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1. INTRODUCTION 

(a) Background. In the early stages of classical mechanics it was the 
ultimate goal to integrate the differential equations of motions explicitly 
or by quadrature. This led to the discovery of various “integrable” 
systems, such as Euler’s two fixed center problems, Jacobi’s integration 
of the geodesics on a three-axial ellipsoid, S. Kovalevski’s motion of the 
top under gravity for special ratios of the principal moments of inertia, 
to name a few nontrivial examples. These efforts and their climax with 
the work of Jacobi who applied skillfully the method of separation of 
variables to partial differential equations, the Hamilton- Jacobi equations 
associated with the mechanical system, to establish their integrable 
character. 

However, this development took a sharp turn when Poincare showed 
that most Hamiltonian systems are not integrable and gave arguments 
indicating the nonintegrability of the three-body problem. In the same 
negative direction lies Brun’s discovery that the three-body problem has 
no algebraic integral except for the well-known classical ones and 
algebraic functions of these. These results express, in other words, that 
integrability of Hamiltonian systems is not a generic property; it is 
destroyed under small perturbations of the Hamiltonian. 

Therefore it seems an anachronismus to discuss these exceptional 
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integrable systems nowadays. However, in recent years various 
phenomena were discovered which are clearly intimately related to 
integrable Hamiltonian systems yet they have very different origin. One 
is related to the discovery by Kruskal and others [6] of so-called solitons 
for the Korteweg-de Vries equation. These are wave solutions of a 
nonlinear partial differential equation having a strong stability behavior. 
Originally these phenomena were brought to light by numerical experi- 
ments and later on related to the existence of infinitely many conservation 
laws that restrict the evolution of the solutions severely. If one interprets 
the partial differential equation, in this case the Korteweg-de Vries 
equation, as a Hamiltonian system in an infinite-dimensional function 
space, with a certain symplectic structure, and the conservation laws 
as integrals of this system, one can view this as an example of an 
integrable system of infinitely many degrees of freedom. This was made 
precise in the work of Zakharov and Faddeev [ 151. 

In an entirely unrelated development Calogero [2, 31 found that the 
quantum theoretical problem of n mass points on the line interacting 
under the influence of a potential proportional to the inverse square of the 
distance can be solved explicitly, and he conjectured that the corre- 
sponding classical problem might be integrable. This was established 
by Marchioro for the “three-body problem” by explicit calculation. 
Moreover, Calogero used his formula to study the scattering problem 
associated with then-particle systemin the quantumtheoretical framework 
and found that the scattering is essentially trivial, in the sense that the 
particles behave asymptotically like elastically reflected mass points. 

(b) Results. It is our goal to show a close algebraic connection 
between these so different problems. However, instead of studying the 
infinite dimensional problems related to the partial differential equation 
in the one and the quantum theoretical framework in the other case, we 
will restrict ourselves to finite-dimensional systems. The Korteweg- 
de Vries equation can be discretized so as to retain the desired integra- 
bility, as was shown by Toda [13] and his collaborators. Another dis- 
cretization leads to the differential equations 

du,ldt = &(euk+l - euh-I), (It = 1, 2,..., n - 1) (1.1) 

(where we set formally e ~0 = 0, &n = 0) suggested by M. Kac and 
P. v. Moerbeke [8,9]. Although this system does not have the appearance 
of a Hamiltonian system, it can be embedded into one, as was shown 
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in [12]. The remarkable fact is that there are [n/2] = v polynomials 
P, of ux: , e”k which are integrals of the motion, i.e., 

dP,ldt = 0 (p = 1, 2,..., v) 

if one inserts a solution of the above differential equations. Moreover, all 
solutions can be expressed in the form 

euk = Rk(7) 

where R, are rational functions of 

? = (71 )...Y 77”) and rll = ealt ,..., 7” = e@. 

These rational functions can, of course, not be explicitly described, but 
this representation suffices to give a complete description of the scattering 
problem related to this problem (see Section 7). 

