Physics 210- Fall 2018

Classical and Statistical mechancis

Home Work # 2 Posted on October 22, 2018 Due in Class October 30, 2018

1. Generalized Coordinates Example 1

{Comment: The first two problems are from Landau-Lifshitz Mechanics, where the part (a) of the problems are already solved. We will push ahead a bit more than they do. }

a) Find the generalized coordinates for a coplanar double pendulum. (Solved in LL Problem 1 page 11) $\dots [2]$

b) Find the equations for the two coordinates ϕ_1, ϕ_2 [5]

c) Comment on how you would solve these problems. (If you actually can solve them on a computer that would earn some extra credit) \dots [3]

2. Generalized Coordinates Example 2

a) Find the generalized coordinates for a simple pendulum of mass m_2 moving in the x-y plane supported with a mass m_1 that is constrained to lie on a horizontal line along x axis. (Solved in LL Problem 2 page 11. See the figure in the book). $\dots [2]$

b) Write down the equations for the x and ϕ variables. ... [5]

c) Comment on how you would solve these two equations. (If you actually can solve them on a computer that would earn some extra credit) ...[3]

3. Lenz vector problems

b) From the above equation of motion show that $\vec{A}.\vec{r} - kr = \frac{L_z^2}{m}$, i.e is the equation of an ellipse. What is the eccentricity e in terms of A?[5]

c) Show that that $e^2 = 1 + 2EL_z^2/(mk^2)$ when expressed in terms of the energy E, and thus relate |A| to E.[10]

4. Central field problem

Assuming that the central potential is given by $V(r) = -\frac{k}{r^{\sigma}}$, with $\sigma = 1, 1.5, 2$ and choosing suitable initial conditions and an illustrative value of the conserved energy and (non-zero) angular momentum:

a) Compute and plot r(t) versus t for a sufficiently large range of times t,

b) Compute and plot $\phi(t)$ versus t using the above solution (from $mr^2\dot{\phi} = L_z$).

c) Eliminate t and plot r(t) versus ϕ to illustrate that the orbits are closed in the case of $\sigma = 1$ and not otherwise. In other cases show that the $r(t) - \phi(t)$ curves are space filling.

...[10]

5. Velocity dependent forces and energy conservation

We generalize Lagrange's equations to a more general form

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} = \frac{\partial L}{\partial q} + Q[q, \dot{q}]$$

The case of physical interest in viscous damping has

$$Q = -k\dot{q}$$

with k > 0

a) Show that the equation of motion exhibits damping i.e. decay at long times by solving exactly the (simple) examples of $V = 0, \frac{kq^2}{2}$. (Here V is the potential energy in L).[5]

b) With energy $E \equiv \frac{m\dot{q}^2}{2} + V(q)$, show that its rate of change is negative, i.e. dE/dt < 0, due to damping. What does this mean physically?[5]