so that $g(\varepsilon)L/\pi = |dk/d\varepsilon|$ (absolute value since g is positive). We thus require an expression for $dk/d\varepsilon$ in terms of ε . The easiest way to get the required answer is to write the dispersion relation in an inverted form

$$k = (1/a) \times \arccos\left[\varepsilon_k/(-2t)\right].$$

Using the standard identity $d/dx \arccos x = -1/\sqrt{1-x^2}$, we obtain the required density of states. Another somewhat longer method is to write $(dk/d\varepsilon) = 1/(\hbar v_F)$, and convert the earlier expression for v_F to the energy by using $\sin(x) = \sqrt{1-\cos^2(x)}$.

- 3. (a) Calculate the bandwidth (i.e. difference between the highest and lowest energies in the band) of the tight binding model in 1-d (from the energy dispersion given) and for the 2-d square lattice.[5] From the known dispersions the bandwidth W is given as W = 4t in 1-d, 8t in 2-d for the square lattice.
 - (b) Consider the tight binding model on the triangular lattice. Write down the nearest neighbor list. Taking the usual definition, show that the energy dispersion is

$$\varepsilon_k = -2t\cos(k_x a) - 4t\cos(k_x a/2)\cos(\sqrt{3}k_y a/2). \quad \dots \quad [15]$$

(c) Show that near the bottom of the band $\vec{k} = \{0, 0\}$, the effective mass is given by

$$m^* = \hbar^2/(3ta^2). \dots [10]$$

The 6 nearest neighbors $\vec{\eta}$ are in units of a the lattice constant $\pm \{1, 0\}$, $\pm \{1/2, \sqrt{3}/2\}$ and $\pm \{-1/2, \sqrt{3}/2\}$. Hence the dispersion is

$$\varepsilon_k = -2t\{\cos(k_x a) + \cos(k_x a/2 + \sqrt{3}/2k_y a) + \cos(k_x a/2 - \sqrt{3}/2k_y a)\}.$$

Now using the trig identity Cos(A+B)+Cos(A-B)=2Cos(A)Cos(B), we get the required answer.

Near $\vec{k} \sim 0$ we can Taylor expand ε_k . Collecting the various terms we find the isotropic result $\varepsilon_k = -6t + 3/2a^2k^2 + O(k^4)$. Ignoring the constant and equating the rest to $\hbar^2 k^2/(2m^*)$ we get the required result.