Instead of Calogero’s quantum theoretical problem we look at the 
corresponding classical one, described by the equations 

where 

d2x,,‘dt2 = -@U/ax,), (k = 1, 2,..., n) 

u = c (Xk - x,)-2, k, 1 = 1, 2 ,..., n, (1.2) 
k<l 

the coordinates xx: of the mass points being distinct real numbers. This 
system is clearly a Hamiltonian system with 

where ye are the momenta. We will show that this system is an integrable 
Hamiltonian system, by which we mean that this system possesses n 
independent integrals Ik = Ik(x, y), globally defined in the phase space 
and in involution. In this case these functions are, in fact, polynomials in 
yk and (xI; - x1)-l. Using this result it is quite easy to verify Marchioro’s 
conjecture: The particles have an asymptotic velocity &( f 00) satisfying 

Thus after a fairly complicated interaction the particles emerge as free 
particles with velocities exchanged, that is, the first particle has for 
t + + co the velocity of the last for t --t -co, etc. 
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As a third example we discuss the equation on the circle 

with 

d2x,/dt2 = -(X+3x,) 

U=$ c sin2(x, - xi), 
wztmodn) 

(1.3) 

Here the xk are considered mod rr as distinct points on a circle. These 
equations are the classical mechanics analog to those of Sutherland [14]. 
Also this system will be shown to be an integrable Hamiltonian system 
with n integrals Ik which are polynomials in yk and cot(x, - x1). 

In contrast to the previous examples the last problem has a compact 
energy surface. On account of this fact the surfaces Ik = const 
(h = 1, 2,..., n) are compact and hence, as is well known, tori on which 
the solutions are quasiperiodic. However, the function theoretical 
character of these solutions has not yet been satisfactorily described. 

(c) Lax’s method. The common link between these problems is that 
they can be related to deformations of matrices leaving the eigenvalues 
fixed, that is, to isospectral deformations. For example, with (1.2) we 
associate a Hermitean matrix L having yk: as diagonal elements and 
i(x, - x1)-’ as elements in the (K, I)-position if K # 1. Then (1.2) gives rise 
to a differential equation for L = L(t) whose solutions have fixed 
eigenvalues, i.e., the eigenvalues, and hence their symmetric functions II, 
are integrals of the motion. The idea of finding integrals of the motion as 
eigenvalues of an associated linear operator L was developed by Lax [lo] 
for the Korteweg-de Vries equation, where L is given by the classical 
Sturm-Liouville operator 

-(d2/dx2) + q 

and the potential q is to be deformed in such a way that the spectrum 
is unchanged. This question is intimately related to the inverse problem 
of determining the spectrum from the potential. Instead of developing 
these ideas in generality we will illustrate them in the three simple 
examples mentioned above. 

In Section 2 we illustrate this method for Eq. (1. I), although this is in 
no way new. Indeed Flaschka [4, 51 b o served first that this method can 
be applied to the Toda lattice and this example is only a slight variation 
on this theme. In Section 3 we put Eq. (1.2) into the same framework 
and draw the conclusion for the associated scattering problem in 
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Section 4. The n-particle system (1.3) on the circle will be studied in 
Section 5. Finally in Sections 6 and 7 we discuss the inverse spectrum 
problem and the scattering problem associated with a special Jacobi 
matrix. The latter leads to an interesting motion in which particles 
separate in pairs, each pair having a different asymptotic velocity, 
while the two particles of one pair have the same asymptotic velocity. 
The scattering phases can also be determined by relating the differential 
equations to those for the Toda lattice for finitely many particles. 

(d) General remarks. These problems have connections with a 
multitude of topics besides that of dynamical systems. The fact that they 
are related to isospectral deformation points to the connection with 
spectral and scattering theory. The function theoretical nature of the 
solution and the rational character of the integrals relates to functions of 
complex variables. But also Lie algebras play into the subject; in fact 
the equations are very similar in nature to those studied by Arnold [l]. 
Arnold generalized the Euler equation for the rotation of a rigid body 
to dynamical systems in arbitrary Lie algebra. 

Many of these connections are still obscure, and we hope that the 
study of these simple finite dimensional examples will lead to further 
investigations clarifying the many questions left open. 

I want to express my thanks to H. Flaschka and G. Galavotti for 
many stimulating discussions in the beginning of this work. I am 
particularly indebted to Galavotti who pointed out Calogero’s work 
and insisted that the classical analog should be integrable, 

2. ISOSPECTRAL DEFORMATIONS 

We begin with an idea that was introduced by P. D. Lax in a different 
but closely related connection. Consider a class of matrices, say all 
Jacobi matrices of the form 

with positive entries a, , a2 ,..., a,-, . Their eigenvalues are real and 
simple. We ask for all matrices in this class having the same spectrum. 
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One may expect that there are not enough parameters available, but since 

K-ILK = -L for K = diag(1, -1, $1, **a), 

one has for the characteristic polynomial 

d,(X) = det(hl -L) 

the relation 

d,(h) = (-1)” &(-A). (24 

Therefore, with X also --A is an eigenvalue and X = 0 is an eigenvalue 
precisely if n is odd. Thus fixing the eigenvalues amounts to [n/2] 
conditions and the dimensionality of the isospectral matrices of the form 
(2.1) is 12 - [n/2]. 

