# Physics 210- Fall 2018 

# Classical and Statistical mechancis 

## Home Work \# 2

Posted on October 22, 2018
Due in Class October 30, 2018

1. Generalized Coordinates Example 1
\{Comment: The first two problems are from Landau-Lifshitz Mechanics, where the part (a) of the problems are already solved. We will push ahead a bit more than they do. $\}$
a) Find the generalized coordinates for a coplanar double pendulum. (Solved in LL Problem 1 page 11)
b) Find the equations for the two coordinates $\phi_{1}, \phi_{2}$.
c) Comment on how you would solve these problems. (If you actually can solve them on a computer that would earn some extra credit) . . . [3]
2. Generalized Coordinates Example 2
a) Find the generalized coordinates for a simple pendulum of mass $m_{2}$ moving in the $x-y$ plane supported with a mass $m_{1}$ that is constrained to lie on a horizontal line along $x$ axis. (Solved in LL Problem 2 page 11. See the figure in the book).
b) Write down the equations for the $x$ and $\phi$ variables.
c) Comment on how you would solve these two equations. (If you actually can solve them on a computer that would earn some extra credit)
3. Lenz vector problems
a) For the gravitational problem $V(r)=-\frac{k}{r}$, we wrote down the Lenz vector $\vec{A}=\dot{\vec{r}} \times \vec{L}-k \frac{\vec{r}}{r}$. Using the equation of motion for $\vec{r}$ show that $\vec{A}$ is conserved.
b) From the above equation of motion show that $\vec{A} \cdot \vec{r}-k r=\frac{L_{z}^{2}}{m}$, i.e is the equation of an ellipse. What is the eccentricity $e$ in terms of A? ... [5]
c) Show that that $e^{2}=1+2 E L_{z}^{2} /\left(m k^{2}\right)$ when expressed in terms of the energy $E$, and thus relate $|A|$ to $E$.
4. Central field problem

Assuming that the central potential is given by $V(r)=-\frac{k}{r^{\sigma}}$, with $\sigma=1,1.5,2$ and choosing suitable initial conditions and an illustrative value of the conserved energy and (non-zero) angular momentum:
a) Compute and plot $r(t)$ versus $t$ for a sufficiently large range of times t,
b) Compute and plot $\phi(t)$ versus $t$ using the above solution (from $m r^{2} \dot{\phi}=L_{z}$ ).
c) Eliminate t and plot $r(t)$ versus $\phi$ to illustrate that the orbits are closed in the case of $\sigma=1$ and not otherwise. In other cases show that the $r(t)-\phi(t)$ curves are space filling.
5. Velocity dependent forces and energy conservation

We generalize Lagrange's equations to a more general form

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}=\frac{\partial L}{\partial q}+Q[q, \dot{q}]
$$

The case of physical interest in viscous damping has

$$
Q=-k \dot{q}
$$

with $k>0$
a) Show that the equation of motion exhibits damping i.e. decay at long times by solving exactly the (simple) examples of $V=0, \frac{k q^{2}}{2}$. (Here $V$ is the potential energy in $L$ ).
b) With energy $E \equiv \frac{m \dot{\dot{q}}^{2}}{2}+V(q)$, show that its rate of change is negative, i.e. $d E / d t<0$, due to damping. What does this mean physically?

