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§Definitions

q̇p−H(q, p) = Q̇P −K(Q,P ) +
d

dt
S(q, P ) (1)

where S(q, P ) = F2(q, P ), and so by multiplying out with dt we get

dS(q, P ) = (K −H)dt+ pdq +QdP (2)

So far this is general. We now ask for a transformation such that K = 0.
Hence

p =
∂S(q, P )

∂q
(3)

Q =
∂S(q, P )

∂P
(4)

0 = H(q, p) +
∂S(q, P )

∂t
(5)

and the equations of motion (henceforth EOM)

Ṗ = 0 (6)

Q̇ = 0. (7)

We used K = 0 to obtain the above pair. We now assume that H(q, p) is
independent of time t. Let us now look at Eq(5) and plug in for p from
Eq(3). This gives us a partial differential equation (PDE) for S

H(q,
∂S(q, P )

∂q
) +

∂S(q, P )

∂t
= 0 (8)

Since the time dependence is only in the second term, we can separate this
PDE into two pieces

S(q, P ) = W (q, P )− E(P )t (9)

H(q,
∂W (q, P )

∂q
) = E(P ) (10)



where Eq(10) is obtained by plugging in Eq(9) into Eq(8). Here E(P ) is
as yet undetermined, it has dimensions of energy. Similarly W (q, P ) is
undetermined as yet.

§Example of Harmonic oscillator
We can make some sense of the above equations Eq(8,9,10) by choosing

H(q, p) =
p2

2m
+
kq2

2
. (11)

This implies from Eq(10)

kq2

2
+

1

2m

(
∂W (q, P )

∂q

)2

= E(P ), (12)

and hence we can solve for W as

W (q, P ) = ±
∫

dq
√

2m(E − q2/2) + C (13)

where we must keep in mind that E = E(P ). We will solve this further
below, but let us first redefine the variables a bit.

§Action variable and angle variable
Let us get rid of P in favor of the action variable J . If we consider a

periodic motion with p = p(E, q) =
√

(2m)(E − V (q)), we can define the
action variable

J(E) ≡
∮
p(E, q)dq (14)

we can invert this and write

E = E(J). (15)

An explicit and simple example is the Harmonic oscillator Eq(11), where

E(J) =
ω0

2π
J, (16)

with ω0 =
√
k/m. We also saw the example of the anharmonic oscillator

H = p2/2 + q4/4, where
E(J) = cJ4/3.

Getting back to Eq(9), changing P → J and Q→ β we rewrite it as

S(q, J) = W (q, J)− E(J)t (17)

H(q,
∂W (q, J)

∂q
) = E(J) (18)



and Eq(4) as

β =
∂S(q, J)

∂J
, (19)

and Eq(6,7) become

J̇ = 0, (20)

β̇ = 0. (21)

Taking the J derivative of Eq(17), and by plugging in Eq(19) and moving
terms around, we write

∂W (q, J)

∂J
=
∂E(J)

∂J
+ β (22)

where β is a constant in time. we now define the angle variable θ(q, J) and
frequency constant ω(J) using

θ(q, J) ≡ (2π)
∂W (q, J)

∂J
(23)

ω(J) ≡ (2π)
∂E(J)

∂J
(24)

Hence Eq(22) becomes

θ(q, J) = ω(J)t+ (2π)β. (25)

The final thing to check is the proof of angular change in a closed orbit
∆θ.

∆θ =

∮
dq
∂θ

∂q
(26)

= (2π)

∮
dq
∂2W (q, J)

∂q∂J
(27)

= (2π)

∮
dq
∂2W (q, J)

∂J∂q
(28)

= (2π)
∂

∂J

∮
dq p dq (29)

= (2π)
∂

∂J
J = (2π). QED (30)

We have used Eq(23) to get Eq(27), and then used Eq(3) with S → W in
going from Eq(28) to Eq(29).