To get some isospectral deformations, Lax [lo] considered differential 
equations of the form 

&L=BL-LB 

where L = L(t), t being the deformation parameter. The matrix B 
has to be chosen appropriately, so that the commutator [B, L] has zeros 
except in the two off-diagonals, and those should agree. In this example 
one finds as one possible choice the skew symmetric matrix 

r 0 0 

I 

a#22 0 
0 0 0 a2a3 

-w2 
O * B= : *' ,. 

0 a,-aan-l 
0 0 0 

--%-2%-l 0 0 

for which the differential equation (2.3) takes the form 

4 = %c(3+1 - 4-l>, k = 1, 2,..., n - 1 

where we set formally a, = 0 = a, . 

(2.4) 

It is clear that (2.3) gives rise to isospectral deformations: If we solve 
the differential equation 

-$U=BU, U(0) = I 
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then (2.3) assures that 

hence 

2 (U-1LU) = 0, 

u-‘LU = L(0). 

Thus the eigenvalues of L remain constant under this deformation. Also 
the coefficients Iti of the characteristic polynomial 

are integrals of the motion, which are polynomials in u12, us2,..., ui-r . 
By (2.2) only v = [n/2] of these are not zero, but the remaining 12, 
I 4 ,..., 1s” are actually independent polynomials. 

With 
a = l&+ 

k 2 

the equations (2.4) take the form 

zi, = &(euk+l - e”“-l) (K = 1,2,..., n - 1) (2.5) 

where we formally set us = -00, U, = --co. These are the equations 
which Kac and v. Moerbeke considered in their discretization of the 
Korteweg-de Vries equation [S].l The above derivation is, of course, 
not new; it is quite analogous to that of Flaschka [4]. But we will use the 
above representation (2.3) of the differential equation (2.4) to describe 
its solutions as rational functions of exponentiaks (Section 6) and to 
investigate the scattering problem related to (2.5) (Section 7). 

Incidentally, the above equations (2.3) do not represent the onIy 
deformations of L preserving the spectrum. On the contrary all B giving 
rise to such deformations form an (n - [n/2])-dimensional space [12]. 

3. THE ~-PARTICLE SYSTEM ON THE LINE WITH THE 

INVERSE SQUARE POTENTIAL 

We consider n particles on the line with coordinates x1 , x2 ,..., x, 
and define 

WJ) = c (Xk - e2, k, 1 = 1, 2 ,..., ?z (3.1) 
kc1 

1 As I learned from H. Flaschka, this system (2.5) and its relation to the Toda lattice 
was already mentioned by M. HCnon in a letter of August 28, 1973. 

607/16/2-6 
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as their potential so that the equations of motion are given by 

d2x,/dt2 = -@U/ax,) = 2 1 (xk - xj)-” (k = 1, 2 ,..., n). (3.2) 
j#k 

It is remarkable that this system possesses n integrals of the motion 
which are polynomials in i’k and (xk - x1)-“. This fact can again be 
derived by considering isospectral deformations of another class of 
matrices. 

The quantum-mechanical analog of (3.2) has been studied by 
Calogero and Marchioro in a number of papers [2, 3, 111 and Calogero 
succeeded in determining explicit expressions for the spectrum for this 
problem. He conjectured from his work that the classical problem, being 
the limit of the quantum-theoretical one, should be integrable. For n = 3 
this was already verified by Marchioro [l I] but his approach does not 
lend itself to generalization. In order to introduce the class of matrices 
adapted to this problem we set 

zkl = p - x1)-l 
I 

for k # 1 
for k=l 

and form the matrices 

2, = (x2 for (y.=l,2, 

Y = diagh ,..., ~4, (3.3) 

n 

= I 
G, for 01 = 2, 3. 

j=l 
D, = diag 

Then we define 

L=Y+ ‘Z1; B = iD, - iZ2 , 

so that L = L* is Hermitean and B skew Hermitean. 
The deformation equations 

(3.4) 

dLjdt = BL -LB (3.5) 

for this class of matrices can be transformed into the equation of motion 
(3.2)! This implies by the argument of the previous section that the 
coefficients I, of the characteristic polynomial 
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are integrals of the differential equations. Moreover, they are rational 
functions of the coordinates and in involution. 

