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Quantum Dynamicg

and so on. If we somehow guess the form of (x”, 1”|x’, ") for an infinites;.
mal time interval (between ¢’ and ¢ = ¢’ + dt), we should be able to obtain
the amplitude (x”,¢”[x’,¢") for a finite time interval by compounding the
appropriate transition amplitudes for infinitesimal time intervals in a manner
analogous to (2.5.29). This kind of reasoning leads to an independen;
formulation of quantum mechanics due to R. P. Feynman, published in
1948, to which we now turn our attention,.

Path Integrals as the Sum Over Paths

Without loss of generality we restrict ourselves to one-dimensional
problems. Also, we avoid awkward expressions like

rere Y2z

x e x
N times
by using notation such as x,. With this notation we consider the transition
amplitude for a particle going from the initial space-time point (x,, 1) to
the final space-time point (x,, ¢, ). The entire time interval between ¢ , and
ty 1s divided into N —1 equal parts:
(f v 1 1)

ff*t‘j71=Al‘=(N—kl)k. (2.5.30)

Exploiting the composition property, we obtain

(xps Eylxg, b)) = [dxfw'—lfdxn'—z T fdx2<x;’\-'= Il XN -1 ty—1)

X Xyt 1l Xn_as ty—a) o - (Xq, g, ).
(2.5.31)

To visualize this pictorially, we consider a space-time plane, as shown in
Figure 2.2. The initial and final space-time points are fixed to be (x;. 1) and
(xn- ty), Tespectively. For each time segment, say between t,_, and z,, we
are instructed to consider the transition amplitude to go from (st _4)
to (x,, ¢,); we then integrate over x,, x,,..., x,_,. This means that we must
sum over all possible paths in the space-time plane with the end points fixed.

Before proceeding further, it is profitable to review here how paths
appear in classical mechanics. Suppose we have a particle subjected to a
force field derivable from a potential V(x). The classical Lagrangian is
written as

53
Lclassical(x’x):TiV(x)' (2532)
Given this Lagrangian with the end points (x,, ¢,) and (x, 1,,) specified, we
do not consider just any path joining (x,,?,) and (xy,y) in classical
mechanics. On the contrary, there exists a unique path that corresponds to
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(xn, tn)

(x1, t1)
FIGURE 2.2. Paths in xt-plane.

the actual motion of the classical particle. For example, given

V(x)=mgx, (x1,2,) = (£,0), (xN,;N)(Q,E),

(2.5.33)

where h may stand for the height of the Leaning Tower of Pisa, the classical
path in the xs-plane can only be

2
x=h-5 (2.5.34)
2
More generally, according to Hamilton’s principle, the unique path is that
which minimizes the action, defined as the time integral of the classical
Lagrangian:

Sftzerclassical(x’ )C) = 0’ (2535)
n

from which Lagrange’s equation of motion can be obtained.

Feynman’s Formulation

The basic difference between classical mechanics and quantum me-
chanics should now be apparent. In classical mechanics a definite path in
the xr-plane is associated with the particle’s motion; in contrast, in quantum
mechanics all possible paths must play roles including those which do not
bear any resemblance to the classical path. Yet we must somehow be able to
reproduce classical mechanics in a smooth manner in the limit & — 0. How
are we to accomplish this?
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As a young graduate student at Princeton University, R. P. Feynman
tried to attack this problem. In looking for a possible clue, he was said to be
intrigued by a mysterious remark in Dirac’s book which, in our notation,
amounts to the following statement:

tLdtL o (x, X
exp[t’f Z—CL“”";](—)l corresponds to  {X,, 1,]X, ;).
n

Feynman attempted to make sense out of this remark. Is “corresponds to”
the same thing as “is equal to” or “is proportional to”? In so doing he was
led to formulate a space-time approach to quantum mechanics based on
path integrals.

In Feynman’s formulation the classical action plays a very important
role. For compactness, we introduce a new notation:
Xk 1. (2.5.36)

S(n,n—-1)= "

t

n—

dt Lclassical (
1

Because L, ., 15 @ function of x and x, S(n, n —1) is defined only after a
definite path is specified along which the integration is to be carried out. So
even though the path dependence is not explicit in this notation, it is
understood that we are considering a particular path in evaluating the
integral. Imagine now that we are following some prescribed path. We
concentrate our attention on a small segment along that path, say between
(x,_1,1,_1) and (x,, t,). According to Dirac, we are instructed to associate
exp[iS(n, n —1)/ k)] with that segment. Going along the definite path we are
set to follow, we successively multiply expressions of this type to obtain

o] 2272 -eof ) st -enf 52|

n=2
(2.5.37)

This does not yet give {xy, fy|X,, #;); rather, this equation is the contribu-
tion to (X, ty|x;, ;) arising from the particular path we have considered.
We must still integrate over x,, x,..., Xy_;. At the same time, exploiting
the composition property, we let the time interval between ¢,_; and ¢, be
infinitesimally small. Thus our candidate expression for (xy, fy|x;, #;) may
be written, in some loose sense, as

<xN71N|x1:‘[1> - z exp[w] (2538)

all paths h

where the sum is to be taken over an innumerably infinite set of paths!
Before presenting a more precise formulation, let us see whether
considerations along this line make sense in the classical limit. As z — 0, the
exponential in (2.5.38) oscillates very violently, so there is a tendency for
cancellation among various contributions from neighboring paths. This is
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pecause exp[iS/h] for some definite path and exp[iS/A] for a slightly
different path have very different phases because of the smallness of A. So
most paths do not contribute when 7% is regarded as a small quantity.
However, there is an important exception.

