
Physics 210- Fall 2018

Classical and Statistical mechancis

Home Work # 2
Posted on October 22, 2018

Due in Class October 30, 2018

We will need to use these standard vector identities:

~A× ( ~B × ~C) = ~B( ~A. ~C)− ~C( ~A. ~B), (I.1)

~A.( ~B × ~C) = ( ~A× ~B). ~C (I.2)

( ~A× ~B).(~C × ~D) = ( ~A. ~C)( ~B. ~D)− ( ~A. ~D)( ~B. ~C) (I.3) (1)

1. Generalized Coordinates Example 1

{Comment: The first two problems are from Landau-Lifshitz Mechan-
ics, where the part (a) of the problems are already solved. We will
push ahead a bit more than they do. }
a) Find the generalized coordinates for a coplanar double pendulum.
(Solved in LL Problem 1 page 11) . . . [2]

As given in LL, the two angles θ1, θ2 serve as generalized coordinates.
We can plug in for x1, ẋ1 from the definitions and get the Lagrangian
that they derive.

b) Find the equations for the two coordinates φ1, φ2. . . . [5]

We can write the Lagrangian as

L =
1

2
mT l

2
1θ̇

2
1 +

1

2
m2l2θ̇

2
2 +mT gl1 cos θ1 +m2gl2 cos θ2

+m2l1l2 cos(θ1 − θ2)θ̇1θ̇2

where mT = m1 +m2. We take the Lagrange equations in a straight-
forward way to get

mT l
2
1(θ̈1 +

g

l1
sin θ1) +m2l1l2

{
θ̈2 cos(θ1 − θ2) + θ̇22 sin(θ1 − θ2)

}
= 0

m2l
2
2(θ̈2 +

g

l2
sin θ2) +m2l1l2

{
θ̈1 cos(θ1 − θ2)− θ̇21 sin(θ1 − θ2)

}
= 0



The second equation can be written down from the first one by noticing
the symmetry of the first 4 terms of the Lagrangian in exchanging
(mT , l1, θ1)↔ (m2, l2, θ2).

c) Comment on how you would solve these problems. (If you actually
can solve them on a computer that would earn some extra credit) . . . [3]

The term in curly brackets is the coupling between the two angles. It
makes the problem quite messy and the solution is “chaotic”, i.e. two
nearly equal initial conditions lead to solutions that diverge very far
from each other. Numerical solutions of such problems are very tricky
and a great deal of expertise is needed to get accurate solutions.

2. Generalized Coordinates Example 2

a) Find the generalized coordinates for a simple pendulum of mass m2

moving in the x−y plane supported with a mass m1 that is constrained
to lie on a horizontal line along x axis. (Solved in LL Problem 2 page
11. See the figure in the book). . . . [2]

b) Write down the equations for the x and φ variables. . . . [5]

c) Comment on how you would solve these two equations. (If you
actually can solve them on a computer that would earn some extra
credit) . . . [3]

3. Lenz vector problems

a) For the gravitational problem V (r) = −k
r , we wrote down the Lenz

vector ~A = ~̇r × ~L− k ~r
r . Using the equation of motion for ~r show that

~A is conserved. . . . [5]

The EOM in vector notation is

m~̈r = −k ~r
r3
.

Taking the derivative of ~A we get

~̇A = ~̈r × ~L− k~̇r
r

+ k
~r(~r.~̇r)

r3

or using the EOM and ~L = m~r × ~̇r

~̇A = −k~r × (~r × ~̇r)
r3

− k~̇r
r

+ k
~r(~r.~̇r)

r3
.



Using vector identity (I.1) this term vanishes identically. QED

b) From the above equation of motion show that ~A.~r− kr = L2
z

m , i.e is
the equation of an ellipse. What is the eccentricity e in terms of A?
. . . [5]

We see from the definition of ~A that

~r. ~A = −kr + ~r.(~̇r × ~L).

We can use identity I.2 and write ~̇r = ~p
m and use ~r × ~p = ~L to write

~r. ~A = −kr +
1

m
~L.~L

This is the required answer with the vector ~L chosen along the z axis.

We use the standard form of the ellipse in polar coordinates as

p

r
= 1− e cos(θ),

where e is the eccentricity and p is the other parameter of the ellipse.
In terms of these parameters the semi-major and semi-minor radii are

a =
p

1− e2
, b =

p√
1− e2

.