To relate Eqs. (3.2) and (3.5) to each other observe that (3.5) depends 
only on the n - 1 differences xli+r - x, (K = 1,2,..., 7t - l), while (3.2) 
involves all n coordinates xk . Therefore we rewrite (3.2) in terms of the 
.zkr and yk = -3i’, 

j, = --f, xzz -2 f ,& 
j=l 

(3.6) 
*‘rz = 4Z(Yk - Yz>. 

Of course this system is highly redundant, since only the 12 - 1 variables 
,z~,~+~ are independent, the other being determined by the relations 

-1 -1 
zkl = ZkT + z,-,’ if k, 1, r distinct, and zkl + zlk= 0. (3.7) 

But one verifies immediately that these relations are consistent with 
(3.6): If they hold for t = 0 then for all t. 

Now we identify (3.6) with the deformation equations (3.5). For this 
purpose we have to compute 

[&Ll = v, Gl - [& 3 -%I + [Z, , &I (34 

where we used (3.4). Th e e ement 1 of [Z, , Z,] in the (K, E) position is 
given by 

7 (4Jrz - 2ZZkA 

hence the corresponding term in [Z, , Z,] - [Da , Z,] is 

To simplify this expression we use the identities (3.7) as follows: 
The summands of the sum above can be factored 

Q kZ.r = ‘+?+Z - z,2Zzk1. - (‘6~ - 8Z> akZ = @kr - %Z) pkZ.r 

with 
P kZ.r = (zkr%Z - @kr + %Z) zkZ)” 

If all K, Z, r are distinct, this takes the form 



206 J. MOSER 

on account of (3.7). For K + I one gets obviously 

Thus 

P 2 
kZ,r = -zkl if r = k or r = 1. 

which shows that [Z, , Z,] - [D, , Z,] is a diagonal matrix. If one com- 
putes the diagonal elements one finds 

with the notation of (3.3). Thus with (3.8) the equations (3.5) take the 
form 

dL/dt = i[Y, Z2] - 2D,, 

and, in components, 

j, = -2pgj, 

2k, = (Yk - %) & 9 

in agreement with (3.6). 
This establishes the existence of the integrals, as well as their rational 

character. In Section 4, in which we study the scattering problem for 
this system, we will find without further calculation that these integrals 
are in involution.2 

4. ASYMPTOTIC BEHAVIOR, MARCHIORO’S CONJECTURE 

The n-particle system of the preceding section has a very simple 
behavior. Since the particles exert a repelling force on each other they 
fly apart as t --f f 0~) and ultimately behave like force particles. From 
this it is clear that the limits lim t-tm kk( &~t) = 3ik( f 00) exist. As a matter 
of fact, these limit velocities or their symmetric functions can be assigned 
as integrals to the orbits to which they belong. Thus the existence of 
integrals is no surprise for a system like (3.2). However, the existence of 
rational integrals is remarkable, and it implies that 

Rk( + a) = %+I-k( - a), k = 1, 2 ,..., n, (4-l) 

2 Extending this method, M. Adler, a student at New York University, found n rational 
integrals for U = &<z {4% - %Y + twk - %n 
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so that the particles simply exchange their velocity. Moreover, the above 
velocities are distinct and agree with the negative of the eigenvalues of 
the matrix (3.4) belonging to the orbit considered. This way we will 
prove the fact that matrices of the form (3.4) always have simple eigen- 
values. One may ask for the phase shifts 6, defined by 

Xk(t) - Xn-k+l(-t) - 2*,( co)t -+ 6, 

for t --+ + co. It is easily verified that 6, = 6, = 0 for n = 2, and one 
may conjecture that 6, = 0 for any n > 2, but this we have not been 
able to establish.3 

The relations (4.1) have been established by Marchioro [l I] for the 
case n = 3 and were conjectured by him for arbitrary n. For the 
quantum-mechanical problem they were established by Calogero [2]. 

To prove the above assertion we observe that we may label the 
particles according to the order 

Xl < x2 < *** < x, . 

Indeed, since the Hamiltonian of (3.2) is given by 

sf = i= f Yk2 + c (Xk - xJ-2, 
k=l k<l 

(4.2) 

the minimal existence of the particles is bounded away from zero for any 
solution. Moreover, the velocities -yk = 3i”], are bounded for all t for 
every orbit. 

