Physics 220- Fall 2011

Theory of Many Body Physics

Rules for Ferynman Diagrams for Free energy and Greens functions

0.1 Thermodynamic Potential

We first give the rules for the thermodynamic potential $\Omega = -\frac{1}{\beta} \log Z_{GC}$ for a Fermi gas with Hamiltonian,

$$H = \sum_{r,\sigma} (\varepsilon_{r\sigma} - \mu) C_{r\sigma}^{\dagger} C_{r\sigma} + \frac{1}{2} \lambda \sum_{r,s,r',s',\sigma,\sigma'} \langle rs|V|r's' \rangle C_{r\sigma}^{\dagger} C_{s\sigma'}^{\dagger} C_{s'\sigma'} C_{r'\sigma}$$

where the electron spin is displayed and it is assumed conserved in the interaction term as in the Coulomb interaction. Here r, s are arbitrary labels and $\lambda \to 1$ at the end of the calculation.

The rules are written in terms of the free Greens function

$$G_0(r, i\omega_r) = \frac{1}{i\omega_r + \mu - \varepsilon_r} \rightarrow G_0(r).$$

The thermodynamic potential Ω is expanded in a formal power series in λ

$$\Omega = \sum_{n=1}^{\infty} \lambda^n \Omega^{(n)},$$

and the $\Omega^{(n)}$ is obtained using the Ferynman rules:

- 1. Draw all possible topologically inequivalent linked diagrams to n th order in the potential using lines for the Greens function and wavy lines for the interaction that start at a point and end up at the same point (i.e. are closed).
- 2. Conserve spin, frequency and if relevant momentum, at each vertex. Write labels for each Greens function line and interaction.
- 3. Attach a factor

$$(-1)^{n+1+n_l} \frac{1}{\beta} \frac{1}{n!} \frac{1}{(2\beta)^n} \prod_{i=1}^n \langle r_i s_i | V | r_i' s_i' \rangle,$$

to this term. Here n_l is the number of closed loops that arise in the diagram.

- 4. Multiply this by the product of Greens functions G_0 with the correct labels.
- 5. Finally sum this over all state labels and frequencies. In this term there should be (n+1) independent frequencies as a check.

0.2 Greens function or self energy

In a similar way we can write the diagram rules for the self energy of the electron to nth order. These follow from Ω by taking a functional derivative as needed. Let us focus on the nth order proper self energy $\Sigma^{(n)}(r, i\omega_r)$ so that

$$\Sigma^{(n)}(r, i\omega_r) = \sum_{n=1}^{\infty} \lambda^n \Sigma^{(n)}(r, i\omega_r),$$

and the Dyson equation

$$G((r, i\omega_r) = \frac{1}{i\omega_n + \mu - \varepsilon_r - \Sigma(r, i\omega_r)},$$

or more compactly as:

$$G^{(-1)}(r, i\omega_r) = G_0^{(-1)}(r, i\omega_r) - \Sigma(r, i\omega_r).$$

We can think of r as a composite label with state (usually momentum) and frequency included.

- 1. To *n*th order in λ draw all connected topologically inequivalent self energy diagrams that have an entering and exiting label r.
- 2. Only proper diagrams are allowed such that no intermediate line has the external label r- since the self energy process sums over all such terms to infinite order.
- 3. Conserve energy spin and momentum at each vertex, attach labels to all intermediate lines and vertices.
- 4. Attach a factor

$$(-1)^{(n_l+n)} \frac{1}{(2\beta)^n} \prod_{i=1}^n \langle r_i s_i | V | r_i' s_i' \rangle.$$

5. Multiply this to the product of the G_0 's with correct labels, sum over all intermediate frequencies and momenta (if relevant).