Let us note a fact that is useful below. We can rewrite the equation
for the ellipse from cosθ = 1

e (1− p
r ) and taking the derivative w.r.t. r

we get

dθ =
dr

r2
√
− 1

r2
+ e2−1

p2
+ 2

pr

. Differential form of an ellipse

If we now align the x axis along ~A then vecr. ~A = Ar cosφ, and hence
we can rewrite the above as

L2

mk r
= 1− A

k
cosφ,

and hence the eccentricity can be written as:

e =
A

k
.



c) Show that that e2 = 1 + 2EL2
z/(mk

2) when expressed in terms of
the energy E, and thus relate |A| to E. . . . [10]

We solve the Kepler problem in spherical coordinates as in class to
obtain

ṙ =
√

2/m

√
E − L2

z

2mr2
− k

r
,

where r = |~r| and E = −|E| is the energy of the bound state. We can
rewrite this in terms of the azimuthal angle φ by using

mr2φ̇ = Lz, dt =
mr2

Lz
dφ

and hence using this to rewrite above as

dr

dφ
= r2

√
2m

L2
z

√
E − L2

z

2mr2
− k

r
,

or

dφ =
dr

r2
√
− 1

r2
+ 2mk

L2
zr

+ 2mE
L2
z

.

This is the equation of the ellipse in differential form as we saw above.
We can then read off

p =
L2
z

mk
,
e2 − 1

p2
=

2mE

L2
z

,

and hence

e =

√
1 +

2L2
zE

mk2
.

We saw earlier that e = A/k and hence comparing we get

A =

√
k2 +

2L2
zE

m
.

4. Central field problem

Assuming that the central potential is given by V (r) = − k
rσ , with

σ = 1, 1.5, 2 and choosing suitable initial conditions and an illustrative
value of the conserved energy and (non-zero) angular momentum:



a) Compute and plot r(t) versus t for a sufficiently large range of times
t,

b) Compute and plot φ(t) versus t using the above solution (from
mr2φ̇ = Lz).

c) Eliminate t and plot r(t) versus φ to illustrate that the orbits are
closed in the case of σ = 1 and not otherwise. In other cases show
that the r(t)− φ(t) curves are space filling. . . . [10]

5. Velocity dependent forces and energy conservation

We generalize Lagrange’s equations to a more general form

d

dt

∂L

∂q̇
=
∂L

∂q
+Q[q, q̇]

The case of physical interest in viscous damping has

Q = −kq̇

with k > 0

a) Show that the equation of motion exhibits damping i.e. decay at

long times by solving exactly the (simple) examples of V = 0, kq
2

2 .
(Here V is the potential energy in L). . . . [5]

The Lagrange EOM for a free particle follows by plugging in L = 1
2mq̇

2

as
mq̈ = −kq̇.

By inspection we can write the solution as

q = a0 + a1e
−kt/m,

where a0, a1 are arbitrary constants. The solution clearly decays to
zero as t→∞.

For the Harmonic oscillator we write L = 1
2mq̇

2 − 1
2aq

2, with a spring
constant a. The EOM is clearly

mq̈ + kq̇ + aq = 0.

It is linear and hence we can solve it easily using q = eiωt form. This
gives

ω2 − iω k
m
− a

m
= 0.



The two roots (with a
m − ( k

2m)2 > 0) are

ω = ω± = i
k

2m
±
√
a

m
− (

k

2m
)2.

The general solution is

q(t) = A+e
iω+t +A−e

iω−t.

This decays in time for large positive t since the imaginary part of the
ω± is positive.

b) With energy E ≡ mq̇2

2 + V (q), show that its rate of change is
negative, i.e. dE/dt < 0, due to damping. What does this mean
physically? . . . [5]

With L = 1
2mȧ

2 − V (q) the EOM in this problem is given as

mq̈ = −kq̇ − ∂V

∂q
.

We can follow the procedure we used for showing that energy is con-
stant for the undamped case, and add the damping term at the end.
Let us construct the object

d

dt
{mq̇2 − L} = 2mq̇q̈ −mq̇q̈ + q̇

∂V

∂q
.

Simplifying and substituting for mq̈ from the EOM, we get

d

dt
{1

2
mq̇2 + V } = −kq̇2

. This can be interpreted as

dE

dt
= −kq̇2 < 0,

where the inequality follows from the squaring of q̇. This means phys-
ically that the energy decreases in time for any damped system. This
is reasonable since damping implies friction, which dissipates energy.


