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The integral in Eq. (11) is easily evaluated at O'K
temperature and the result is:

which may be written, with the help of Eq. (6):

o)i t D 'ZFpd'k= ,'p)v' -—I d'kd'k' 3 E co~
N1=——

40 kp' o)0
(12)

AFpAFp' t' 1 1 &
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In the long-wavelength limit, an expansion of the
terms in Eq. (10) in powers of E is allowed. Keeping
only the lowest order terms, Eq. (10) goes over into

where kp is the Fermi momentum. But since coo is given
by the unperturbed plasma frequency co„plus small
correction terms of order E', etc., we see finally that

o) = (o)p+o)i) =o)p +2o)po)i
=(pp' —(3/20)(E'/k) ')(p ' (13)

d'kd'k'LK (k—k'))'(k —k'( '
SE o)p Ij

XK VsFp(k)K Vs Fp(k'). (11) identical with the result of Kanazawa ef al
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Certain general properties of single-particle propagators for a system of interacting fermions are derived.
In addition, the properties of the proper self-energy part Gs(f') which were used in previous work on the
ground-state energy and on the Fermi surface are established. In particular, the fact that to all orders of
perturbation theory in the interaction, Im G&(x s0+) b—ehaves like Cz(x—)i)s (Cs)0) for s very near )i, is
proved.

1. GENERAL DISCUSSION OF THE PROPAGATOR

' 'N some recent work' on the theory of a system of
~ ~ interacting fermions, certain analytical properties
of the so-called "single-particle propagator" were made
use of. No proof of those properties was given at that
time. It is the purpose of this brief note to establish
these properties. For simplicity we shall restrict our-
selves to the case of spinless fermions interacting among
themselves, but not moving in an external potential.
The resulting simplification is mainly notational, and
there is no difhculty in extending our results to the more
complicated cases.
The single-particle propagator as used in LW was

defined as the sum (with appropriate coe%cients) of all
connected diagrams having a single line entering and
leaving. For the purposes of general discussion it is
often convenient to have an explicit closed expression
for it. As is well known in field theory, such an ex-
pression is given as follows. ' Consider the quantity

Ss'(u, u') =—(T(ast(u)as(u'))). (1)
*This work was supported in part by the OfEce of Naval

Research.' J.M. Luttinger and J. G. Ward, Phys. Rev. 118, 1417 (1960).
(We shall refer to this paper as LW.) J.M. Luttinger, Phys. Rev.
119, 1153 (1960).We shall follow the notation of these papers as
far as is practiced.
'The representation we shall use here is essentially the same

as that of A. A. Abrikosov, L. P. Gorkov, and I.E.Dsyaloshinskii,
Soviet Phys. -JETP 36 (9), 636 (1959),except for minor di(ferences
of notation and de6nition.

(A)—=Tr (ee(n—~—&")A), P= 1/kT. (3)

The operation T is the usual Wick chronological
operator meaning

Tt apt(u)as(u'))=ast(u)as(u') u)u'
=—as(u')apt(u), u(u'.

Equation (1) provides an expression for the propa-
gators in the "temperature" variables m,N', which are
constrained to vary between zero and p. From (1)
we see that Ss'(u, u') is a function of u—u'—=v only:

1 e'~ante "~as, P)v) 0
S &(v) Tr ee(Q rr sN),l—— (3)

I —ape'~aste "~, —P(v(0.
Using (5), we see at once that the quantity

S &(v)e—(in /etc)e

is a periodic function of v of period p in the interval

In (1) the quantity a& is the destruction operator for
a particle of momentum k,

as(u') = e"'~ay, e "'~, an't(u) = e'~a), te "~; (2)

II is the total Hamiltonian of the system and the
angular bracket represents the average of the enclosed
quantity with respect to the grand canonical distri-
bution



ALAI. YTIC PROPEkTIRS OP SINCLE —PARTI CI. R PROPAGATORS 943

(—P,P), and therefore may be taken as periodic every-
where, since only this interval comes into our results.
LTo establish this we need only compare Sp'(v) at v and
p—p (0&s&p), making use of the properties of de-
struction operators and the cyclic invariance of the
trace. 7 Therefore we may write

in the zero-temperature limit we may write (12) as

l (lit—In'[a, [xo) [p [(x+In'[a.tyro)pS.'(t.)=Z +f-(~ .-~ —.) t--(~. ; -~ .)
(14)

where END is the exact ground-state energy of the
X-particle system. The expression (14) for Sp'(P) may
be written in another form, which is sometimes useful:

where

27ri Arl+—+tl
The "Fourier coefficient" S&'Q'l) is exactly what we
called the true single-particle propagator in L%'. %e
want to investigate its analytic properties as a function
of the complex variable I, in the limit of zero tempera-
ture. From (6) we have

pPs,'(I.,)= -«"s.'()d . (8)

To obtain a more useful expression for Sp'(gl) we
introduce the exact eigenstates .of H:

+PN» +N»tl'N» ~

Sa'=Sp++Sp, (16)

1
S,'(I.)=[ arO a,t @It;

g—ENP+H
1

+a, —a.t XO l. (15)
f'—&+&Np

Certain analytic properties of the propagator may be
seen at once from (14). Since all the energy differences
in the denominators are real numbers, the expression
for Sl„.'(p) can only become singular if I' is on the real
axis. Therefore Sp(I ) is artalytic eeerylohere irt the corNPlex
I plarte lith the possible exception of the real axis On t. he
real axis, in the limit of an infinitely large system, each
point is usually a limit point of poles, and therefore
the real axis is in general a branch line.
It is sometimes convenient to decompose Sp'(|) into

two parts,

is the exact eigenfunction of an E-particle system;
0, being all the other quantum numbers necessary to
specify the state completely. Then, for e&0, we may
write

l (iv+In'[a, r [llano) [PS.+(I)—=Z
(+N+la' +NP)

(17)

Sl,'(e) =P es&" NN»+&N) (En[ e'Napte —'Nap[ Xn)

where

P (,Q—E~ot+IzN) e& (ENa EN—l,a')g Naa' )
Naa'

(Io)

a„...P—= [P [a,t[X—In')l
=

I (&—In'I ap Ill'n) I' )0 (»)
Inserting (10) in (8) we obtain, after a little rearrange-
ment,

S '(I )—P cp(o—&N»—aN)

l pv—In'la, [xo) ls. (0)=—Z
(~NP @N-la')

(18)

Since the ground-state energy of a system with /+ I
particles exceeds that of a system of 3f particles by the
chemical potential p, EN+&..—END) IJ.. Similarly &No—EN & ~ &p,. Therefore the function 5&+ is analytic
everywhere except on the portion of the real axis
between p and ~, while 51, is analytic everywhere
except on the portion of the real axis from —~ to p.
If we go over to an infinite system so that the energy

levels become continuous, we may write

where

k~N+la'a+,(12)
I l (+Na +N la') t l (+N+-la' +Na) [

t" t "(5)S.+(I)=

t" p~ ($)S-(I)=J „ (20)

(13) whereIIN+..."= l
(lit+in'[a. 1[en) l

)o.
In the limit of zero temperature, I l becomes a con-

tinuous variable (which we shall denote by I' from now
on). Further, for an E-particle system only the ground
state (denoted by n=0) will contribute to the sum in
(12), the others being exponentially smaller. Therefore,

+(g) )o.
Introducing a function

"(~)=o"(~), &&~
=~.-(r), s&~,

(21)

(22)
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~" "(~)S '(i)= '

J
p~(k) &0.

(23)
ph)

Im Si'(x+iy) =—y d$.~-- ( -&)'+y'
Since the integrand in (29) is positive we have

(29)

We call the expression (23) the spectral representation
of the propagator and the quantity p&(() the spectral
density. For noninteracting particles pi,

——b($—@).
Another simple property that follows at once from

(14) is that for li I
very large

s, O-) =-p(l (1v-1. Ia.l1vo) I

+ I (1V+1n'I a.~ I 1VO) I2)

Im Si'(x+iy) )0 if y(0
if y&0.

2. ANALYTIC PROPERTIES OF THE PROPER
SELF-ENERGY PART

In LW we wrote the propagator in the form

s.'0) =
ei —Gi—(l )

(30)

(1VOI ai~ai,—+ai,an't I 1VO)

Equivalent to this is the result

(24) where eI, is the unperturbed single-particle energy and
G&o') was the proper self-energy part. G&Q') had a very
simple expression in terms of diagrams, and some of its
properties played an essential role in the above-men-
tioned work.
Since

t p. (&)«=1,
Gi (f)=t —e—I sa'(g) j ', (32)

(25) it follows that Gi(g) is regular at infinity, since from
(24)

I S.'(t)3 '=i-+"+-b lt-+

R(()=—(er,+a~+bi/i'+ ).

which we obtain from (23).
The sPectral density is related to the discontinuity and therefore

of Si,'(l ) as we cross the real axis. Consider l =x+iit as
q approaches zero.

(33)

(34)

p~($)
lim Sz'(x+irt) = lim d(~0 & '4 „x $+irt—

p~(k)
p (h)b(x k)dk—

Therefore

Further, since the imaginary part of S&'Q') never
vanishes unless we are on the real axis Lsee (29)j, Sq'(g)
can have no complex zeros. Therefore I Si,'(i)j ' can
have no complex poles. From the analyticity of S&'(P)
it then follows that Gi, (g) is analytic everynrhere in the
complex plane with the possible exception of the real axis
From (32) and (27) we also have at once that

Sg'(x io+) S„'(—x+io+—)=2vripa(x) (26)

- "(a
Si,'(x+iy) = d$

~ .x—g+iy
t
"pi($)(x—5) t" pi(k)

iy -d$.
&--(x t)'+y' "-=(x—4)'+y'

(28)

That is, the real part of 5~' is continuous as we cross
the real axis, while the imaginary part undergoes a
jump which is proportional to the spectral density at
that point.
From the reality of everything but |in (14), it

follows that
Ls,'(i-)y=s, 'Q*), (27)

so that the values of the function in (say) the lower
half plane are just the complex conjugates of those at
the mirror image point in the upper half plane.
Lastly we have

LG~(f)]*=Gi 0 *). (35)
We now obtain a spectral representation for Gi(i)

analogous to that of S&'O'). By means of (34) we see
that for large li'I, Gi(f) becomes a constant gi„which
is real from (35). Then the function

Ga(i) =Gi O)—gi (36)
is analytic everywhere in the upper half plane and
vanishes for large (P). If we apply Cauchy's theorem
to a contour consisting of a line just above the real
axis and closed by an infinite semicircle in the upper
half plane, we obtain at once

~"&~(k)—iJ.(t)G.(i.)= . ,
dS, (37)

2n.i &
where we have put

lim |ri,($+irt) =Ei(g)—iJg(P). (38)

If we apply (37) to a point i =$'+irt' immediately
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above the real axis we get Writing (45) in terms of the original proper self-energy
part Gs($), we get

or

1
Xl P,+ ~(~ &')-I«', where

4)
Gs(k) =as+ J „

Gs(x+s0+) =Es(x)—iJs(x).

(46)

(47)

Equation (46) is the spectral representation of Gs(f)
and os($) is its spectral density.

(39) The spectral density os(g) is non-negative. To see
this we specialize (32) for i =x+irf, as rf —+ 0+,

~s(k)X,(P') =—' P dg, (40)

Equating real and imaginary parts on both sides of
(39) we get the "dispersion" relations 1

lim t Gs—(x irf)—G(—x+iri) j0' i
1 1 1= lcm.-"IS, (x+~) S,'(x-,) .

1 " Es(()
A(Y)=- (41)

by (30). Therefore
From (40) we have

I'" &s(k')

We may write

&&J.(~), P,. (42)Y-f) r-&'

(49)

3. BEHAVIOR OF Jy(x) NEAR x=ls

Js(x) &0.
Prom (46) we then have o.j, (g) &0.
Using the same argument that led to (30) from (23)

we can extend (49), and obtain

Im Gs(g)&0, Im i &0,
Im Gs(f) &0, Im i &0.

(50)

1 1 ( 1 1
P =—lim ] -+ (. (43)

2 -" (P—~'—'

Therefore

t "Es(g') 1
dk J 4)J P'—f 2xJ„

d$' ( 1 1
Xlim ] +"--e-f «-e+'~ r e s~&--

Js(k)
d$ Js(x) =Cs(x—p)', CJ,&0. (51)(44)

The analytic properties of Gs(g) which we have dis-
cussed till now are in essence rather trivial, being direct
consequences of the expression for the propagator
at zero temperature as an average over the exact
ground state of certain operator Lsee (15)j.No use was
made of perturbation theory, and all the results given
in the previous section are independent of the nature
of the interaction between the particles, it being
assumed only that there is a lowest state.
%e now consider another property, of which extensive

use was made in LW. This is that as x approaches p, ,

on closing below. ' Therefore (37) becomes

1 r" Js(g)
G.(S)=- (45)

'The relationship (44) may also be obtained by integrating
frs(i')

~ (I f') on I', —along a contour consisting of a line just
below the real axis and closed by an in6nite semicircle in the
lower half plane. For P in the upper half plane this gives zero, and
leads at once to (44).

We have not succeeded in ending necessary and suf-
ficient conditions on the interaction between the pa, r-
ticles for which (51) is valid. It certainly cannot be
valid in general because one of its consequences' is the
existence of a sharp Fermi surface, which is certainly not
present for some systems of fermions with attractive
forces between the particles. 4

4 Examples are a crystal of molecular deuterium (the deuterium
atoms being fermions) and the Bardeen, Schrieffer, Cooper
ground state in the theory of superconductivity.
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we get I'or Jk'(x)

Jk"(x)" & I (&&sl&l&t&k) I'8(x—(e»+e»—e»))

FIG. 1. A simple second order
k&~~ i'k3 diagram contributing to theproper

self-energy part.

X{8(ekt)8 (eks)8+(eks)+8+(ekt)8+(ekk)8-(eks)). (57)

Now consider the part of JI, which arises from the 6rst
term in the curly bracket of (57). Because of the 8's we
have the inequality

ski+ ekk ekk +P)
We shall now demonstrate (51) under the assumption

that one can use perturbation theory on the strength
of the interaction. According to LW(40), GkO) is given
by

Gk(f) =I all possible skeleton diagrams with the
unperturbed propagator SI, replaced by
the true propagator Sk'j. (52)

The skeleton diagrams are all proper self-energy
diagrams without self-energy parts inserted into any
of the particle„"lines. Examples are found in Fig. 2(b)
and Fig. 2(c) of LW, the last two diagrams of Fig. 2(c)
not being allowed skeleton diagrams for Gk(f).
To see what is involved in the proof let us erst

consider the simplest diagrams. The first order diagrams
of Fig. 2(b) in LW give rise simply to real numbers
independent of f and therefore do not contribute to
Jk(x). The lowest order diagram which contributes is
second order, the simplest one being illustrated in Fig.
1. Its contribution Gk g) is proportional to

the equality sign only holding at the limits of the
aOowed values of ~a~, e2, ~e3. Therefore, because of the
8 function this term gives nothing if x is greater than p.
For x(p but very close to it, this contribution to
J„'(x) must be very small since ek&, ek&, eks can only
vary very slightly without making the argument of the
b-function negative. If we introduce as integration
variables

I,' ' ' d4d4dfs 8(4+4+4—u),"o'o o
(60)

where I =—(p-x). (61)

Changing the integration variables by a factor I

ekt =fr—4, eks =II, fs, eks———p+ fs.
We may write the corresponding contribution to Jk (x)
for p—x very small and positive as proportional to

y
2

Z l(&&slsl &t&k)l'
42rriJ kiksks

(60) becomes
(62)

~(f't+0s 0s 0)——
X, &t t tie's Cs (53)

(f - *)(f.—*)(i.- *)
p gtO

according to the general rules of I.W Doing the integral
in (53) we obtain

G"(f) 2 I(&&kl&l&t&s) I'
kyk2kg

~1 . pl plI', drtdrsdrs 8(rt+rs+rs 1) ~ u', —(63)
~o ~o ~o

which is what we wanted to prove. Similarly the second
term in the curly brackets of (57) vanishes for x(p,
and goes as (Ia—x)' for x greater than p but very close
to it. Therefore

Jk& &~ (x—P)'

where
8+(x)=1,

=0
8-(*)=1,

=0

x&p
SCPp
x&p
x&p,.

(55) 5This result is not valid for one-dimensional systems. The
reason is that in this case the momentum conservation implied
by the matrix element (khan(s(k&4) is sufficient to determine the
energy &kg in terms of ~kg and ekg, so that they no longer are
independent variables. Having one less independent variable gives

(56) rise to one less factor of (p—x), and we find Jk~ ~y—x( instead
of (64).

Therefore writing

lim Gk'(X irf)=Ek (X)+iJ—k'(X),
g-+0+

for x very near p.'
8 (ekt)8 (eks)8 (eks)+8 (ekl)8 (eks)8 (eks) To complete the proof of (51) one has to do two

things: generalize the treatment to include the true
propagator rather than the unperturbed propagator
used in (53) and generalize the treatment of (53) to
arbitrary skeleton diagrams. The former is very simple.
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Instead of (53) we get

1 )2 P [(PP3[,)»)!2)[2(22r3) k, ks, k3

+a+(~k, ) 8'(~k, ) 8 (&k.)
+k&+&kz-~k3- ~

X ' rft luff 2rfgs ~(fl+t 2 i 3 i)JJJ
p,—$00

XSk,'(f,)Sk,'(h)Sk, '(i.). (65)
Inserting the spectral representation (23) into (65) we
obtain

q
2

(22r3 klksk3

(&k, ) (&k~)e+(k3)
t+ &113 3'3., -&ak-

X 4$14$24$3p kl(pl) p 22 ($2)p 23 ((3)

pa+ ko

X ' re lrzfsdt 3 (66)
1 1 2 2 2 3

P—$00

The i integrations in (66) are exactly of the same form
as those in (53), the e's being replaced by the $'s.
Therefore the contribution of (66) to Jk(x) is propor-
tional to

Z )(»&3(.[&1&2) j2

r1$1rf)2rf$8pkl ($1)pk2($2) pk3(b)J

x(e-(p,)~-(g,)e (~,)+e+((,)8+(b)e-((,))
X&(*—($1+$2—53)). (67)

Now the identical reasoning that led to (64) when
apphed to the g variables instead of the 3's tells us once
again that the only contribution to (67) comes from
near p. From (26) and (31) we have

For ( very near p, assuming for the moment that Jk($)
does obey (51),

(69)

For $ very near p this has solutions in E3, for k very
near the Fermi surface. ' After doing the k integrations
we are therefore left with an integration $;, which is of
the same form as our previous integrations on the e's.
Therefore the same reasoning that led to (64) shows

FIG. 2. Ordered diagrams corresponding to the diagram of Fig. 1.
The expressions to the right of a diagram are proportional to the
contribution of this ordering to the proper self-energy part.

that once again we obtain a contribution to Jk(x) pro-
portional to (x—p)2. Equation (52) is actually an
implicit equation for Gk(i'); what we have shown (at
least for the simplest skeleton diagram) is that if we
assume the property (51) we again obtain it, so that
we have found a consistent solution. It is clear that this
technique is general. That is, if we can show that for
all skeleton diagrams with unperturbed propagators
(51) is valid, then it is valid when the true propagators
are used.
We next have to investigate the t dependence of the

all skeleton diagram when the unperturbed propagators
are used. This is actually well known and just corre-
sponds to using the Goldstone type of time-dependent
perturbation theorys for Gk(i), dropping all diagrams
with self-energy parts. It is also very easy to obtain
from our propagator formalism: essentially all one has
to do is to write the 8 functions which represent
"t conservation" in terms of the usual Fourier integral
representation. In (53), for example, putting f;=12+3y,,
the 8 function is equivalent to b(yl+y2 y3 y), whic—h-
may be written

j r

$(yl+y2 —ys—y) =— pf s'&»+32» &&&. po)
2w ~

The t's which one introduces in this fashion are just
the time variables of Goldstone perturbation theory.
The result may be stated very simply. Draw a proper
self-energy diagram with all possible vertical orderings
of the interactions (23! such orderings for a diagram of
23th order), the incoming and outgoing k lines being
drawn from below. Each ordering contributes a term

3 J. Goldstone, Proc. Roy. Soc. (London) A293, 26'I (&957).
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kg

e-(~)e-(2}e (3) e (4)8+(a)
~&+~K;~k,-~k, )(&+ek;S'K.-~K, )