Our next goal is to show that 

~~Ykkk”, = YkUW) 

exists and that 

(4.3) 

From 
Yl(+a) > Y2(+~) > ... > m(+a). (4.4) 

$(jE, - il) = j; (Xn - xJ-” + c (Xj - q-3 > 0 (4.4’) 
j>l 

and the boundedness of ik we conclude, by integration that 

s 
_‘,, (Xk - x1)-3 dt < co for k > I = 1 and 

for Z<k=n. 

* Note added in proof. Meanwhile we have been able to verify that indeed 8, = 0 for 
all n > q. 
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Considering the other differential equations one concludes with a simple 
induction argument (which we forego) that (4.5) holds for all pairs 
K > 1. This, in turn implies from (3.2) that the limits lim,,, &(ft) 
exist, proving (4.3). B ecause of the ordering of the particles we have 
obviously 

3g+a3) < q+aJo) < ... G %a(+~) 

kl(-co) 3 R,(-al) 3 ... 3 &--co). 
(4.6) 

To prove (4.4) we proceed as follows: Consider first 4(t) = x, - x1 > 0 
which, by (4.4’), satisfies 

$4 > 2(xn - x1)-3 > 0. (4.7) 

Thus 4 is monotone increasing and $(+ co) 3 0, by (4.6). Were 
4(+ co) = 0 then d(t) < 0 and thus I$ bounded. But then the right- 
hand side of (4.7) would be bounded away from zero, hence 4 unbounded. 
This contradiction shows that 

Thus, in the first row of (4.6) we do not have equality in all places, i.e., 
there exists an s with 

%(+m) < %+,(+aJ). (4.8) 

From this we will show now z&( + m) < k8( + co) and *8+,( + 00) < &( + co) 
which implies readily that all velocity are different. It suffices to show 
x1( + co) < x8(+ co), the other case being symmetric to it. 

From (4.8) we conclude that xi - x, = O(t-l) for j > s and therefore 

; $65 - Xl) = c (% - xi)-3 - O(t--3) + j; (Xj - q-3 j<S 
> 2(x9 - x1)-3 - O(r-3). 

Thus t/ = x, - x1 + At-l with some positive constant A satisfies 

a+4 > 4(x8 - x1)-3 for t > t, 

and is bounded from below. Thus I/ is increasing and I&+ co) > 0. 
As before we conclude that the assumption 4( CO) = 0 leads to a contra- 
diction. Since 4(t) < &co) = 0 (t > to) implies # to be bounded for 
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t > t, hence I,$ would be bounded away from zero, and so $ unbounded. 
Thus $(co) > 0 as we wanted to show. 

Since yk = --3i’, we have established (4.4). This implies obviously 

(Xk - xJ-1 = O(t-1) for t-++cq k#l 

so that we can see that the matrix L(t) has a limit L( co) which is a diagonal 
matrix. Since the eigenvalues A, of L(t) are independent of t we have 

Yk(+a) = hk 

if we make the convention to order these like 

For t + -co the matrix L also approaches a diagonal matrix with the 
same eigenvalues in the diagonal, but, because of (4.6) in reversed order. 
Thus 

tik(+co) = -yk(+oo) = --h,; Rfl+&-CO) = -yn+&---0o) = -A, 

and (4.1) is proven. 
Finally, we observe that the integrals Ik = Ik(x, y) (k = 1, 2,..., n) are 

in involution. For X, - xk-r -+ co these integrals lk converge with their 
derivatives to ak(y), the symmetric functions of y. Thus the Poisson 
bracket 

G,, = i Vk 9 4) 
rcl a(% , rr) = (Ik ’ Id 

converges to {ak , uI} = 0. Thus, along any solution of our system 
G,, + 0 as t -+ co. On the other hand, as is well known, G,, are integrals 
themselves, hence Gkl = 0 for all X, y. 

5. THE PERIODIC CASE-SUTHERLAND'S EQUATION 

If one wants to study the problems of the previous two sections on the 
circle it is natural to use the identity 

E (x - k27)-2 = sin-% 
k=-m 
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as motivation to introduce the potential 

U(x) = 4 C 2 sin-*(c& - xJ) 
k#Z(n) 

(5.1) 

where the summation is taken over all distinct pairs K, 1 (mod n). The 
coordinates xk of the particles may be defined for all integers k such that 

xk = xz (mod(rr/or)) if and only if k = 1 (mod n), 

so that is suffices to consider xk for K = 1,2,..., n. The differential 
equations take the form 

d2xkldt2 = -(NJ/ax,) = 2a3 c cot LX(.%+~ - xj) sinp2(&(xk - xi)) (5.2) 
Sk(n) 

which is the classical analog of Sutherland’s equation [14]. With 
yk = -3i’, the Hamiltonian is 

ktmod n) 

sin-2(ol(xk - xz)) 

showing that, on an energy surface Z = const, the minimal distance of 
the particles remains bounded away from zero and the velocities 1 yk / 
bounded away from co. Thus the energy surface is compact and most 
solutions of (5.2) turn out to be quasi-periodic. This will be a con- 
sequence of well known facts [l] about integrable Hamiltonian systems 
if we show that (5.2) h as n independent integrals which are in involution. 

