
Physics 210- Fall 2018

Classical and Statistical mechancis

Solution to Home Work # 1
Solution posted 31 October 2018

1. Functional derivatives
Consider a functional of a function Ψ(x)

F [Ψ] =

∫ L

0
dx{a

2
|Ψ′(x)|2 +

1

2
|Ψ(x)|2 +

g

4
|Ψ(x)|4}.

a) Assuming Ψ is a real function calculate the functional derivative
δF

δΨ(x) . . . . [5]

Let me first indicate how I calculate the functional derivatives, this
is equivalent to other methods but I find it convenient. I will set
Ψ(x)→ Ψ(x) + δΨ(x), then linearize in δΨ(x) to write

F [Ψ + δΨ]− F [Ψ] =

∫ L

0
dx δΨ(x)

δF

δΨ(x)
+O((δΨ)2),

and thereby read off the functional derivative δF
δΨ(x) . Calculating the

right hand side (RHS) and throwing out terms of O(δΨ)2, we get

RHS =

∫ L

0
dx δΨ(x)

(
Ψ(x) + gΨ3(x)− aΨxx(x)

)
+ a [δΨ(x)Ψx(x)]L0 .

I am using Ψx(x) = Ψ′(x) = d
dxΨ(x), and similarly Ψxx(x) for the

second derivative. The boundary term is obtained by the usual rules
of integration by parts, and reads as

[δΨ(x)Ψx(x)]L0 = δΨ(L)Ψx(L)− δΨ(0)Ψx(0).

This term needs to be understood properly. Usually we ignore the
boundary terms, assuming implicitly that something will kill them,
e.g. boundary conditions. We will see the role of these below, but in
general it is good to keep in mind that the boundary terms can be
non-zero. First let us kill the boundary terms, in which case

δF

δΨ(x)
= Ψ(x) + gΨ3(x)− aΨxx(x).



Next think of an example where nothing else is given about the bound-
ary terms. In such a case we may deduce that

δF

δΨ(x)
= Ψ(x) + gΨ3(x)− aΨxx(x) + 2a(δ(x− L)− δ(x))Ψx(x),

where I have added a factor of 2 multiplying a in the boundary term,
to accomodate the usual definition∫ a

0
dx δ(x) =

1

2
.

You can plug this into the integral and verify that we reproduce the
RHS. In such a case the functional derivative picks up two boundary
delta functions.

b) Assuming Ψ is a complex function calculate the functional deriva-
tive δF

δΨ∗(x) . Here you may assume Ψ,Ψ∗ are independent of each other.

. . . [5]

It is important to note that we can vary both Ψ and Ψ∗ independently
for the complex Ψ, whereas if Ψ is taken as real then we have modify
this and only vary Ψ→ Ψ+δΨ. In classical mechanics we rarely come
across the complex case, but in quantum theory it is very common
since the wave functions are allowed to be complex. I will set Ψ(x)→
Ψ(x),Ψ∗(x)→ Ψ∗(x) + δΨ∗(x), then linearize in δΨ∗(x) to write

F [Ψ∗ + δΨ∗,Ψ]− F [Ψ∗,Ψ] =

∫ L

0
dx δΨ∗(x)

δF

δΨ∗(x)
+O((δΨ∗)2),

and thereby read off the functional derivative δF
δΨ∗(x) . Notice that i

wrote F ≡ F [Ψ∗,Ψ] to emphasize the equal footing of Ψ and Ψ∗.

Hence carrying through the above

RHS =

∫ L

0
dxδΨ∗(x)

1

2

(
Ψ(x) + gΨ3(x)− aΨxx(x)

)
,

assumed conditions such that the boundary term is thrown out. Note
the extra factor 1

2 here relative to the case of real Ψ, it arises from
the fact that while varying Ψ∗ the Ψ is unchanged and hence does not
contribute to the integrals.



c) In the first case compare the fixed boundary condition (i) δΨ(0) =
0 = δΨ(L) and the periodic boundary condition (ii)δΨ(0) = δΨ(L) 6= 0
together with Ψ′(0) = Ψ′(L). . . . [5]

Note that the boundary term

δΨ(L)Ψx(L)− δΨ(0)Ψx(0)

vanishes in both cases. One may say that the conditions are tailored
that this happens.

d) Assuming case (a) and periodic boundary conditions, find the func-
tion Ψ(x) which minimizes the functional F at g = 0, a = 1 under the

constraint of fixed magnitude
∫ L

0 dxΨ(x)|2 = 1. (Here you need to set
up a differential equation for Ψ and solve it in the case when g = 0.
This is easy since g = 0 reduces it to a linear differential equation.)
. . . [5]

Let us set up a Lagrange multiplier scheme

F̂ = F + λ

(∫ L

0
dxΨ2(x)− 1

)
so that if the constraint of normalization is satisfied then the second
term drops out and we are minimizing the old functional F . Taking
the functional derivative and putting it to zero we get the minimizing
function from

−Ψxx + Ψ(x) + 2λΨ(x) = 0.

