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However, we are anticipating too far ahead, and it is-important to develop the

plot gradually.
Suffice it to say that there is in general no guarantee that the levels will fan

out in the desired manner, and in many substances they do not do so and there-
fore defy simple-minded descriptions. Hopefully, a detailed analysis based on
physically admissible approximations to the Schrodinger equation will give us
some sharper criteria. It is to this task that we turn our attention in this and

subsequent chapters.

2.2 Hydrogen Molecule

some of the difficulties which are absent

in our.subsequent study of the atom. But these are by now almost classical
subjects on which many books have been written. The actual treatment will
therefore be addressed to the students who are yet unacquainted with, or have
forgotten atomic and molecular physics (“quantum chemistry”, as it is now
known). The more experienced reader can omit all but a few remarks towards the
end of the chapter concerning subjects with which he might be less familiar. The
method with which we break ground was invented by Heitler and London® shortly
after the discoveries of Schrédinger, Heisenberg [2.2] and Dirac[2.1] gave impetus
to the quantitative study of the many-body problem in quantum theory. It is still
the simplest approach to the problems of molecular binding and interatomic
exchange.
Assume nuclei fixed at R, and R,, with interatomic spacing R,, = several
atomic radii. (We set the mass of the proton = oo 0 as to be able to localize it.
Taking the finite mass into account does not change the results much, but
leads to an interesting exchange effect: the existence of two species of H;, ortho-
and parahydrogen. The energy splitting is related to the overlap between protons
rotating about a common axis, the overlap due to vibrational motion being ne-
gligible. So when the molecule is hindered in its rotation, €.g., by a crystal field,
the splitting between ortho- and parahydrogen must disappear.) To a first a
approximation each neutral atom exerts no force on the other, and each electron
“sees” only the central force field of its own proton. According to this hypo-

thesis, we simplify the two-particle Schrddinger equation,

We study molecules first to appreciate

FY, = E¥,
with
_ (i _é .Bi_fi)' (e_z Ei_ﬁ_ﬁz_) '
%d—(zm -":a+2m Fzp T Rab+rl2. Mo Yo @8

2 See [2.7] or any good text on molecuiar physics or chemistry,
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bﬁ cho?lsmg ‘Pl(rl,' r)to be a product function @,(r))e.(r,), where each factor
obeys the one-particle Schrédinger equation, (there should be no confusion be-
tween the ground state eigenvalue ¢, and the charge of the electron)

n_é
(27:1 B E) Pa(r1) = eop,(ry)
and
i é
(Z_m o "_z';) Pa(r2) = eops(rs). 2.9)

p At the total Hamiltonian is invariant under the interchange of the two coor-
1 1tnate§.rl and rz,an equalI.y good choice must be ¥y = ¢,(r)w,(r,). Therefore
;leu;u igonahie the Hamiltonian of (2.8) within the subspace of these two sim,
nctions. Assume the atomic orbitals ¢(r) to be normali .

v - mal
various overlap integrals /, ¥, U as follows: ® fzed; and define

L= [drlpdn)l> = [ &rlofn]* 1= [ Pror)esd)

2 2
V=[d da"z|¥'1§z(£“ i £_a _Ei)
et Tz T T,

— J‘dsrl dsrzl Y:rn’z(i + é _E& _ i)
-Rab
and an “exchange integral®:
U= [ dr, dor, ¥ (e—z- € _<
[&r dnvrvs(g + - —). (210)
Let us take a variational wavefunction

ylm ;ITI "|— CIIWIVI (2 11)

and dete! mine ﬁiCIen ] 1 II y

| d&ri d°r, P Y  BE

[ dr  dr,¥*¥ =0 (2.12)

Evar == —
dey, 1z

;li“ll';e j:l;ltioas too) this are best expressed in matrix notation. Let ¥; correspond to
ctor (1, 0) and ¥y, to the vector (0, 1). In thi i i
_ _ , 1), i$ notation, the variational
Yvavefunctlon ¥ is merely (er, ¢1y), and the variational equations ::an be expressed
In compact matrix form as an eigenvalue problem:

V U Cy 1 lz c
[U* V] [Cu] - (E B 280)[]2* 1 :{ LHJ' . (2.1-3)
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As in fact all functions under consideration are (or can be made) real, we shall
henceforth omit the asterisk. It is not difficult to guess that the solutions to this
euqation are the symmetric and antisymmetric fanctions corresponding to

£y = :}_‘: C11 (2.14)

and that the respective eigenvalues are

ViU ~
B, = 2e + 1—13—-1; @.15)

o calls for the spin antisymmetric “singlet”

The space symmetric (+) solutio
function, and the space antisymmetric function (—) for any of the three symme-

tric “spin-triplet” functions. The triple-singlet separation is

2_-—
AE=E_—-E+=2~V%*____;'I (2.16)

and can be used to define an effective exchange force in the Heisenberg Hamil-

tonian. For the energy levels of

S, +8) 3
Hgoy = —J1S1° 82 = —Ji lig—'l"iz_"zl' — -&_‘] 2.1

are —1Jy; in the triplet states, and +3J,; in the singlet state. (See Chap. 3). By
comparison with (2.16}, the exchange constant is deduced to be

Ve — U
Jo=—25—"F (2.18)

Ferromagnetism, of an embryonic molecular sort, would occur if the exchange
constant Jy; turned out positive. Antiferromagnetism would be the consequence
of an antiferromagnetic bond Jiz < 0. What the actual sign turns out to be
depends on the relative magnitudes of the “Coulomb integral” ¥, the “overlap
integral” I, and the “exchange integral” U. In the primitive calculation of Heitler
and London unperturbed hydrogen 1s orbitals were used in these various in-
tegrals—yielding results in satisfactory agreement both with experiment and
lations (see Problem 1, below). The exchange con-

more accurate modern calcu
stant turned out negafive, porresponding to a singlet (i.e. embryonic antifer-
internuclear distance R, as shown

romagnetic) ground state, and varied with
in Fig. 2.3. The triplet state was found, correctly, to be unbound, to have encrgy

greater than the energy of two separate atoms, 2eq. :
A second method for treating the H, molecule owes its origin to the work of
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Rob (ﬂ) Fig. 23 E_xchange parameter J,, as
S l 2 function of internuclear distance R,, i
3 : 3 hvdro, s
S ; . . rogen molecule (H,). Dot shows
g 1 equilibrium value
o7l T
=
....2_._
....3_...

{1:4 %;zd ]?t?edOR. S.lMulIzken,3 ar.1d is known as the method of molecular orbitals
(e o.f Somenef:ctthectron functions are chosen, in this method, to be eigenfunc-
zeroth order gamiftiiﬁ??;?a;zirtat;ﬁ [}t;:: o 135;"3 et oo
. c i i
could be chosen as the molecular orbitals, Thaeiz’ ;alf :Iitggr:itztfja:‘ezhi}llon o
ones and odc_i ones. A further refinement would be to take for, the one.
electron func.tlons the solutions of a Hamiltonian in which the ionic ote {t)"m;‘
are screened in a self-consistent way. But even the following crude chltj)ic:[;;il\ile:

reasonable agreement with i ilibri
rea g ith the exact solution, at the equilibrium value of R,,.

0, = 21) L 0s()
N21+ 1) (2.19)
and
P, = M
N2AT=D (2.192)

a S
pi;?lma;mg t.he even azld odcll {gerade, ungerade, in the time-honored notation
g, igen unctlons'of Hz' by linear combinations of the atomic orbitals. This
generates four functions with which to diagonalize the Hamiltonian .
t

9(r)s0.(r2), 0(r) 0.(r2), o) @ (1), Pulry - 0u(r2). (2.19b)

mal;[)‘(hzsl\é-t(]z mte;::h(;;l Igdenetfates four states from two atomic orbitals, twice as
er the H-L scheme or the Heisenberg Hamiltoni
bitals are related to the Bl i d state theo e veusued chonon
. I och functions of solid state th di
in the text. There also exists an s ionous. than the
. other set of states, more i