The construction of these integrals follows the pattern of Section 3. 
We set 

zgz = a cot a(xk - XI) if K # Z(n), 

zkZ - -0 if k = l(n) 

and rewrite the system (5.2) in the form 

(5.3) 
i;kZ = b" + dZ)bk -rZ) for k # Z(n). 

Here the last line follows from the differential equation for cot x. 
To put these differential equations in the form (3.5) we introduce the 71 

by n matrices 

zl = @kZ); z2 = 64z + a") 
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where k, 1 = 1,2 ,..., n. With 

Q = diag j(m5n) (+& + a”) ; 
1 I 

4 = diag C q&$ + a”> 
jfmod n) I 

Y = diag{y,) 
we set 

L = y+iz,; B = iD, - iZ2 . (5.4 

Then it is a straightforward, though surprising, calculation that (5.3) 
can be written in the form 

dL/dt = BL -LB. (5.5) 

In fact, for 01---t 0 the formal identities go over into those of Section 3, 
except for the boundary conditions. 

Thus it follows that the coefficients I, , I2 ,..., I, 

det(A1 -L) = An + I,X+l + 1.0 + In 

are independent integrals of the motion. We will not verify here that 
they are in involution ,* but observe that they are rational functions of 
yk and &(%-~z). 

To verify (5.5) one has to use the addition theorem for cot x which 
gives, for k, I, r distinct modulo n: 

hence, for k # 1 (mod n) 

P 0 
kZ.r = zk+&Z - a2 - @kr + +Z) zkZ = 

if r # k, Z(n) 
-& - a2 if r = k, Z(n). 

4 This could be done by replacing OL by ior and using the same argument as in the 
previous section. 
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so that the matrix with the elements CTQkl,r agrees with the diagonal 
matrix -20,. 

Now we compute the commutator 

L--G - Q , -&I = (1 Qw) = 44 
T 

and, thus, from (5.4) 

[& Ll = i[Y, -G] - [D, ,211 + [Z, , -%I = V’, &I - 20, . 

From this identity one reads off that (5.5) agrees with the equation (5.3). 
This makes the statement about the II, being integrals of the motion 
again obvious. 

6. RATIONAL CHARACTER OF THE SOLUTION OF (2.4) 

We return to the equations (2.4) or (2.5) an investigate their solutions d 
using the fact that these differential equations describe isospectral 
deformation of Jacobi matrices. We begin with introducing a set of 
variables TV on the manifold of Jacobi matrices (2.1) for which the 
spectrum is fixed. This is the analog of the inverse spectrum problem. 

Let 

R(h) = (AZ - L)-1 

and e, be the vector with components (1, O,..., 0). We introduce the 
rational function 

which has simple poles at X = Ak with a positive residue which we denote 
by rk2, so that 

fGv = jl&. 

On account of the symmetry property K-ILK = -L derived in 
Section 2, f(h) is an odd function of A. Thus, if we order the (always 
distinct) eigenvalues by 
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we conclude that 

hk = -L-k+1; 

andf(h) can be represented by 

rk = rn-k+l 

f@) = & *2 + Kn ‘+ 

where K~ = 1 for R odd, K, = 0 if n is even and v = [n/2]. 
Since f(h) N X-l for j X 1 --f co we have 

and we prefer to free ourselves from the latter restriction by using the rk 
as projective coordinates. Therefore we set 

f0) = ckl rk%h - hk) = 

c:z=, ‘k 

YZL 2hr,2/(h2 - X,2) + K&,2,$) . 

