Physics 210- Fall 2018

Classical and Statistical mechancis

Hamilton Jacobi Definitions Revisited Posted on October 25, 2018

§Definitions

$$\dot{q}p - H(q,p) = \dot{Q}P - K(Q,P) + \frac{d}{dt}S(q,P)$$
(1)

where $S(q, P) = F_2(q, P)$, and so by multiplying out with dt we get

$$dS(q,P) = (K-H)dt + pdq + QdP$$
(2)

So far this is general. We now ask for a transformation such that K = 0. Hence

$$p = \frac{\partial S(q, P)}{\partial q} \tag{3}$$

$$Q = \frac{\partial S(q, P)}{\partial P} \tag{4}$$

$$0 = H(q, p) + \frac{\partial S(q, P)}{\partial t}$$
(5)

and the equations of motion (henceforth EOM)

$$\dot{P} = 0 \tag{6}$$

$$\dot{Q} = 0. \tag{7}$$

We used K = 0 to obtain the above pair. We now assume that H(q, p) is independent of time t. Let us now look at Eq(5) and plug in for p from Eq(3). This gives us a partial differential equation (PDE) for S

$$H(q, \frac{\partial S(q, P)}{\partial q}) + \frac{\partial S(q, P)}{\partial t} = 0$$
(8)

Since the time dependence is only in the second term, we can separate this PDE into two pieces

$$S(q, P) = W(q, P) - E(P)t$$
(9)

$$H(q, \frac{\partial W(q, P)}{\partial q}) = E(P)$$
(10)

where Eq(10) is obtained by plugging in Eq(9) into Eq(8). Here E(P) is as yet undetermined, it has dimensions of energy. Similarly W(q, P) is undetermined as yet.

§Example of Harmonic oscillator

We can make some sense of the above equations Eq(8,9,10) by choosing

$$H(q,p) = \frac{p^2}{2m} + \frac{kq^2}{2}.$$
(11)

This implies from Eq(10)

$$\frac{kq^2}{2} + \frac{1}{2m} \left(\frac{\partial W(q, P)}{\partial q}\right)^2 = E(P), \tag{12}$$

and hence we can solve for W as

$$W(q, P) = \pm \int dq \sqrt{2m(E - q^2/2)} + C$$
(13)

where we must keep in mind that E = E(P). We will solve this further below, but let us first redefine the variables a bit.

§Action variable and angle variable

Let us get rid of P in favor of the action variable J. If we consider a periodic motion with $p = p(E,q) = \sqrt{(2m)(E - V(q))}$, we can define the action variable

$$J(E) \equiv \oint p(E,q)dq \tag{14}$$

we can invert this and write

$$E = E(J). \tag{15}$$

An explicit and simple example is the Harmonic oscillator Eq(11), where

$$E(J) = \frac{\omega_0}{2\pi} J,\tag{16}$$

with $\omega_0 = \sqrt{k/m}$. We also saw the example of the anharmonic oscillator $H = p^2/2 + q^4/4$, where

$$E(J) = cJ^{4/3}$$

Getting back to Eq(9), changing $P \to J$ and $Q \to \beta$ we rewrite it as

$$S(q,J) = W(q,J) - E(J)t$$
⁽¹⁷⁾

$$H(q, \frac{\partial W(q, J)}{\partial q}) = E(J)$$
(18)

and Eq(4) as

$$\beta = \frac{\partial S(q, J)}{\partial J},\tag{19}$$

and Eq(6,7) become

$$\dot{J} = 0, \tag{20}$$

$$\dot{\beta} = 0. \tag{21}$$

Taking the J derivative of Eq(17), and by plugging in Eq(19) and moving terms around, we write

$$\frac{\partial W(q,J)}{\partial J} = \frac{\partial E(J)}{\partial J} + \beta \tag{22}$$

where β is a constant in time. we now define the angle variable $\theta(q,J)$ and frequency constant $\omega(J)$ using

$$\theta(q,J) \equiv (2\pi) \frac{\partial W(q,J)}{\partial J}$$
(23)

$$\omega(J) \equiv (2\pi) \frac{\partial E(J)}{\partial J} \tag{24}$$

Hence Eq(22) becomes

$$\theta(q, J) = \omega(J)t + (2\pi)\beta.$$
(25)

The final thing to check is the proof of angular change in a closed orbit $\Delta \theta$.

$$\Delta\theta = \oint dq \,\frac{\partial\theta}{\partial q} \tag{26}$$

$$= (2\pi) \oint dq \, \frac{\partial^2 W(q,J)}{\partial q \partial J} \tag{27}$$

$$= (2\pi) \oint dq \, \frac{\partial^2 W(q,J)}{\partial J \partial q} \tag{28}$$

$$= (2\pi)\frac{\partial}{\partial J}\oint dq\,p\,dq \tag{29}$$

$$= (2\pi)\frac{\partial}{\partial J}J = (2\pi). \mathbf{QED}$$
(30)

We have used Eq(23) to get Eq(27), and then used Eq(3) with $S \to W$ in going from Eq(28) to Eq(29).