Lecture 16

The variational principle

The variational principle let you get un upper bound for the ground state energy when you can not directly solve the Schrödinger's equation.

How does it work?

- (1) Pick any normalized function ψ .
- (2) The ground state energy E_{gs} is

3) Some choices of the trial function ψ will get your E_{gs} that is close to actual value.

Proof

$$H \psi_n = E_n \psi_n$$
 but you don't know how to get ψ_n

Still, your can expand your function ψ as

$$\Psi = \sum_{n} C_{n} \Psi_{n}$$

$$\langle \psi | \psi \rangle = 1 = \left\langle \sum_{m} C_{m} \psi_{m} | \sum_{n} C_{n} \psi_{n} \right\rangle = \sum_{m} \sum_{n} C_{m}^{\dagger} C_{n} \langle \psi_{m} | \psi_{n} \rangle$$

$$= \sum_{m} \sum_{n} C_{m}^{\dagger} C_{n} \delta_{mn} = \sum_{n} |C_{n}|^{2}$$

$$\langle H \rangle = \left(\underbrace{\sum_{m} C_{m} Y_{m} \mid H}_{\gamma} \underbrace{\sum_{n} C_{n} Y_{n}}_{\gamma} \right) =$$

$$= \sum_{m} \sum_{n} \langle c_{m} \psi_{m} | c_{n} E_{n} \psi_{n} \rangle$$

$$= \sum_{m} \sum_{n} c_{m}^{\dagger} c_{n} E_{n} \langle \psi_{m} | \psi_{n} \rangle$$
since $H\psi_{n} = E_{n}\psi_{n}$

$$= \sum_{m} \sum_{n} C_{m}^{*} C_{n} E_{n} \delta_{mn} = \sum_{n} E_{n} |C_{n}|^{2}$$

But $E_{gs} \leq E_{\pi}$ since the ground state has the

lowest eigenvalue

Therefore,

QED

Example 1

Get an upper bound for the ground state energy of the 1D harmonic oscillator

$$H = -\frac{h^2}{2m}\frac{d^2}{dx^2} + \frac{1}{2}m\omega^2x^2$$

using a trial function

$$\gamma(x) = A e^{-bx^2}$$
 (Gaussian),

where b is a constant and A is determined from normalization condition.

Solution:

First, let's normalize our trial function:

$$\int_{0}^{\infty} x^{2n} e^{-x^{2}/a^{2}} dx = \sqrt{\pi} \frac{(2n)!}{n!} \left(\frac{a}{2}\right)^{2n+1}$$

Class exercise (normalize the trial function):

$$\langle \gamma | \gamma \rangle = 1 = |A|^2 \int_0^\infty e^{-2b \times 2} dx = 2|A|^2 \int_0^\infty e^{-2b \times 2} dx$$

$$[n = 0, a = \sqrt{1/2b}]$$

$$\langle \gamma | \gamma \rangle = 2|A|^2 \int_0^\infty e^{-2b \times 2} dx = (\frac{\pi}{2b})^{1/2} |A|^2 = 1$$

$$A = (\frac{2b}{\pi})^{1/4}$$

Next, we need to calculate

to get upper bound for Egs.

$$\langle H \rangle = \langle T \rangle + \langle V \rangle$$

$$\langle T \rangle = -\frac{\hbar^{2}}{2m} |A|^{2} \int_{-\infty}^{\infty} e^{-bx^{2}} \frac{1}{dx^{2}} (e^{-bx^{2}}) dx$$

$$= -\frac{\hbar^{2}}{2m} |A|^{2} \int_{-\infty}^{\infty} e^{-bx^{2}} (-b) \cdot 2 \frac{1}{dx} (e^{-bx^{2}} x) dx$$

$$= 2b \frac{\hbar^{2}}{2m} (\frac{2b}{\pi})^{1/2} \int_{-\infty}^{\infty} e^{-bx^{2}} \left\{ e^{-bx^{2}} (-2bx^{2}) + e^{-bx^{2}} \right\} dx$$

$$= 2 \cdot 2b \frac{\hbar^{2}}{2m} (\frac{2b}{\pi})^{4/2} \int_{0}^{\infty} (-2bx^{2}) e^{-2bx^{2}} dx$$

$$+ \int_{0}^{\infty} e^{-2bx^{2}} dx \int_{0}^{\infty} = 4b \frac{\hbar^{2}}{2m} \int_{0}^{\infty} \left\{ -2b \frac{1}{4} \frac{1}{2b} \sqrt{\frac{1}{2}b} + \frac{1}{2} \sqrt{\frac{5}{2}b} \right\}$$

$$= 4b \frac{\hbar^{2}}{2m} \left\{ -\frac{1}{4} + \frac{1}{2} \right\} = \frac{\hbar^{2}b}{2m}$$

$$\int_{0}^{\infty} x^{2} e^{-2bx^{2}} dx = \sqrt{\pi} \frac{2}{\pi} (\frac{1}{\sqrt{2}b} \frac{1}{2})^{3} = \frac{1}{4} \frac{1}{2b} \sqrt{\frac{\pi}{2}b} = \frac{1}{4} \frac{1}{2b} \sqrt{\frac{\pi}{2}b}$$

$$\leq x^{2} e^{-x^{2}/a^{2}} dx = \sqrt{\pi} \frac{(2n)!}{n!} (\frac{a}{2})^{2n+1}$$

$$\leq x^{2} e^{-x^{2}/a^{2}} dx = \sqrt{\pi} \frac{(2n)!}{n!} (\frac{a}{2})^{2n+1}$$

$$\langle V \rangle = \frac{1}{2} m \omega^2 |A|^2 \int_{-\infty}^{\infty} e^{-2b \times^2} x^2 dx$$

$$\frac{1}{2} \frac{1}{2b} \sqrt{\frac{\pi}{2b}}$$

$$=\frac{1}{2}m\omega^{2}\sqrt{\frac{2}{1}}\frac{1}{4b}\sqrt{\frac{1}{b}}=\frac{m\omega^{2}}{8b}=>$$

$$\langle H \rangle = \langle T \rangle + \langle V \rangle$$

$$Eq.(1) \quad \langle H \rangle = \frac{h^2b}{2m} + \frac{m\omega^2}{8b} \geqslant Egs \quad \text{for any } b \Rightarrow b \Rightarrow b$$

We can get lowest bound by minimizing this expression:

$$\frac{d}{db}\langle H \rangle = \frac{d}{db} \left\{ \frac{h^2b}{2m} + \frac{m\omega^2}{8b^2} \right\}$$

$$= \frac{h^2}{2m} - \frac{m\omega^2}{8b^2} = 0 \Rightarrow$$

$$\frac{h^2}{2m} = \frac{m\omega^2}{8b^2} \qquad b = \frac{m^2\omega^2}{4h^2} \qquad b = \frac{m\omega}{2h}$$

We now plug $b = \frac{m\omega}{2b}$ into our Eq. (1) to get

$$(H) = \frac{h^2b}{2m} + \frac{m\omega^2}{8b} = \frac{h^2m\omega}{2t \cdot 2m} + \frac{m\omega^2}{8m\omega} = \frac{h\omega}{2}$$

Class exercise:

Find the best upper bound for the ground state energy of the delta-function potential

$$H = -\frac{t^2}{2m} \frac{d^2}{dx^2} - d\delta(x)$$

using gaussian function:

$$\psi(x) = \left(\frac{2b}{\pi}\right)^{1/4} e^{-bx^2}$$

Solution: