
Physics 220- Fall 2011

Theory of Many Body Physics

Solution of Examination 3
100 points, Time 1.5 hours 21 November, 2011

1. (A) Starting with the (Matsubara type) Heisenberg equation of motion
in the imaginary time formalism for an arbitrary operator Q:

d

dτ
Q(τ) = [H,Q(τ)],

calculate the time dependent Greens function

D(k, τ) =
1

Z
Tr [e−βH Tτφ(k, τ)φ+(k, 0)] ,

in time domain for a variable

φ(k, τ) =
1√
2

(b(k, τ) + b+(−k, τ)),

where b(k) is a Bose destruction operator in a Free Bosonic theory with
H =

∑
k εk b

†(k)b(k). (Here εk is an even function of k.)

[Hint: A judicious choice for Q helps here. Find the time dependence
first and use the statistical mechanical information about averages of
Bosonic operators.] [30]

Solution:

We calculate

D(k, τ) =
1

Z
Tr [e−βH Tτ φ(k, τ)φ+(k, 0)], (0)

=
1

2Z
Tr [e−βH Tτ (b(k, τ)b+(k, 0) + b+(−k, τ)b(−k, 0))], (1)

=
1

2Z
Tr [e−βH Tτ (b(k, τ)b+(k, 0) + b(−k,−τ)b+(−k, 0))], (2)

= −1

2
(GB(k, τ) +GB(−k,−τ)). (3)

In Step (1) we discarded terms such as (b(k, τ)b(−k, 0) since their aver-
ages vanish in the ensemble average. In Step (2) we commuted the two
Bose operators under the time ordering sign and used time translation
invariance to shift the argument of b(−k). The final answer is written
in terms of the Bose Greens function GB(k, τ).
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From the EOM, we can find the time dependence of the bosonic opera-
tors

b(k, τ) = e−εkτb(k, 0),

b+(k, τ) = eεkτb†(k, 0),

and hence

GB(k, τ) = −θ(τ)〈b(k)b†(k)〉 e−εkτ − θ(−τ)〈b†(k)b(k)〉 e−εkτ .

Expressing this in terms of the Bose function nB(k) = 1/(eβεk − 1), we
write

GB(k, τ) = − [θ(τ)(1 + nB(k)) + θ(−τ)nB(k)] e−εkτ .

Similarly

GB(−k,−τ) = − [θ(−τ)(1 + nB(k)) + θ(τ)nB(k)] eεkτ .

(B) Find the Fourier series representation of D. [10]

The Fourier transform can be found as follows:

D(k, iΩn) =

∫ β

−β

dτ

2
eiΩnτD(k, τ),

= −1

2
(GB(k, iΩn) +GB(−k,−iΩn))

Using the periodicity (where 0 ≤ τ ≤ β )

GB(k, τ) = GB(k, τ − β),

we can write as an integral over positive τ only:

GB(k, iΩn) =

∫ β

0

dτ eiΩnτ GB(k, τ),

=
1

iΩn − εk

Using this we write the final answer

D(k, iΩn) =
1

2

[
1

iΩn + εk
− 1

iΩn − εk

]
, (4) (1)

= − εk
ε2
k + Ω2

n

. (5)
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2. Using partial fractions or otherwise, calculate frequency sum over ωp
in the bubble susceptibility

χ0( ~Q, iΩν) = −(kBT )
1

Ns

∑
p

G0(p)G0(p+Q),

where G0(p) is the free Fermionic Greens function and Q = ( ~Q, iΩν) is a
Bosonic Matsubara frequency. (The answer will contain an unevaluated
momentum sum.) [30]

We may write G0(p) = 1/(iωp − ξp) and hence the partial fraction
splitting

G0(p)G0(p+Q) = [G0(p)−G0(p+Q)]
1

iΩQ + ξp − ξp+Q
.

We may insert a convergence factor eiωp0+ in the sum so that we can
exploit the standard result

(kBT )
∑
ωp

eiωp0+G0(p)→ f(p),

where f(p) is the Fermi occupation probability. Hence we get the well
known bubble susceptibility:

χ0( ~Q, iΩν) = − 1

Ns

∑
~p

f(p)− f(p+Q)

iΩQ + ξp − ξp+Q
.

3. A Bosonic Greens function D(k, iΩν) is given as

D(k, iΩν) = − εk
ε2
k + Ω2

ν

.

Infer its spectral weight ρD(k, ν), where the relation between the two
is given as:

D(iΩk, k) =

∫ ∞
−∞

dν
ρD(k, ν)

iΩk − ν
dν.

[30]

[Hint Use standard complex variable theory of analytic continuation in
the appropriate variable. ]

Consulting Eqs (4,5) in Problem 1 (B), we immediately write
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D(k, iΩn) =
1

2

[
1

iΩn + εk
− 1

iΩn − εk

]
,

and hence the analytic continuation reads

D(k, z) =
1

2

[
1

z + εk
− 1

z − εk

]
,

Hence

ρD(k, ν) = − 1

π
=m D(k, ν + i0+) =

1

2
[δ(ν + εk)− δ(ν − εk)] .
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