Suppose that we consider a path that satisfies

8S(N,1)=0, (2.5.39)

where the change in S is due to a slight deformation of the path with the
end points fixed. This is precisely the classical path by virtue of Hamilton’s
principle. We denote the S that satisfies (2.5.39) by S,,;,. We now attempt to
deform the path a little bit from the classical path. The resulting S is still
equal to S, to first order in deformation. This means that the phase of
exp[iS/ h] does not vary very much as we deviate slightly from the classical
path even if # is small. As a result, as long as we stay near the classical
path, constructive interference between neighboring paths is possible. In the
h — 0 limit, the major contributions must then arise from a very narrow
strip (or a tube in higher dimensions) containing the classical path, as shown
in Figure 2.3. Our (or Feynman’s) guess based on Dirac’s mysterious remark
makes good sense because the classical path gets singled out in the & — 0
limit.

To formulate Feynman’s conjecture more precisely, let us go back to
(x,.1,1x, 1,1, 1), where the time difference ¢, —¢, , is assumed to be
infinitesimally small. We write

1 S(n,n—
<xn,fn|xnl,znl>[W(AI)]exp[‘( = 1)], (2.5.40)

where we evaluate S(r,n —1) in a moment in the A¢ — 0 limit. Notice that
we have inserted a weight factor, 1/w(Az), which is assumed to depend
only on the time interval ¢, — ¢, ; and not on ¥(x). That such a factor is
needed is clear from dimensional considerations; according to the way we

FIGURE 2.3. Paths important in the 4 — 0 limit.
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normalized our position eigenkets, {x,, {,|x,_1, {,_;y must have the dimen.
sion of 1/length.

We now look at the exponential in (2.5.40). Our task is to evaluate
the At — 0 limit of S(n, n —1). Because the time interval is so small, it ig
legitimate to make a straight-line approximation to the path joining
(x,_1.t, 1) and (x,,¢,) as follows:

i3
S(n,n—1) =f{" dt[me -V(x)
T

o=l )

(2.5.41)

As an example, we consider specifically the free-particle case, J= 0. Equa-
tion (2.5.40) now becomes

im(x” - xnﬂ)2
[T} (2.5.42)

We see that the exponent appearing here is completely identical to the one
in the expression for the free-particle propagator (2.5.16). The reader may
work out a similar comparison for the simple harmonic oscillator.

We remarked earlier that the weight factor 1/w(At) appearing in
(2.5.40) is assumed to be independent of V(x), so we may as well evaluate it
for the free particle. Noting the orthonormality, in the sense of §-function,
of Heisenberg-picture position eigenkets at equal times,

<xn’ rn‘xnflﬁ Itr;e71> P R = S(xtz o xu—l)’ (2543)

1 m
= 2544
w(Ar) V 2mihAr”° ( )
where we have used
o imé&? ) 27ih At

= .5.45¢
/ xdse“’(zhm) V " m (25 45)

. m img?
= . 2.5.45b
AV S eXp(2h A..r) 5(¢) ( )

This weight factor is, of course, anticipated from the expression for the
free-particle propagator (2.5.16).
To summarize, as At — 0, we are led to

L |
<xn’ tn‘xnfl’tn71> - |:W(AI) Jexp

we obtain

m iS(n,nl)}
= . 2.5.46
<‘xn7tn|xn—l’rn--1> 2W1hAf exp[ h ( )
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The final expression for the transition amplitude with ¢, — ¢, finite is
im

1
N — oo

X fdx,vflfdx,\uz e fdxznﬁzexp[iﬂ&;__ﬁ]’

(2.5.47)

( m )(N—l)/Z

(xn tnl%1 1) = 2mik At

where the N — oo limit is taken with x, and ¢, fixed. It is customary here
to define a new kind of multidimensional (in fact, infinite-dimensional)
integral operator

Xy ) m (N=1)/2
901 = i ()™ e ey

(2.5.48)
and write (2.5.47) as

XN ty = Lodassion , X
(Ens tultrty) = [ ,@[x(r)]exp[ij; dr#]. (2.5.49)

This expression is known as Feynman’s path integral. Its meaning as the sum
over all possible paths should be apparent from (2.5.47).

