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1. (a) A particle of mass m moves in 2-dimensions without friction on
a wire shaped as an ellipse

x2

a2
+
y2

b2
= 1.

Write down its Lagrangian and the Lagrange equations of motion using
a suitable generalized coordinate. (It may be convenient to use α =
(a2 + b2)/2, β = (b2 − a2)/2 instead of a, b.) . . . [15]

We can parametrize as

x = a cos(θ), y = b sin(θ),

and hence ẋ = −a sin(θ), ẏ = b cos(θ). Therefore the Lagrangian

L =
1

2
m[(ẋ)2 + (ẏ)2] =

1

2
m(θ̇)2(α + β cos 2θ).

Therefore ∂L
∂θ̇

= mθ̇(α + β cos 2θ), and ∂L
∂θ

= −mθ̇2β sin 2θ.

To obtain the EOM we need

d

dt

∂L

∂θ̇
= mθ̈(α + β cos 2θ)− 2βmθ̇2 sin 2θ.

Thus the Lagrange EOM d
dt
∂L
∂θ̇

= ∂L
∂θ

becomes

θ̈(α + β cos 2θ) = βθ̇2 sin 2θ · · ·Eq(a)

(b) Write down the Hamiltonian in the same coordinates as (a).
Show that the energy is conserved using the explicit form of the La-
grange equations of motion. . . . [10]

1



We write the momentum from

pθ =
∂L

∂θ̇
= mθ̇(α + β cos 2θ) · · ·Eq(b)

to eliminate θ̇ in favor of pθ. Thus

H =
1

2m

p2
θ

α + β cos 2θ
. · · ·Eq(c)

To check the conservation of energy write the EOM Eq(a) as

θ̈

θ̇
= θ̇

β sin 2θ

(α + β cos 2θ)
· · ·Eq(a.1)

Both sides are exactly integrable. Integrating both sides we get

d

dt
log θ̇ = −1

2

d

dt
log(α + β cos 2θ),

and hence

d

dt
log
(
θ̇2(α + β cos 2θ)

)
= 0. · · ·Eq(a.2)

Using Eq(b) this implies that the time rate of change of Eq(c), i.e. the
energy, is zero. QED

2. Consider a 1-dimensional elastic continuum with a Lagrangian

L[ψ, ψ̇, t] =
1

2

∫ L

0

dx
[
(ψ̇(x, t))2 − c2

0(∂xψ(x, t))2 − µ2ψ(x, t)2
]
,

where ψ(x, t) is the displacement of the medium at the point x, ψ̇ =
∂tψ, and the action A =

∫ tf
ti
Ldt as usual. Assume periodic boundaries.

Find the (Euler) Lagrange equations of motion. Show that these have
a wave like solution with frequency

ω2
k = c2

0k
2 + µ2.

. . . [20]
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The Lagrange EOM requires us to compute

δA

δψ̇(x, t)
= ψ̇(x, t)

δA

δψ(x, t)
= c0∂

2
xψ(x, t)− µ2ψ(x, t),

these functional derivatives have been calculated by throwing one of
the ∂x to its left using integration by parts, as done in class for the case
µ = 0. Hence the EOM satisfied by ψ is

ψ̈(x, t) = c0∂
2
xψ(x, t)− µ2ψ(x, t).

A wave-like solution of this linear equation clearly exists with

ψ(x, t) = Aei(kx−ωkt)

provided
ω2
k = c2

0k
2 + µ2.

3. (a) Consider a gas of particles with energy dispersion εk = ~2k2/(2m)
in d-dimensions. For the cases d = 1, 2 calculate the density of states

nd(ε) =
∑
~k

δ(ε− εk).

. . . [15]

{ Hint: We have derived the density of states for d = 3 where the
answer is

n3(ε) =
L3

4π2

(
2m

~2

) 3
2

ε
1
2 .

Use the same method adapted to lower dimensions.}
Let us consider

n1(ε) =
∑
k

δ(ε− εk) =
L

π

∫ ∞
0

dk δ(ε− εk)
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Changing variables from k to u as

u = ~2k2/(2m), i.e. k =

√
2mu

~
, or dk =

√
m

~
√

2u
du.

Hence

n1(ε) =
L

π

∫ ∞
0

√
m

~
√

2u
du δ(ε− u) = L

√
m

π~
√

2ε
.

In 2-dimensions we write

n2(ε) =
∑
k

δ(ε− εk) =
L2

(2π)2

∫
dkx dky δ(ε− εk)

Since k2 is rotation invariant in 2-d we write a polar decomposition
dkx dky = k dk dφ, where 0 ≤ φ ≤ 2π. The energy εk is independent of
φ, and can be integrated out. Hence

n2(ε) =
L2

(2π)

∫ ∞
0

k dk δ(ε− εk).

