Physics 210- Fall 2018
Classical and Statistical mechancis

Home Work # 3
Posted on November 8, 2018
Due in Class November 20, 2018

1. Canonical Transformations Example 1

a) From the theory of canonical transformations calculate the trans-
formation generated by Fi(q, Q) = Q/q of the free particle problem

H = p*/(2m).

b) Find the Hamiltonian equations of motion in the new representa-
tion, and solve them exactly.

2. Canonical Transformations Example 2

a) Show that a canonical transformation from ¢,p to any required
Q@ = Q(q) (i-e. a function of ¢ only) can be generated by the generator
F2 (Q7 P)

b) Find the F5(q, P) necessary to make the transformation in 2 dimen-
sions from 7= {x,y} to the standard polar coordinates r,6 .

c¢) Using (b) find the full transformation from ¢, p'to the new canonical
momenta and coordinates.

d) Verify that the new coordinates satisfy the canonical algebra by
computing the 4 poisson brackets {Q;, Pj}qp-

3. Action problem

a) For the simple harmonic oscillator
H =p*/(2m) + k¢*/2,
calculate the action

J(E) = fpdq,

by integrating over a complete cycle. From the derivative with respect
to energy, calculate the time period.



b) Do the same calculation for the quartic oscillator
H = p*/(2m) + kq' /4,

where you can use scaling to get the energy dependence of the action,
and ignore (i.e. leave undetermined) the fairly cumbersome integral,
which is dimensionless and hence less important.

¢) Show that time period can be written as

T(E)://dpdqé(H—E),

by differentiating the formula for J(F) and evaluate this integral for
the Harmonic oscillator directly to confirm the result of (a).

{ Hint: This problem requires you to use the familiar formulat §(z) =
%9(:5) where © is the Heaviside step function. }
. Thermodynamics and partial derivatives Example 1

a) We worked out a few examples of thermodynamic potentials,
dE =TdS —pdV + udN

dF = —SdT — pdV + pdN
dQ = —SdT —pdV — Ndp

Using the standard conditions for exact differentials, this leads to the
Maxwell relations. For example from the first equation we read

OPE  O°E

dSoV VoS
and hence

dp oT

~3g VN = W|S,N-
This is an example of a Maxwell relation. It is infact rather useless
since we did not choose the potential strategically. We get more use-
ful ones by rewriting the first equation by moving S to one side and
everything else to the other. Doing this, write down the 3 Maxwell
relations from the first equation.

b) Similarly write down the 4 Maxwell relations from the second and
third potentials by dropping the number variation.



5. Thermodynamics and partial derivatives Example 2

Using the tricks in Landau Lifshitz Stat Mech (Pages 49-51 - scan in
the website) show

a)
oC, _ oV
op'" T oarz'’
This is Eq 16.2 of LL.
b) Show that (16.6)

OF oV ov
apIT = Tople = Pyplr

c)Show that (16.8-1)

oF ov
ar'? =%~ Par

oT P

6. No submission required but verify these important identities for Jaco-
bians

Page 51 LL, (I), (II), (III), (IV), (V).

{We will use these in the next few classes }
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Correspondingly, in a state of thermal equilibrium the free energy and the
thermodynamic potential have minimum values, the former with respect to all
changes of state with 7"and ¥ constant, and the latter with respect to changes
of state with 7"and P constant.

PROBLEM

How can the mean kinetic energy of the particles in a body be calculated if the formula”

for its free energy is known ?

SoLuTioN. The Hamiltonian function (or, in the quantum case, the Hamiltonian opera-
tor) may be written in the form E(p, g) = U(q)+ K(p), where U(q) is the potential energy
of interaction of the particles in the body, and K(p) their kinetic energy. The latter is a
quadratic function of the momenta, inversely proportional to the particle mass m (for a
body consisting of identical particles). Regarding m as a parameter, we can therefore write

OE(p,g;m) 1
om B 10
Then, applying formula (15.11), we obtain the mean kinetic energy K = f(jpj:
K = —m(OF[om)y, y.