8+(1)8+(2)8 (3)e+(4)8 (a)
(&K,+&K~ &ks-f)(-&K~+&K4 &K-I ~)

ki( ilk

8 (&)8 (2)8+(3jg+(4)8+(5)
(~++KI, ek| ~KK }(+K3++Kg ~k) ~kg)

8 (t)8 {2)8 {3)+(4)
(~K.+~K.-~K,-~K,)(~k,+~k;~k;&)

k(i 1(k

kii )tk

l2
8 (t)8+(2)8 (3)8 (4)8"(5j

(sk)+eke 'sky ~)(sk|+~kg ~ky ~K4).

8+(t)8+(2)8 (3)e-r4ie+(5)
(&+&k&-&K&-&k&)(&k&+&KI-&k& &K4)

I zG. 3. A more complicated proper self-energy diagram, and all its possible orderings. The expressions to the right of an ordered diagram
is proportional to the contribution of this ordering to the proper self-energy part.

to Gq which is proportional to (a) a factor of 8+(@)
for each ascending line k', and a factor 8 (eq ) for each
descending line k"(b) a denominator which consists of a
product of factors which represent the "energy" of the
situation between all successive interactions. This
"energy" is computed as follows: for each ascending
line k', we have an energy +ez, for each descending
line k" and energy —ez, for an ascending k (the ex-
ternal momentum) an "energy" +f, for a descending
k and "energy" —l'. These results are illustrated in
Fig. 2 for the simple diagram of Fig. j.. In Fig. 3 they
are'given for a slightly more complicated diagram.
The fact that we are not including self-energy

diagrams attached to any internal line means that the
s@me states are not repeated after some interactions, and

therefore that we have no repeated denominators. The
general form of a typical contribution is therefore
(apart from numerical factors, matrix elements and
sums on momenta)

In (71), ~; is the difference in energy between a
collection of descending lines and a collection of ascend-
ing lines, and 0; insures that the ascending lines have
energies greater than p, while the descending lines have
energies less than p. That is, if

s;= (ski+ ek2+ +6k~)—(sky'+ ek2'+ +ek~'), (72)
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then

0. ;=8-(~a&) 8-(e~~)8+(esi ) 8+(~a~ ). (73)

the contribution to J„(x)has a factor

By means of the "reality" condition (35) we see at
once that the coefficient of (71) must be real. Now we
want the imaginary part of this for i =x i—0+ Si.nce

f
h(tg+ +t +i+ti'+ +t ' I—)

&&Cki dt~+idi, ' dt„', (I=p—x). (81)

=I' +in 8(x—e;),
x—e.—z0+ x—e. (74)

e;(~ mp,—mp, =p. (75)

We get no contribution from such a term unless x(p.
For x very close to, but less than, p, we again get a
contribution only when each of the e's is very near p, .
Introducing

(80)

the imaginary part of (71) must contain af least one
factor of 8(x—e,). The number of lines in an ordered
skeleton diagram (including the entering and leaving
external line k) which are ascending is equal at any
point to the number of lines which are descending. This
is because an interaction either doesn't change the
direction of two lines entering it or if one line enters at
one end then a line leaves at that end and ascending
and descending lines are created at the other end. A
diagram begins, of course, with equal number going up
and down (the external k lines). Since each situation
which corresponds to a denominator of the form f &, —
has only one external k line present, the number of
ascending and descending internal lines must diGer by
+1. )In (72), e—m= &1.j Take the case n m=—+1.
Then by (73)

Changing variables to t;=ur;, t,'=ur, we see at
once that (81) is proportional to N2™.Exactly the same
argument also gives u' when the number of ascending
lines is m+1 and of descending lines m. Now m is at
least unity, since m equal zero would correspond to
having a diagram which just has a single internal line
present at one point. Such a diagram is just what we
exclude by considering the proper self-energy part G&(i)
rather than the total self-energy diagram. Therefore
every single skeleton diagram contributes to J&(x) an
amount which, for x very near p, behaves like

(y—x)'" m) 1.
Therefore we have shown (51) Lthe non-negativity

of Ci follows from (49)j to arbitrary order in perturba-
tion theory.
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