! ' perspicuous than the

gr;\flous: being {nqtually orthogonal functions that properly reduce to atomic
rbitals in the limit of large separation, /—.0. They are:

* See, for example, [2.8,9].
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Pa g0 2
a e G P | -

and

s — 8P
= " 2.20
= Tt — 2l (2.202)

with -
g=T1— /=D

to ensure orthogonality. (These functions are prototypes of Wannier func-
tions, treated elsewhere in this book). The eigenvalues of the two-body Hamil-
tonian can be found with the aid of the four orthonormal functions,

Fy =y, (r)-y.(r) Fy = w(r)ws(rz)
Fy = yy(ry)-w,(r) Fo=y(r ) walr) . (2.20b)

As these functions span the same “function space” as the four M-O functions
(2.19b), the four cigenvalues will be the same as if we worked with molecular
orbitals. F; and F, correspond approximately to ¥, and ¥ for the nonortho-
gonal orbitals, F and F; to “ionized configurations.” The two lowest eigenvalues
will correspond to E; of (2.15); see Problem 2.1.

Problem 2.1. Find the eigenvectors and eigenvalues of the 4 X 4 matrix
%} == IF{%FJ d3r1 dsrz-

In addition to the definitions in (2.10), this requires the definition of additional
integrals W and X, etc. Define them.

(a) Show that there is one triplet (space antisymmetric) eigenfunction, with
energy E_ = % — = identically as given in (2.15). Find the lowest of the
three space symmetric, singlet, solutions. Prove that it has energy lower than

E,, the H-L ground state.
(b) Second-order perturbation theory can also be used to calculate the singlet

ground state energy,

Ky + Fa)

Express this formula in terms of U, ¥, W, X, and /, and by comparison with the
exact result found in part (a) determine the physical region of approximate

validity of the perturbation theory. :
The importance of this calculation is that it shows that the Heisenberg Hamil-

tonian can be derived qualitatively on the basis of first- and second-order pertur-

wte
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g?t;[clm ::;teory, using orthogonalized orbitals; and therefore many of the results
e theory (exchange constant, spin waves, existence of Curie temperature
’

2.3 Three Hydrogen Atoms

The total Hamiltonian is s i
eparated into terms appropriate to indivi
gen atoms 55 + the interaction terms 5#”: ° widual hydro-

w-[(E-2)+ B2+ (B-2)]
eellRr )+ At - (L 1)

s
sl Rt R ]
= {&} + (#} : (2.21)

and as before, we use products of the nonorthogonal atomic functions of (2 9) of

which there are 31 = 6i .
table: 6 in total. Let us label them according to the following

i1 = ¢(D)p.(2)p.(3)
¥ = 9.2)¢s(Le.(3)
W3 = 9,3 (2p.(1) (2.22)
¥s = 2D (3)e.(2)
¥s = pa(2)p5(3)p(1)
Ws = 0(3es(1)p.(2).

How are these Felated to each other under the permutations of various particles?
For typographical simplicity, let us omit the Greek symbols, and write y, as l.
¥, as 2, etc..Then we can draw up simple tables (showing into which fuu::tions,
any of the six transform) under transpositions (permutations of two particles):

1—+23, or 4
2—~15 or
3—1,5 or
4—1,5 or
5—+23, or

(2.23)

B N
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6—+23 or 4

and under nontrivial permutations of all three particles:

1 —5,6
2—~34
3—+24
4—+23
5—+1,6
6—1,5

(2.24)

Thus, for equidistant atoms at the vertices of an equilateral triangle (Fig. 2.4)