We can solve this differential equation easily and find the solutions

Ψ(x) = αe±x
√

1+2λ,

where α is a normalization constant, which can be determined along
with λ shortly hereafter. In order to satisfy periodic boundary condi-
tions this solution implies

1 = e±L
√

1+2λ,

which has only one sensible solution if we choose

λ = −1

2
,

and hence the solution for Ψ reads

Ψ(x) =
1√
L
,



together with the value for λ = −1
2 . Let us now plug this into the

functional F , or F̂ (it makes no difference as we showed above), thus

Fmin =
1

2
.

To show that there is a minimum for F is also possible- we may take
the second functional derivative and show it is positive.

2. Differential equations and difference equations. Use any convenient
software for help with this problem, e.g. Mathematica, Matlab,..

Consider the 1-d anharmonic oscillator in dimensionless form

H =
p2

2
− x2

2
+
x4

4
.

a) Write the Lagrangian and Hamiltonian equations of motion. . . . [5]

We may write Hamilton’s EOM

ẋ =
∂H

∂p
= p

ṗ = −∂H
∂x

= x− x3

To find the Lagrangian we carry out

L = ẋp−H =
ẋ2

2
+
x2

2
− x4

4

The Lagrange EOM are

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0

ẍ− x+ x3 = 0

b) Using the discretization t = j∆t, j = 0,M − 1, with a variable M,
convert these two equations to difference equations. Solve the two sets
of equations from t=0 to t= 10, by iteration for M=10,100,1000 with
initial conditions x(0) = 0; q(0) = ẋ(0) = 0.2 and compare the various
solutions. . . . [5]

Numerics

c) Using a representative M, compare the Hamilton equations solutions
with the case x(0) = −1, q(0) = ẋ(0) = 0.2. . . . [5]



Numerics

d) Draw the phase portraits of the oscillator, by eliminating t and
plotting p versus x by exploring various values of the energy of the
oscillator. We expect to see circles surrounding the two points x = ±1
representing small oscillations around the equilibrium, and a larger
set of closed curves surrounding both. These would be separated by
a ”critical curve” called the separatrix. (This problem has a large fan
following in the internet so you should be able to get some help using
google scholar.) . . . [5]

Numerics

3. Poisson brackets:

Writing briefly [] ≡ []PB, show the properties

a) For any three functions

[f, g] = −[g, f ]

[f + g, h] = [f, h] + [g, h]

[fg, h] = f [g, h] + [f, h]g

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0, Jacobi’s identity

. . . [5]

Standard exercise

b) Calculate the PB’s [qi, p
3
j ], [Exp[3qi], p

2
j ] . . . [5]

[qi, p
3
j ] =

∂p3
j

∂pi
= 3p2

i δij .

[Exp[3qi], p
2
j ] =

∂Exp[3qi]

∂qi

∂p2
j

∂pi
= 6Exp[3qi] pi δij .

4. Legendre Transforms: General theory and examples

We may define the Legendre Transform (LT) of any function F (x) as

G(y) = {yx− F (x)}LT = yx(y)− F (x(y)) (1)

where
F ′(x(y)) = y,



i.e. at a given y, we solve for x(y) where the slope of F matches y.

An often added convention: If multiple solutions of F ′(x) = y exist,
the convention is to choose the solution for which G′′(y) > 0 i.e. G is
a concave-up function of y.

Note: In Eq. (1) we have chosen the sign using the CM convention
(used in Classical Mechanics). In Thermodynamics and Stat Mech we
will use the SM convention (i.e. the opposite convention), multiply the
RHS by −1. With the CM convention the LT of a concave-up function
is another concave-up function, while with the SM convention the LT of
a concave-up function is another concave-down (or equivalently convex
up) function.

a) Calculate G(y) the LT of

F (x) = ex−1.

. . . [5]

b) Calculate the LT of G(y) and show that we get back F (x). . . . [5]

c) Calculate the LT of

F (x) =
x2

2
− x3

3
.