X:=1 2r2 + K& 

(6 2) 

The n variables ri , r2 ,..., rV , %?“+I, Xl > A2 ,***, A, can be used to 
describe the Jacobi matrix (2.1) uniquely up to scaling of the rk . In fact, 
the squares ak2 (k = 1, 2,..., n - 1) of the elements in (2.1) can be 
expressed rationally in terms of those rj , hj , 1 < j < v and T,+~ if n is 
odd. The reason for this fact lies in the representation of f(h) as a 
continued function 

f(h) = 1 
h--!!iYL 

h-f?? 6.3) 

h - a,T1 
h 

which goes back to Stieltjes (used also in [12]). Since the computation 
of the continued fraction from the partial fraction expression is a rational 
process one finds that 

ak2 = Rk(r, h) (6.4) 

where the R, are rational functions, homogeneous of degree zero in the 
rj and homogeneous of degree two in A. 
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Moreover, (6.4) can be viewed as mapping which takes the domain 

D = {(A, y), 4 >./\a > .** > A, > 0; rj > 0 (j = 1,2,..., II - v)} 

into the domain onto 

D = {Uj > 0,j = 1, 2 )..., 7t - 1) 

in such a way that the pre-image of each point is precisely one ray 
(pr, A) with a scalar p > 0. 

We will show that in these homogeneous coordinates the differential 
equations take the simple form 

A, = 0; fk = -A,%, ) (6.5) 

so that, via (6.4) the uL2 appear as rational functions of exponentials 
e-A18 1 ,..., e--1,Q. 

To prove this assertion we introduce the eigenvectors $(Aj) of L which 
we normalize by 

If L is a solution of (2.3) these eigenvectors become functions of t 
which evolve according to 

where U(t) is the unitary matrix of Section 2. Thus the eigenvectors 
satisfy the differential equation 

We compute the resulting differential equation for the first component 
95 = k3 ,d) 

41 = -%%da 

and use the equations resulting from (L - A)$ = 0 

--h+, + 4 = 0 
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to express $a in terms of +i , One finds readily 

so that the differential equations for +i become 

rjl = -(A2 - ul”)& . (6.7) 

Finally, to show that the &(A,) are proportional to the rk we write the 
resolvent R(h) in terms of the eigenvectors obtaining 

f(h) = (R(h) el , e,) = C (‘f+he:)l 
k 

so that 

Thus the differential equations (6.5) give 

$&bJ = -(&c2 - c Wj2) +1&J. 
It is easy to verify that 

a12 = c Aj2Yj2 (z yf’ 

j  i 

and the second equations of (6.5) h ave been verified. The first equations 
of (6.5) are clear from the derivation. 

Thus the solutions ak2 of (2.4) are rational functions of exponential 
functions. We describe the solution for n = 4. Computing the continued 
fraction off(X) explicitly one finds 

2 _ hay? + A22+22 
a1 - Yl2 + Y22 ' a2 2 = ,,rp;;22,y;T$y; y22) ' 

b2&a2(Y12 + y2) 

as2 = /yYl" + A,%,2 * 

Inserting ri = rj(0) e- A~21 we obtain the explicit solutions of (2.4). 
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7. THE SCATTERING PROBLEM ASSOCIATED WITH THE EQUATION OF 
KAC AND v. MOERBEKE 

In order to study the asymptotic behavior of the solution of (2.5) we 
consider 

uk = xk - Xkfl , k = 1, 2,..., n - 1 (7.1) 

as the difference between the positions xk of n particles on the line. If the 
x, satisfy the differential equations 

jf‘, = -+(e”k + &Q-l), k = 1, 2,..., 11 (7.2) 

where we formally set eUo = 0 = eh, or x,, = - 00, x,+i = +co then 
clearly (2.5) follows. Conversely the xk are determined only up to 
translation and for any solution xle(t) of (7.2) also xk(t) + c is a solution 
giving rise to the same solution of (2.5), provided c is a constant. For 
simplicity we will assume that n = 2v is even. 

We ask for the asymptotic behavior of the solution of (7.2) for t --+ f co 
and the relation between the scattering data. We will show that any 
solution of (7.2) behaves linearly for large t: 

where 
Xk(,d) - fakat + pk* as t++co 

+ + - 
C$j = OIzj-1 = %-2j+2 = ffn-2j+1 9 j = 1) 2 ,...) Y, (7.3) 

i.e., the particles travel asymptotically in pairs, while the different pairs 
have negative and different velocities, in fact, it turns out 

%;. = -2x.2 
3 7 j = 1, 2,..., v (7.3’) 

where the A, > A, > *** are the eigenvalues of L. 
We will also determine the relation between the phases. First of all, for 

the neighbors we have the asymptotic distances 

/g& - p$ = log(-2a,+) = log(4Aja) 
(7.4) 

Pii-2i+l - Bla-2i+2 = 1og(-201i+) 

and for the phases of pairs with the same velocities 

p; - p;wzi+2 = -1 log 4(011k - a&)” + c log 4(c& - a&)“. 
k<j k>j 

(7.5) 
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Thus the particles undergo a scattering in which the pairs behave as if 
they interacted pairwise at a time. 