We use the same change of variables from k to u as in 1-d, and keep
track of the extra factor of k in the integration from change to polar
variables. Hence

n2(ε) =
L2

(2π)

m

~2

∫ ∞
0

du δ(ε− u),

and hence

n2(ε) =
L2

(2π)

m

~2
.

(b) Prove the Maxwell relation(
∂p

∂N

)
V

= −
(
∂µ

∂V

)
N

from a suitable thermodynamic potential. . . . [10]

Let us consider

F = E − TS, dF = −SdT − pdV + µdN,
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so that ∂F
∂N

∣∣
T,V

= µ and ∂F
∂V

∣∣
T,N

= −p. Equating

∂2F

∂V ∂N

∣∣∣∣
T

=
∂2F

∂N∂V

∣∣∣∣
T

,

we get the desired Maxwell relation.

4. (a) The high T limit of a quantum gas corresponds to

eβ(εk−µ) � 1.

Using this approximation in the formula for the number of Fermions or
Bosons:

N̄ =
∑
k

1

eβ(εk−µ) ± 1
,

calculate the chemical potential

µ = µ(n, T ),

for 3-dimensions (where n = N̄/V ), and for 2-dimensions (where n =
N̄/A). If possible express the answer in terms of the thermal de-Broglie
wavelength λT = h√

2πmkBT
. (V = L3, A = L2 are the volume and area

respectively). . . . [10]

{ Hint: Ignore spin here, and use the density of states n3(ε) given above

in Problem (3-a). You can use
∫∞

0

√
xe−xdx =

√
π

2
. }

§In 3-dimensions Using the stated approximation we write

N̄ = eβµ
∑
k

e−βεk = eβµ
∫
dεn3(ε)e−βε = eβµ

L3

4π2

(
2m

~2

) 3
2
∫ ∞

0

dε ε
1
2 e−βε.

We carry our the integral by writing ε = kBTx so that∫ ∞
0

dε ε
1
2 e−βε = (kBT )3/2

∫ ∞
0

√
xe−x =

1

2
(kBT )3/2

√
π.

Plugging in and rearranging we get

N̄

L3
= eβµ

(√
2πmkBT

h

)3

.
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With density n = N̄
L3 = N̄

V
and the thermal de-Broglie wavelength

defined above we can write the solution as

µ = kBT log(nλ3
T ). · · ·Eq(d.3)

§In 2-dimensions again using the stated approximation we write

N̄ = eβµ
∑
k

e−βεk = eβµ
∫
dεn2(ε)e−βε = eβµ

L2

(2π)

m

~2

∫ ∞
0

dε e−βε = eβµ
L2

(2π)

m

~2
(kBT ).

Writing n = N̄/L2, this can be rewritten as

n = eβµ/λ2
T

and hence
µ = kBT log nλ2

T . · · ·Eq(d.2)

This is essentially the same result as in 3-d.

(b) Using the Maxwell relation in problem (3-b), calculate the pres-
sure as a function of N, V, T . . . . [5]

From the Maxwell relation and the above calculated µ,(
∂p

∂N

)
V

=
kBT

V
.

Integrating this we get the ideal gas equation of state:

pV = NkBT. · · ·Eq(e)

(c) From (b) and using size scaling N → λN, V → λV applied to
the Gibbs free energy G = E − TS + pV , calculate G in terms of its
natural variables. From G deduce the Arrhenius free energy F in terms
of its natural variables. . . . [15]

{Recall that the natural variables of G or F are defined from the total
differential dG or dF .}
From the definition we gather G = F + pV and hence dG = −SdT +
V dp+ µdN , so that G = G(p, T,N). Size scaling on G gives us

λG(p, T,N) = G(p, T, λN).
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Taking d/dλ of both sides and setting λ = 1 we get

G = µ(p, T )N.

This means that if we know µ as a function of p, T we have the G as
well. From Eq(d) we know µ as a function of density n and T , so we
have to trade these for p, T . From the equation of state Eq(e) we see
that n = pβ and hence we can plug into Eq(d) to get

G(p, T,N) = NkBT log(pβλ3
T ). · · ·Eq(f).

To calculate F we note that

F = G− pV = NkBT log(pβλ3
T )−NkBT,

by plugging in G. However the natural variables for F are F (N, V, T )
so we need to use p = nβ to get rid of p. This gives the final answer:

F = NkBT log
nλ3

T

e
.
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