Show that this leads to two functions G1(y) and G2(y). Show that
only one of these satisfies the concave-up convention. Graph these
functions over a sensible region of x, y . . . [5]

d) Calculate the LT of G1 and G2 found above, and show that only
one of them recovers the F (x). . . . [5]

See Mathematica notebook on the Course website, and pdf and also
CDF file of solution. It includes a simple package for LT of any function

5. Considering a relativistic Hamiltonian (1-d)

H =
√
p2c2 +m2c4 + U(q),

a) Find Hamilton’s equations of motion. . . . [5]

q̇ =
∂H

∂p
=

pc2√
p2c2 +m2c4

ṗ = −∂U(q)

∂q



b) Carry out the LT to calculate the Lagrangian. Comment on the
form of the kinetic energy in the Lagrangian- is the result what one
might have expected? . . . [5]

L(q̇, q) = q̇p−H(p, q)

We need to solve for p in terms of the velocity and plug in. From
Hamilton’s EOM inverting the first equation we get

p =
mq̇√
1− q̇2

c2

where we discarded a possible solution with a negative sign for physical
reasons (think of c → ∞ limit). Plugging in we get after a brief
calculation

L = −mc2

√
1− q̇2

c2
− U(q).

If we expand in the limit of large c, the leading term gives us the usual
non-relativistic Lagrangian m

2 q̇
2 − U(q), apart from a constant.

c) From the Lagrangian calculate the Lagrange equations of motion,
and show that they are the same as those in (a). . . . [5]

Easy

6. To describe the electromagnetic field interacting with a charged par-
ticle in 3-d,we use a Lagrangian

L =
m

2
~̇r.~̇r − qe(Φ(r)− 1

c
~̇r. ~A(~r))− V (~r),

where qe is the electron charge, the vector potential ~A and scalar po-
tential Φ lead to EM fields through the usual relations

~∇× ~A(r) = ~B(r),

~E = −~∇Φ(r)− 1

c

∂ ~A

∂t
,

and V (~r) is an arbitrary external potential.

a) Using the Legendre transforms, find the Hamiltonian for this prob-
lem. . . . [5]



From p = ∂L/∂q̇ we deduce

~̇r =
1

m

(
~p− qe

c
~A
)
.

The term m~̇r is often called the kinetic momentum, which differs from
the “canonical momentum” p by the second term. Substituting we get

H = ~p.~̇r − L =
1

2m

(
~p− qe

c
~A
)2

+ qeΦ + V (~r)

b) While L is linear in ~A, note that H is quadratic in A. Do you
think this quadratic dependence can have observable effects? (A brief
answer will suffice). . . . [5]

This question has a different answer in classical mechanics and in quan-
tum mechanics. In classical mechanics, the vector potential does not
change the energy since it can do no work. There is a famous theo-
rem of Miss van Leeuwen and Niels Bohr in Stat Mech to this effect.
In quantum theory the quadratic dependence leads to the important
phenomenon of diamagnetism, which is relevant in systems as diverse
as superconductors (Meissner effect says all fields are expelled from a
superconductor) to various fluids studied in physics/chemistry.

c) From the Lagrange equations of motion show that the force experi-
enced by a particle is

m~̈r = −~∇V + qe{ ~E +
~̇r × ~B

c
}.

Note that the second term is the familiar Lorentz force, it is this equa-
tion that justifies the choice of the Lagrangian. . . . [10]

It is helpful to use cartesian indices and the repeated symbol summa-
tion convention of Einstein to deal with the vectors here. Let us write
the fields in index form

Ej = −∂jΦ−
1

c
Aj , Bi = εijk∂jAk.

Now Lagrange’s EOM says

d

dt

∂L

∂ṙj
=
∂L

∂rj
.



Let us work out a few items

∂L

∂ṙj
= mṙj +

qe
c
Aj

∂L

∂rj
= −∂jV − qe∂jΦ +

qe
c
ṙi∂jAi

Note that in the last equation, the repeated index i (rather than j an
external index) which is summed over. In taking the time derivative
d
dt we should keep track of the fact that it is a total derivative.

Thus
d

dt
f(r, t) =

∂f(r, t)

∂t
+ ṙj

∂f(r, t)

∂rj
,

and hence

d

dt

∂L

∂ṙj
= mr̈j +

qe
c

∂Aj
∂t

+
qe
c
ṙk
∂Aj
∂rk

.

Plugging into the EOM we find

mr̈j = −∂jV − qe∂jΦ−
qe
c

∂Aj
∂t

+
qe
c

(ṙk∂jAk − ṙk∂kAj) .

Combining terms to form the fields we write this as

mr̈j = −∂jV + qe

(
~E +

1

c
~̇r × ~B

)
j

. (QED)

.