The results (7.3), (7.3’), (7.4) are easily derived and we begin with 
their proof. We recall the differential equation (2.4) 

4 = ale(4+1 - 4-l>, k = 1, 2,..., 71 - I 

with a, = 0 = a, from which we see that 

n-1 

c ak 2 = const 
k=l 

along solutions. Thus ak are bounded. Since 

-$ log(a,a, *.+ czZj-J = u& 

we conclude that 

I 
* 2 asj dt < co. 

0 

Since d, is bounded this implies that 

a,&) -+ 0 as t--++co. (7.6) 

Thus, the Jacobi matrix L(t), given by (2.1), is asymptotic to a matrix 
blocked into two by two matrices with eigenvalues -lazi-,(t),j = 1,2,..., v. 
Since, on the other hand the eigenvalues A, are distinct and independent 
of t it follows that the limits azjhl(t) -+ aziel(cO) exist and agree with 
these eigenvalues in some order. From the differential equations 

a2i 2 
- = %a+1 

2 

a2j 
- a2i-1 

and from (7.6) it follows that 

4j+1w < &lW 

and thus, if we order the eigenvalues A, of L according to (6.1) we 
conclude 

Q,j-1(t) - 4 > (j = 1, 2 ,...) V). (7.7) 

Using the relation 

4ak2 = pi = e=k-ak+~ (7.8) 
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we conclude from (7.1), (7.2), (7.7), (7.8) that 

~‘zi(+cJ3) = *2j-l(+co) = -2Aj2 

proving (7.3’) and the first part of (7.3). The other part follows by 
considering the asymptotic behavior for t -+ - co analogously. 

Moreover, (7.7) and (7.8) implies that 

Xs&..~ - xgj -+ log(4&q for t-+ +co 

proving the first part of (7.4). The second follows similarly. 
It remains to prove (7.5). This will be done by relating the first order 

differential equations (7.2) to a second order system related to the Toda 
lattice, for which the scattering problem has been solved [12]. We notice 
that differentiation of (7.2) yields 

sik = -~(e%i, + euk-ltik-l) 

= -pk(e%+l _ ,%-1) + pk-l(pk - e”k-8)} 

= -)(gk-%+B _ e%-r-%) 

where we set the undefined exponential terms equal to zero. Thus with 

t* = x25; 7 = t/2 (7.9) 

we have 

d2fj au - = &-1-h _ &‘5+1 = - 
dr= aff ) 

(j = 1, 2,..., V) (7.10) 

where 
v-1 

u = 1 efi-(r+l* 

j=l 

This Hamiltonian system has already been established as an integrable 
one [13]. For the scattering one has again 

5,‘(+=)) = 4:+1-d---~), j = 1, 2,..., Y 

which is consistent with (7.3) as fj’( & CO) = 2~& , and 

f,(T) - &+1-1(--T) - 2Y57 + c 6, (7.11) 
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where 

yj = [j’(+CO) = 24j; S,j = 
WYk -  % I ” %  

k>j 

-l%h -  Yj>“Y k <j. 

With (7.9) the relation (7.11) translates readily into the statement (7.5). 
We conclude with a comment on the relation between the differential 

equation (2.5) by Kac and v. Moerbeke and the equations (7.10) for the 
the Toda lattice. The first one corresponds to an isospectral deformation 
of the Jacobi matrix L given by (2.1), with zeros in the diagonal, while 
the second-order differential equation corresponds to such deformations 
of such Jacobi matrices with arbitrary diagonal elements (see [4, 121). To 
establish the connection between the two we form L2 which is not any 
more a tridiagonal matrix, but is similar to one. In fact, with ear 
(o! = 1, 2,..., n) denoting the unit vectors, one finds that L” leaves the 
spaces E, = span(e, , e3 ,..., e,_,) and E, = span{e, , e4 ,..., e,> invariant 
and reduces in each of these spaces to a symmetric Jacobi matrix. This 
explains why the solutions of (2.4) are rationally expressible in terms of 
e+jzt while solutions of the corresponding equations for the Toda 
lattice are rational in e--hjl. This illustrates in a simple example how the 
operation L -+ L2 and more generally L +f(L) plays a role in these 
problems. 
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