[why,de = [ytysdr = [ytwdr =P = [whwsdr, etc. 2.25)

and

' 26
[wtysde = [ytysdt = P = [yiys dr, (2.26)

etc. Or in general if we use these integrals to define an overlap matrix 2
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H,=H,,=H_4,=3gl+ H,, (2.30b)
H, 5= Hs=3el’ + Hy s : (2.30c)
From (2.30a) we also get H,, = H;; = --- = H,,;. From (2.30b) we get the

matrix elements of 2 between any function in (2.23) and its transform, for
example, H, ; = H, ,, etc.; and (2.30c) gives the archetype matrix element be-
tween functions of (2.24) and their transform. A slight change of notation will
greatly simplify the appearance of the interaction matrix. We define 4, b, and ¢
by

A=Hj{,, b4 =H, and el 4 =H, (2.31)
This replaces the matrix elements as parameters by A4, b, ¢, and the previously
defined overlap integral I [cf. (2.10)]. The Hamiltonian matrix is then particular-
ly convenient to derive: 3¢, times the overlap matrix, plus 4 times an interaction
matrix (which can be derived from the overlap matrix merely by replacing /2 by
bl* and P by cl* in the latter), so that the eigenvalue equation now reads:

(1 bP b bI* el ] ‘ 12 P PP P
bi* 1 el* cl* bP bP ' 21 e P PP

4 bl el 1 cl* bI* BP o = (E — 3e;) g r1 e PP -
bl el P 1 bI* bP rpp1EE 2.32)
c? b b B 1 P rpErPEP1E
lel* B b bE P 1 ] ®rp PP

We denote eigenvectors by v. We construct the six distinct eigenvectors by use
of the permutation tables given just previously. One starts with y,, or

2.27
9:;=IW?!W_JJT ( )
then we have simply,

) R Y CO GO L o
I T SO L G &

rp1prBEE : 2.28)
@=lppp1prr
pprpPrPE1P
repprPl

a real symmetric, matrix. And as for the matrix elements of the Hamiltonian, we
do not have to examine all 36 possibilities, but in fact just &:

i .29
jvi#wdr=Hy; i=12,..,6 (2.29)
for we can obtain all the others by appropriate permutations. And of these only
three are independent. They are,

30
Hl,l=3eo+H;,l 2 )

(2.33)

cC o Cc o O —

inthe vector notation. A totally symmetric un-normalized function is constructed
byadding to this vector all the vectors obtained by permutations of the particles;
for example,

Vo =(1,1,1,1,1, 1), (2.34)
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(For typographical reasons, we now write the vectors as row vectors. Ti echnical-
ly, therefore, they are left eigenvectors.) For a totally antisymmetric but un-
normalized function, we again start with g, subtract all the odd permutations,
which are given in (2.23), and add the even permulations, given in (2.24)
va—s=(l:- _ls “'_1: _1’ +11 +l) . (235)

We next seck vectors antisymmetric in particles 2 and 3, but not totally antisym-
metric, that is, orthogonal to ¥,_,. We find

i _2": —1: —T:

Next, we look for vectors symmetric in particles 2 and 3, but orthogonal {0 Uy

. 1 1 11
Uz3eym = (1, — T 1, 5 7) and

—(,1,—1,0, =1, +1) (2.37)

U23=(1,L 1 L _%) and o, = (0, 1, —1,0, +1, —1). (2.36)

'
UzSaym

These choices are not unique. However, because of the invariance of the
Hamiltonian under permutations, functions of different symmetries do not mix.
The totally symmetric and the totally antisymmetric function both stand alone
in their own symmetry class and therefore must be eigenvectors. The remaining
four eigenvalues are obtained by diagonalizing the matrices of the eigenvalue
equation (2.32), inthe 2 X 2 subspaces of the functions of (2.36, 37), respectively.
This use of symmetry saves us from the tedium of diagonalizing 6 X 6 matrices:
the importance of the permutation operators should be already abundantly
clear.

In the present problem, hidden symmetries simplify the eigenvalue equation
further. For it happens that each of the last four vectors is simultaneously an
eigenvector of both the overlap and the interaction matrices, and all are de-
generate. The eigenvalues can be found almost by inspection now.