Our steps leading to (2.5.49) are not meant to be a derivation.
Rather, we (or Feynman) have attempted a new formulation of quantum
mechanics based on the concept of paths, motivated by Dirac’s mysterious
remark. The only ideas we borrowed from the conventional form of quan-
tum mechanics are (1) the superposition principle (used in summing the con-
tributions from various alternate paths), (2) the composition property of the
transition amplitude, and (3) classical correspondence in the # — 0 limit.

Even though we obtained the same result as the conventional theory
for the free-particle case, it is now obvious, from what we have done so far,
that Feynman’s formulation is completely equivalent to Schrodinger’s wave
mechanics. We conclude this section by proving that Feynman’s expression
for (xy, ty|x,, t,) indeed satisfies Schrodinger’s time-dependent wave equa-
tion in the variables x,, ¢, just as the propagator defined by (2.5.8).

We start with

(Xns tylxy, 1) = fdx:\:-q(va’ InlXn—ts I (X1 Iyl Xy, 1)

2
P m im\ (xy = xy_,)"  iVArt
*f,xde*l 2mih At e"p[(zh) At h

X (Xy_1sty—alX 1), (2.5.50)
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where we have assumed ¢, —7,_, to be infinitesimal. Introducing
=, =Xy g - (2.5.51)

and letting x, — x and 7, — ¢ + A¢, we obtain

m o0 imé* VAt
{5, Aty 8 ) =/ i A7 fiocdfexp( AL R )(x—g,ﬂxl,tl)_
(2.5.52)

As is evident from (2.5.45b), in the limit Az — 0, the major contribution to
this integral comes from the £=0 region. It is therefore legitimate to
expand (x — &, t|x,,¢,) in powers of £. We also expand (x,+ At|x, ;)
and exp(— iVAt/h) in powers of At, so

d
{x,t|xq, 1)+ Ata@c, 2|25 813

B m 0 imé? _ iVA:
=V Zmin Ac fx,d‘fe"p(zhm)(l R

52 82
X (x,t|xl,fl)+(7)§

(X tlxp )+ -0 |

(2.5.53)

where we have dropped a term linear in £ because it vanishes when
integrated with respect to §. The (x, f|x, #;) term on the left-hand side just
matches the leading term on the right-hand side because of (2.5.45a).
Collecting terms first order in Az, we obtain

d ‘ B m ih At
A‘E””'“’“*( 2mih At )(‘/2_'”)( m )

3/21 g2

Eﬁﬁaflxuh)

—(%)AtV{x,ﬂxl,tl), (2.5.54)

where we have used

. g2 ; 3/2
f dggﬂexp(z”:it)—m(mn‘f’) , (2.5.55)

— o0

obtained by differentiating (2.5.45a) with respect to Az. In this manner we
see that (x, t|x,, ;) satisfies Schrodinger’s time-dependent wave equation:

'h£< Hx, ) =— & 8—2(x Hxy, b))+ V{x, txq, 1)
5 (% [x, 5 PIERSE e »H Xy, 8y )

2m

(2.5.56)

Thus we can conclude that (x, f|x,, {;) constructed according to Feynman’s
prescription is the same as the propagator in Schrodinger’s wave mechanics.

2.6. Potentials and Gauge Transformations

Feynman’s space-time approach based on path integrals is not too
convenient for attacking practical problems in nonrelativistic quantum
mechanics. Even for the simple harmonic oscillator it is rather cumbersome
to evaluate explicitly the relevant path integral.* However, his approach is
extremely gratifying from a conceptual point of view. By imposing a certain
set of sensible requirements on a physical theory, we are inevitably led to a
formalism equivalent to the usual formulation of quantum mechanics. It
makes us wonder whether it is at all possible to construct a sensible
alternative theory that is equally successful in accounting for microscopic

henomena.

Methods based on path integrals have been found to be very
powerful in other branches of modern physics, such as quantum field theory
and statistical mechanics. In this book the path-integral method will appear
again when we discuss the Aharonov-Bohm effect.

2.6. POTENTIALS AND GAUGE TRANSFORMATIONS

Constant Potentials

In classical mechanics it is well known that the zero point of the
potential energy is of no physical significance. The time development of
dynamic variables such as x(#) and L(¢) is independent of whether we use
V(x) or V(x)+ ¥V, with I, constant both in space and time. The force that
appears in Newton’s second law depends only on the gradient of the
potential; an additive constant is clearly irrelevant. What is the analogous
situation in quantum mechanics?

We look at the time evolution of a Schrodinger-picture state ket
subject to some potential. Let |a, 7, ¢) be a state ket in the presence of
V(x), and |«, t; 1), the corresponding state ket appropriate for

V(x)=V(x)+V,. (2.6.1)

To be precise let us agree that the initial conditions are such that both kets
coincide with |a) at ¢ = . If they represent the same physical situation, this
can always be done by a suitable choice of the phase. Recalling that the
state ket at ¢ can be obtained by applying the time-evolution operator

*The reader is challenged to solve the simple harmonic oscillator problem using the
Feynman path integral method in Problem 2-31.

"The reader who is interested in the fundamentals and applications of path integrals may
consult Feynman and Hibbs 1965.




