
Physics 210- Fall 2018

Classical and Statistical mechancis

Home Work # 1
Posted on October 5, 2018

Due in Class October 18, 2018

1. Functional derivatives
Consider a functional of a function Ψ(x)

F [Ψ] =

∫ L

0
dx{a

2
|Ψ′(x)|2 +

1

2
|Ψ(x)|2 +

g

4
|Ψ(x)|4}.

a) Assuming Ψ is a real function calculate the functional derivative
δF

δΨ(x) . . . . [5]

b) Assuming Ψ is a complex function calculate the functional deriva-
tive δF

δΨ∗(x) . Here you may assume Ψ,Ψ∗ are independent of each other.

. . . [5]

c) In the first case compare the fixed boundary condition (i) δΨ(0) =
0 = δΨ(L) and the periodic boundary condition (ii)δΨ(0) = δΨ(L) 6= 0
together with Ψ′(0) = Ψ′(L). . . . [5]

d) Assuming case (a) and periodic boundary conditions, find the func-
tion Ψ(x) which minimizes the functional F at g = 0, a = 1 under the

constraint of fixed magnitude
∫ L

0 dxΨ(x)|2 = 1. (Here you need to set
up a differential equation for Ψ and solve it in the case when g = 0.
This is easy since g = 0 reduces it to a linear differential equation.)
. . . [5]

{Comment: This problem gets you going with a set of tricks that
are useful in Classical mechanics, and also field theory and quantum
mechanics. It is a little beyond what we did in class but hopefully not
out of reach. Feel free to ask for help. }

2. Differential equations and difference equations. Use any convenient
software for help with this problem, e.g. Mathematica, Matlab,..

Consider the 1-d anharmonic oscillator in dimensionless form

H =
p2

2
− x2

2
+
x4

4
.



a) Write the Lagrangian and Hamiltonian equations of motion. . . . [5]

b) Using the discretization t = j∆t, j = 0,M − 1, with a variable M,
convert these two equations to difference equations. Solve the two sets
of equations from t=0 to t= 10, by iteration for M=10,100,1000 with
initial conditions x(0) = 0; q(0) = ẋ(0) = 0.2 and compare the various
solutions. . . . [5]

c) Using a representative M, compare the Hamilton equations solutions
with the case x(0) = −1, q(0) = ẋ(0) = 0.2. . . . [5]

d) Draw the phase portraits of the oscillator, by eliminating t and
plotting p versus x by exploring various values of the energy of the
oscillator. We expect to see circles surrounding the two points x = ±1
representing small oscillations around the equilibrium, and a larger
set of closed curves surrounding both. These would be separated by
a ”critical curve” called the separatrix. (This problem has a large fan
following in the internet so you should be able to get some help using
google scholar.) . . . [5]

3. Poisson brackets:

Writing briefly [] ≡ []PB, show the properties

a) For any three functions

[f, g] = −[g, f ]

[f + g, h] = [f, h] + [g, h]

[fg, h] = f [g, h] + [f, h]g

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0, Jacobi’s identity

{ Comment: These important properties are common to quantum
commutators and used frequently, e.g. in part(b) you will need these}
. . . [5]

b) Calculate the PB’s [qi, p
3
j ], [Exp[3qi], p

2
j ] . . . [5]

4. Legendre Transforms: General theory and examples

We may define the Legendre Transform (LT) of any function F (x) as

G(y) = {yx− F (x)}LT = yx(y)− F (x(y)) (1)

where
F ′(x(y)) = y,



i.e. at a given y, we solve for x(y) where the slope of F matches y.

An often added convention: If multiple solutions of F ′(x) = y exist,
the convention is to choose the solution for which G′′(y) > 0 i.e. G is
a concave-up function of y.

Note: In Eq. (1) we have chosen the sign using the CM convention
(used in Classical Mechanics). In Thermodynamics and Stat Mech we
will use the SM convention (i.e. the opposite convention), multiply the
RHS by −1. With the CM convention the LT of a concave-up function
is another concave-up function, while with the SM convention the LT of
a concave-up function is another concave-down (or equivalently convex
up) function.

a) Calculate G(y) the LT of

F (x) = ex−1.

. . . [5]

b) Calculate the LT of G(y) and show that we get back F (x). . . . [5]

c) Calculate the LT of

F (x) =
x2

2
− x3

3
.

Show that this leads to two functions G1(y) and G2(y). Show that
only one of these satisfies the concave-up convention. Graph these
functions over a sensible region of x, y . . . [5]

d) Calculate the LT of G1 and G2 found above, and show that only
one of them recovers the F (x). . . . [5]

5. Considering a relativistic Hamiltonian (1-d)

H =
√
p2c2 +m2c4 + U(q),

a) Find Hamilton’s equations of motion. . . . [5]

b) Carry out the LT to calculate the Lagrangian. Comment on the
form of the kinetic energy in the Lagrangian- is the result what one
might have expected? . . . [5]

c) From the Lagrangian calculate the Lagrange equations of motion,
and show that they are the same as those in (a). . . . [5]



6. To describe the electromagnetic field interacting with a charged par-
ticle in 3-d,we use a Lagrangian

L =
m

2
~̇r.~̇r − qe(Φ(r)− 1

c
~̇r. ~A(~r))− V (~r),

where qe is the electron charge, the vector potential ~A and scalar po-
tential Φ lead to EM fields through the usual relations

~∇× ~A(r) = ~B(r),

~E = −~∇Φ(r)− 1

c

∂ ~A

∂t
,

and V (~r) is an arbitrary external potential.

a) Using the Legendre transforms, find the Hamiltonian for this prob-
lem. . . . [5]

b) While L is linear in ~A, note that H is quadratic in A. Do you
think this quadratic dependence can have observable effects? (A brief
answer will suffice). . . . [5]

c) From the Lagrange equations of motion show that the force experi-
enced by a particle is

m~̈r = −~∇V + qe{ ~E +
~̇r × ~B

c
}.

Note that the second term is the familiar Lorentz force, it is this equa-
tion that justifies the choice of the Lagrangian. . . . [10]