_ 1+ 361 4 2¢l°
Eon =36+ AT T35 oF (2.28)

_ 1 — 3bP 4 26
E =3+ A3 38 (2.39)

and the four-fold degenerate eigenvalue,

1— el
Ep =3¢+ 4 1—_"'13— (2.40)

Elsewhere we discuss how to combine space with spin to obtain wavefunc-
tions of space and spin, obeying the Pauli principle. At present we need only the
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f . .
fzillgt\;is.r::lgf:;hl;:h :he reader must accept on faith: v,,,, is not an allowable eigen
electrons; v,_, will be used to construct the fi i i i
halves and v,; the function i o 25 o qain three-
of spin one-half, known a
states, respectively. No other valu epi ot
S, . es of total
obtained with three electrons. “Pin angular momentum czn be
toniI:o?w %o tl;lese resu1t§ compare with the solutions of the Heisenberg Hamil-
s ;1. 0 tie two-spin Hamiltonian of (2.17) which corresponded to the
hyde g:,n 1;119 ecule, —JIZS}-SZ, we now must add two more equal bonds to
ect all sides of the equilateral triangle, as shown in Fig. 2.4. That is

%Hela = _J;FZ(SI'SZ + Sz'Ss + Sa'sl)- (2 4].)
3
o
Re -~
< = - .y
~ . \‘- - . ﬁb‘.
pS = Fig. 2.4,

A ~ Three-atom molecule, or three

equivalent Heisenberg spins,
with solid lines indicating

=
J 2
12 bonds

ge; ::;ez: superscri.ptb (1 #{1, however, to warn that the exchange “constant” might
more variable than its name suggests, and th
: . t the valu hall i
the present calculation may not i revi otainet for
fhe pre y not agree with the result previously obtained for two
cu]:t‘:; ;i;s;l.nct eigl.?n.valucs of the above Heisenberg Hamiltonian can be cal
lagonalizing 5%., in the subspace of the three fi i ing
to M = -+ 1. Because of the rotati itis Toomd moroves thar e
. ional symmetry, it is found
two solutions belonging to M = § = 1 , e e
: = § = # are degenerate. The quartet solution i
:);'nczzzrs;humque al?d, therefore, automatically an eigenfunction of the I—Iamilf
- The reader is encouraged to construct these states, starting with a basis
xn=mMNl =N ¥ = Ut ' (2.42)
in an obvious notation. One can al i i
: . so obtain the eigenvalues more simply b
completing the square in (2.41). Either way, he finds for the solutions ofp(§.413)r

Equart Edoubl = _T'Ii;z (243)

Now this must be set equal to
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{3l 2 1—cPy_ 3
P B (T 5r 0 =7 = —2'" 249

the calculated level separation, so as to obtain finally a value for the exchange

parameter

_ (1—b)+ (4 P)c—b)
Ja= 24P gy 10D (2.45)

Unless the overlap is very smali, this expression has terms in I3, etc., and is in no
way comparable to the formula of (2.18) which we obtained previously. How-

ever, there is no reason to take the H-L scheme seriously if the overlap is that

great. [Note that if the atoms are exceedingly close, then the eigenfunctions of
ot than the three hydrogen atomic

atomic lithium are a better zeroth-order s
functions, whereas those of helium best approximate the solution of the H,
molecule. In vain can we expect the H-L picture to describe these physical
systems when / ~ 1. In solids, the H-L picture breaks down completely once
I approaches or exceeds 1 /z in magnitude, where z = number of nearest neigh-
bors of each atom (z = 6 for simple cubic structure, etc.) because £2 becomes
a singular matrix. That is, the wavefunctions cannot be normalized unless 7 <C
1/z; see ahead}].
For the reasons above, ina microscopic derivation of the Heisenberg Hamil-
tonian and of the exchange constant, we must assume that R,, = many atomic
units, and calculate only to lowest order in the overlap, /. One is powerless to
define interatomic exchange more accurately (although once again in the atom,
for intra-atomic exchange, the situation is more favorable, as we shall see subse-

quently).
In accordance with th
meters to lowest order in the overlap: From (2.18),

ese arguments, we now calculate the exchange para-

1 ] &
Lz v 4 [ P re )R T

¢ e & &
1§ dor, g ednepdrdoed |+ == i ) @49

and the calculation of (2.45) giving

Lit= AP+ APb = —HP o His

et e e
= —P[drd'n d3r3¢§(r1)¢%(rz)¢%(rs)[(-R—ab + R“+ Rba)
2
2a

e et &
+r2¢+r3a+r3b)] '

