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(a) A particle of mass m moves in 2-dimensions without friction on
a wire shaped as an ellipse

513'2 y2
St =1

Write down its Lagrangian and the Lagrange equations of motion using
a suitable generalized coordinate. (It may be convenient to use a =

(a® +0%)/2, B = (b* — a*®)/2 instead of a,b.) ... [15]

We can parametrize as
x =acos(f), y=bsin(0),

and hence & = —asin(f), y = bcos(f). Therefore the Lagrangian

Lociiv2 g2y L ave ‘
L= §m[(:v) +(9)7] = §m(9) (a+ B cos 20).

Therefore 22 = m@(a + S cos 20), and ‘g—g = —mb?Bsin 20.

a6
To obtain the EOM we need
d OL . :
ey = mb(a + B cos20) — 23mb*sin 26.
Thus the Lagrange EOM %g—g = g—s becomes

(o + Bcos260) = B6sin 20 --- Eq(a)

(b) Write down the Hamiltonian in the same coordinates as (a).
Show that the energy is conserved using the explicit form of the La-
grange equations of motion. ... [10]



We write the momentum from

Dy = gg‘ — m@(oz + Bcos20) -+ Eq(b)

to eliminate  in favor of py. Thus

1 3
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2m o+ [ cos 26 a(e)

To check the conservation of energy write the EOM FEq(a) as

4 _ 4 Bsin20

5= a T Ao n) - Eq(a.l)

Both sides are exactly integrable. Integrating both sides we get

d 1d
pr log § = ~5% log(a + 3 cos 20),

and hence

d 2

g log <9 (o + [ cos 29)) - Fq(a.2)
Using FEq(b) this implies that the time rate of change of Eq(c), i.e. the
energy, is zero. QED

. Consider a 1-dimensional elastic continuum with a Lagrangian

Lot = 5 [ do [0, = 0000 = it

where ¢(z,t) is the dlsplacement of the medium at the point z, ¢ =
Op), and the action A = f ! L dt as usual. Assume periodic boundaries.
Find the (Euler) Lagrange equations of motion. Show that these have
a wave like solution with frequency

wi = cak? + it

. [20]



The Lagrange EOM requires us to compute

0A -
577[)<I,t) = ¢(Iat)
0A
o = ke — i)

these functional derivatives have been calculated by throwing one of
the 0, to its left using integration by parts, as done in class for the case
1= 0. Hence the EOM satisfied by 1) is

V(w,t) = cod?P(x,t) — p*(a,t).
A wave-like solution of this linear equation clearly exists with
Y(z,t) = Aetlkr—wit)

provided
wip = cok® + it

(a) Consider a gas of particles with energy dispersion e, = h?k?/(2m)
in d-dimensions. For the cases d = 1,2 calculate the density of states

nq(e) = Z d(e —ex).

... [15]
{ Hint: We have derived the density of states for d = 3 where the

answer is 5
L3 /2m)\?
n(E) = i (n—) -

Use the same method adapted to lower dimensions. }

[SIE

Let us consider

ni(e) = 25(5 — &) = L /Uoodk‘é(s—ak)

™



Changing variables from k to u as

V2
i or dk = vm

, du.
h hv2u

u=h*k*/(2m), i.e. k =

Hence

_£ Oo\/ﬁ UolE—u) = \/ﬁ
ni(e) = /0 M dudle —u) = L2

/e

In 2-dimensions we write

2

ny(e) zzk:a(g—gk) = (;)2 /dkmdk:yé(e—sk)

Since k? is rotation invariant in 2-d we write a polar decomposition
dky dk, = kdk d¢, where 0 < ¢ < 27. The energy ¢, is independent of
¢, and can be integrated out. Hence

L? [

na(e) = —/ kdkd(e — eg).

(2m) Jo
We use the same change of variables from & to u as in 1-d, and keep
track of the extra factor of k£ in the integration from change to polar
variables. Hence

L?> m [*®

na(e) = o ), dud(e — u),

and hence

L?> m

(27) h?

ny(e) =
(b) Prove the Maxwell relation

(@), = (),

from a suitable thermodynamic potential. ... [10]

Let us consider

F=FE—TS, dF = —SdT — pdV + udN,
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so that g—ff v =M and %‘T,N = —p. Equating
0’F B 0*F
OVON |, ~ ONOV .

we get the desired Maxwell relation.
(a) The high T limit of a quantum gas corresponds to
ePEr—n) > 1.

Using this approximation in the formula for the number of Fermions or

Bosons: )
N = zk: Bl £ 17

calculate the chemical potential

p=p(n,T),

for 3-dimensions (where n = N/V), and for 2-dimensions (where n =
N /A). If possible express the answer in terms of the thermal de-Broglie
wavelength \p = ﬁ (V = L3, A = L? are the volume and area
respectively). ... [10]

{ Hint: Ignore spin here, and use the density of states n3(e) given above
in Problem (3-a). You can use [°y/ze *dr = ¥*. }

¢In 3-dimensions Using the stated approximation we write

3
- L3 [2m\? [
N = e‘d“Ze’ﬁg’“ = eﬁ“/deng(»s)eﬁE = eﬁ“ﬁ (f?) / de c2e e,
T 0

k

We carry our the integral by writing € = kg Tz so that
[ee] [e.@] 1
/ de e2e™P = (kBT)3/2/ Vae™ = S(kpT)* V.
0 0

Plugging in and rearranging we get

N 4 <\/727rkaT>3
— =€ | .
L3 h
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With density n = Lﬂ = g and the thermal de-Broglie wavelength

defined above we can write the solution as

1= kpTlog(nA\). - Eq(d.3)
¢In 2-dimensions again using the stated approximation we write

_ L?> m [ L? m
= 3 e — P —Be _ B —Pe = efr——
N = eP# k e "k =c¢ H/d&TLQ(é)G =e u%ﬁ ; de e =€ M(Zﬂ')ﬁ(k‘BT)

Writing n = N/L?, this can be rewritten as
n = eI\
and hence
p = kpTlognA3. - Eq(d.2)
This is essentially the same result as in 3-d.

(b) Using the Maxwell relation in problem (3-b), calculate the pres-
sure as a function of N, V| T. .. 5]

From the Maxwell relation and the above calculated ,

WY _ ks
ON), V'

Integrating this we get the ideal gas equation of state:

pV = NkgT.--- Eq(e)

(c) From (b) and using size scaling N — AN, V' — AV applied to
the Gibbs free energy G = E —T'S + pV, calculate G in terms of its
natural variables. From G deduce the Arrhenius free energy F' in terms
of its natural variables. ... [15]

{Recall that the natural variables of G or F are defined from the total
differential dG or dF'.}

From the definition we gather G = F' 4 pV and hence dG = —SdT +
Vidp + pdN, so that G = G(p, T, N). Size scaling on G gives us

AG(p,T,N) = G(p,T,AN).
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Taking d/d\ of both sides and setting A = 1 we get
G = pu(p, T)N.

This means that if we know p as a function of p, 7" we have the G as
well. From Eq(d) we know p as a function of density n and 7', so we
have to trade these for p,T. From the equation of state Fq(e) we see
that n = pf8 and hence we can plug into Eq(d) to get

G(p,T,N) = NkgTlog(pBA%). - - - Eq(f).
To calculate F' we note that

F =G —pV = NkgTlog(pB\}) — NkgT,

by plugging in G. However the natural variables for F' are F/(N,V,T)
so we need to use p = nf to get rid of p. This gives the final answer:

3
nAT

o .

F = NkgT log



