Physics 210- Fall 2018

Classical and Statistical mechancis

Hamilton Jacobi Definitions Revisited

Posted on October 25, 2018

\S Definitions

$$
\begin{equation*}
\dot{q} p-H(q, p)=\dot{Q} P-K(Q, P)+\frac{d}{d t} S(q, P) \tag{1}
\end{equation*}
$$

where $S(q, P)=F_{2}(q, P)$, and so by multiplying out with $d t$ we get

$$
\begin{equation*}
d S(q, P)=(K-H) d t+p d q+Q d P \tag{2}
\end{equation*}
$$

So far this is general. We now ask for a transformation such that $K=0$. Hence

$$
\begin{array}{r}
p=\frac{\partial S(q, P)}{\partial q} \\
Q=\frac{\partial S(q, P)}{\partial P} \\
0=H(q, p)+\frac{\partial S(q, P)}{\partial t} \tag{5}
\end{array}
$$

and the equations of motion (henceforth EOM)

$$
\begin{gather*}
\dot{P}=0 \tag{6}\\
\dot{Q}=0 . \tag{7}
\end{gather*}
$$

We used $K=0$ to obtain the above pair. We now assume that $H(q, p)$ is independent of time t. Let us now look at $\mathrm{Eq}(5)$ and plug in for p from $\mathrm{Eq}(3)$. This gives us a partial differential equation (PDE) for S

$$
\begin{equation*}
H\left(q, \frac{\partial S(q, P)}{\partial q}\right)+\frac{\partial S(q, P)}{\partial t}=0 \tag{8}
\end{equation*}
$$

Since the time dependence is only in the second term, we can separate this PDE into two pieces

$$
\begin{array}{r}
S(q, P)=W(q, P)-E(P) t \\
H\left(q, \frac{\partial W(q, P)}{\partial q}\right)=E(P) \tag{10}
\end{array}
$$

where $\operatorname{Eq}(10)$ is obtained by plugging in $\operatorname{Eq}(9)$ into $\operatorname{Eq}(8)$. Here $E(P)$ is as yet undetermined, it has dimensions of energy. Similarly $W(q, P)$ is undetermined as yet.
§Example of Harmonic oscillator
We can make some sense of the above equations $\operatorname{Eq}(8,9,10)$ by choosing

$$
\begin{equation*}
H(q, p)=\frac{p^{2}}{2 m}+\frac{k q^{2}}{2} . \tag{11}
\end{equation*}
$$

This implies from $\operatorname{Eq}(10)$

$$
\begin{equation*}
\frac{k q^{2}}{2}+\frac{1}{2 m}\left(\frac{\partial W(q, P)}{\partial q}\right)^{2}=E(P) \tag{12}
\end{equation*}
$$

and hence we can solve for W as

$$
\begin{equation*}
W(q, P)= \pm \int d q \sqrt{2 m\left(E-q^{2} / 2\right)}+C \tag{13}
\end{equation*}
$$

where we must keep in mind that $E=E(P)$. We will solve this further below, but let us first redefine the variables a bit.

§Action variable and angle variable

Let us get rid of P in favor of the action variable J. If we consider a periodic motion with $p=p(E, q)=\sqrt{(2 m)(E-V(q))}$, we can define the action variable

$$
\begin{equation*}
J(E) \equiv \oint p(E, q) d q \tag{14}
\end{equation*}
$$

we can invert this and write

$$
\begin{equation*}
E=E(J) \tag{15}
\end{equation*}
$$

An explicit and simple example is the Harmonic oscillator $\mathrm{Eq}(11)$, where

$$
\begin{equation*}
E(J)=\frac{\omega_{0}}{2 \pi} J \tag{16}
\end{equation*}
$$

with $\omega_{0}=\sqrt{k / m}$. We also saw the example of the anharmonic oscillator $H=p^{2} / 2+q^{4} / 4$, where

$$
E(J)=c J^{4 / 3}
$$

Getting back to $\operatorname{Eq}(9)$, changing $P \rightarrow J$ and $Q \rightarrow \beta$ we rewrite it as

$$
\begin{array}{r}
S(q, J)=W(q, J)-E(J) t \\
H\left(q, \frac{\partial W(q, J)}{\partial q}\right)=E(J) \tag{18}
\end{array}
$$

and $\mathrm{Eq}(4)$ as

$$
\begin{equation*}
\beta=\frac{\partial S(q, J)}{\partial J} \tag{19}
\end{equation*}
$$

and $\operatorname{Eq}(6,7)$ become

$$
\begin{align*}
& \dot{J}=0 \tag{20}\\
& \dot{\beta}=0 \tag{21}
\end{align*}
$$

Taking the J derivative of $\mathrm{Eq}(17)$, and by plugging in $\mathrm{Eq}(19)$ and moving terms around, we write

$$
\begin{equation*}
\frac{\partial W(q, J)}{\partial J}=\frac{\partial E(J)}{\partial J}+\beta \tag{22}
\end{equation*}
$$

where β is a constant in time. we now define the angle variable $\theta(q, J)$ and frequency constant $\omega(J)$ using

$$
\begin{array}{r}
\theta(q, J) \equiv(2 \pi) \frac{\partial W(q, J)}{\partial J} \\
\omega(J) \equiv(2 \pi) \frac{\partial E(J)}{\partial J} \tag{24}
\end{array}
$$

Hence $\mathrm{Eq}(22)$ becomes

$$
\begin{equation*}
\theta(q, J)=\omega(J) t+(2 \pi) \beta . \tag{25}
\end{equation*}
$$

The final thing to check is the proof of angular change in a closed orbit $\Delta \theta$.

$$
\begin{align*}
\Delta \theta & =\oint d q \frac{\partial \theta}{\partial q} \tag{26}\\
& =(2 \pi) \oint d q \frac{\partial^{2} W(q, J)}{\partial q \partial J} \tag{27}\\
& =(2 \pi) \oint d q \frac{\partial^{2} W(q, J)}{\partial J \partial q} \tag{28}\\
& =(2 \pi) \frac{\partial}{\partial J} \oint d q p d q \tag{29}\\
& =(2 \pi) \frac{\partial}{\partial J} J=(2 \pi) . \mathbf{Q E D} \tag{30}
\end{align*}
$$

We have used $\operatorname{Eq}(23)$ to get $\operatorname{Eq}(27)$, and then used $\operatorname{Eq}(3)$ with $S \rightarrow W$ in going from $\mathrm{Eq}(28)$ to $\mathrm{Eq}(29)$.