& e") (e" et e
frpy he T

+(&+

Fiz2 Fi3 T2
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+ J-d3r1 dr, d3r3w"(rl)%’(rl)qaa(rz)(ﬂb(rz)qgg(rs)[(;z + e_z N i)
ab Rac Rbc

eZ ez ez 2 2
+(_+__+_-_)_(e_ e & e & e
Fiz TNs I r1b+rlc+r23+;3:+;;+;;)] (247)
recalling the definition of th i
Img 1 ¢ various parameters in (2.31), and i
' / 31, as
for El:;phmty that all the atomic functions are real, and n)ormalizecsiummg e
et soli; at:ywto redut;;: the second calculation to some of the integ-rals in the
, e may effect a comparison. First, (2.46): T| i
exactly, and the remainder can be put in the fc;r(m. )¢ The terms it R cance

1 2 2
— Ty, = [ d3r, 8 (&3_ &
712 f 18°F, P, (P2 — Przex) (2.48)

g:fglllgg pud to l?e ,t,he ordinary electron density p2(r,)p¥(r,) and pi,,, to be th

o nl;geSi n:;]selty qo,.,(rli)qozt(n)qo,(rz)gab(rz), in an obvious notationuex )
manipulations of the terms i i :

finally to reach the desired result e In the integrals for /5 enable us

J5 = Ju + 4l [ a2
= T e [ drgi(r) loeedr) — e (1~ L) )

1b

The correction term is not i i
: necessarily negligi
parameter itself (see Problem 2.2). 7 negliible compared to the exchange

Problem 2.2, ¢ (r) 1sthe unperturbed 1 i
. @, perturbed 1s atomic ground-st i
' -state wavef
ial:x ;:Iec(t:rc;n l:lselongmg to a hydrogen atom at R,, and g, is defined i;?;;lo;lngf
gly. Calculate {(R,,) and J1.(D), J5(D). Is the exchange parameter inciase(;

or decreased by the presence of the thi
also [Ref. 212, Eq. (0], e third atom? (Assume R,, to be large). See

deﬁ;ll":g i};r%se:ce of th-e third atom at R, modifies the exchange bondm;':ts we have
etined & » between spins at R, and R,. If atoms ¢ and & were imbedde’d in a solid
the ¢ : 1 ange Iir_lterac’mm between them would be further modified, and th ’
ular exchange constant Jy, or J;5 would be of li i ’ .
ttle quantitati
who would calculate exchan lz ‘st heed 1o Lo oo Those
) : . ge parameters must heed th i i

i _ e followin :
o I.115;2 zlénl]); t; 1m.ag1nelthat exchange, even between similar atoms cangbt‘:v gll;gi:i
universal parameter J,(R,;,)} which i : i
o 2R, ich one might calculate on -
dt; a;nr(rilodel, no matter how refined. It should be regarded as a pararjﬂetej'l ;'nlfi]eh
th: HEisS :r?ball t].'Il_E; otl.ler epwroning_atoms as well, even to lowest order Whgn
s Couizg evf;mltl;9n1an (2.1) is not applicable, the exchange pal.'ametef

s » even this meaning, and i i i i
deined concopis and idess g exchange vanishes into the limbo of ill-

Herri, i

wron; ;'gigf[az. 10] points out that_the ﬂ-L scheme per se is in fact asymptoticall
exchige aa;, > some SQ atomic distances, where it predicts a ferromagnetiz
parameter, albeit an exponentially small one. Thus even if the Heisen