§16. Relations between the derivatives of thermodynamic quantities

In practice the most convenient, and the most widely used, pairs of thermo-
dynamic variables are 7, V and 7, P. It is therefore necessary to transform
various derivatives of the thermodynamic quantities with respect to one
another to different variables, both dependent and independent.

If V and T are used as independent variables, the results of the transforma-
tion can be conveniently expressed in terms of the pressure P and the specific
heat C, (as functions of ¥ and T). The equation which relates the pressure, vol-
ume and temperature is called the equation of state for a given body. Thus the
purpose of the formulae in this case is to make it possible to calculate various
derivatives of thermodynamic quantities from the equation of state and the
specific heat C,,. :

Similarly, when P and T are taken as the basic variables the results of the
transformation should be expressed in terms of ¥ and C, (as functions of
Pand 7).

Here it must be remembered that the dependence of C, on V or of C, on P
(but not on the temperature) can itself be determined from the equation of
state. It is easily seen that the derivative (6C,/0V) can be transformed so that
it is defined in terms of the function P(V, T). Using the fact that § =

—(0F/aT)+,, we have
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and since (0F/d Vp= <P, we have the required formula
(@C,/oV)p = 7(2%P[oT?),. (16.1)

Similarly we find
(0C,/oP), = —T(0*V/oT?), (16.2)

formulae (15.8) being used in the calculation. :

We shall show how some of the thermodynamic derivatives most often
encountered may be transformed,

The derivatives of the entropy with respect to volume or bressure can be
calculated from the equation of State by means of the following formulae,
which are a direct consequence of the expressions for the differentials of the
thermodynamic quantities. We havye

e O REE S s
%), ~ar o), = a1 ),

or
(@S/oV), = (oP/oT),,. (16.3)
Similarly
GAY S0 oD Gl
(‘aﬁ') Tl (ay) =T8T (é}»‘),,.
or
(8S/8P), = —(@V/or),. (16.4)

The derivative (0E/D V) pis calculated from the €quation dE = TrdS—pPdy
as

or, substituting (16.3),

(gi:-)T = T(S;) S (16.5)

Similarly we can derive
B,
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Finally, we shall show how the specific heat C, may be calculated from
the specific heat C, and the equation of state, using 7" and P as the basic
variables, Since C= T(aS/aT)V, we have to transform the derivative
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(0S/0T)y to different independent variables. A transformation of this type
is most simply effected by the use of Jacobians." We write

C, = T(QS/oT)y
= TS, V)/(T, V)
(S, V)/o(T, P)
(T, V)J(T, P)
_ @S/3T)p (BV[3P)r —(9S[0P)r (O [0T
@V]oP),
(0S/0P)y (0V/3T)p
(@V]oP)y

= C,—T

Substituting (16.4), we obtain the required formula:

Co—C, = —T[(@V/[OT)p]2/(®V/3P)q. (16.9)

Similarly, transforming C,, = T(0S/0T)p to the variables 7, ¥, we can
derive the formula

C,—C, = —T[(®P/oT)y]?/(0P[OV)y. (16.10)

The derivative (0P/dV) is negative: in an isothermal expansion of a body,

its pressure always decreases. This will be rigorously proved in §21. It therefore
follows from (16.10) that for all bodies

G (16.11)

In adiabatic expansion (or contraction) of a body its entropy remains con-
stant. The relation between the temperature, volume and pressure of the body
in an adiabatic process is therefore determined by various derivatives taken at

T The Jacobian 0(«, v)/0(x, y) is defined as the determinant

o(u, v) i% Qu/ox Qu/oy |

a(x,y) |ov/ox ovfoy |’ D
It clearly has the following properties:
o(v, u) o(u, v)
= x II
3% %) 0
ou,y) _ (0u
s = (5), L
The following relations also hold:
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