Physics 210- Fall 2018

Classical and Statistical mechancis

Solution to Home Work \# 3

Solution Posted on November 29, 2018

1. Canonical Transformations Example 1

a) From the theory of canonical transformations calculate the transformation generated by $F_{1}(q, Q)=Q / q$ of the free particle problem

$$
\begin{equation*}
H=p^{2} /(2 m) \tag{10}
\end{equation*}
$$

From the "theoretical" equations $p=\partial F_{1} / \partial q$ and $P=-\partial F_{1} / \partial Q$ obtained in class, we see that

$$
p=-Q / q^{2}, \quad P=-1 / q .
$$

Therefore we can solve for the old in terms of the new variables,

$$
q=-1 / P, \quad p=-Q P^{2}
$$

or the inverses,

$$
P=-1 / q, \quad Q=-p q^{2} .
$$

Hence in the new variables the free particle Hamiltonian $H=p^{2} /(2 m)$ becomes:

$$
H=P^{4} Q^{2} /(2 m)
$$

b) Find the Hamiltonian equations of motion in the new representation, and solve them exactly.

The new Hamiltonian EOM read

$$
\dot{Q}=\{Q, H\}, \quad \dot{P}=\{P, H\}
$$

where the brackets are the Poisson brackets. Thus the strange looking EOM are now

$$
\dot{Q}=2 Q^{2} P^{3} / m, \quad \dot{P}=-Q P^{4} / m
$$

To solve them we observe that

$$
\dot{Q} P+2 Q \dot{P}=0,
$$

and hence

$$
d Q / Q+2 d P / P=0
$$

so that

$$
Q P^{2}=A,
$$

where A is some constant. This means that $d P / d t=-A P^{2} / m$ which can be solved easily by separating terms so that

$$
d P / P^{2}=-a / m d t
$$

so integrating

$$
1 / P=B+A t / m
$$

and

$$
Q=A / P^{2}=A(B+A t / m)^{2} .
$$

We see that these correspond to the usual solution of the free particle problem $p=A$ where $\mathrm{A}=\mathrm{const}$, and $x=x_{0}+t A$.

2. Canonical Transformations Example 2

a) Show that a canonical transformation from q, p to any required $Q \equiv Q(q)$ (i.e. a function of q only) can be generated by the generator $F_{2}(q, P)$.
We can choose $F_{2}(q, P)=P Q(q)$ where $Q(q)$ is an arbitrary function of q. From the theory of transformations, this implies two equations

$$
p=\partial F_{2} / \partial q, \quad Q=\partial F_{2} / \partial P=Q(q) .
$$

With these two equations we can fully invert and express q, p in terms of Q, P. Since Q is only a function of q and not of p, this transformation is called a contact transformation.
b) Find the $F_{2}(q, P)$ necessary to make the transformation in 2 dimensions from $\vec{r}=\{x, y\}$ to the standard polar coordinates r, θ. $\ldots[5]$

We want to transform from x, y to r, θ using

$$
x=r \cos (\theta), y=r \sin (\theta)
$$

Hence (q, p) variables are the pair $\left(x, p_{x}\right)$ and $\left(y, p_{y}\right)$ and $Q_{1}=r, \quad Q_{2}=$ θ. The theory helps us to compute P_{1}, P_{2} automatically so that the new set is also canonical.

Writing

$$
F_{2}(q, P)=P_{1} r+P_{2} \theta,
$$

with

$$
Q_{1}=r=\sqrt{x^{2}+y^{2}}, \text { and } Q_{2}=\theta=\arctan (y / x)
$$

c) Using (b) find the full transformation from \vec{q}, \vec{p} to the new canonical momenta and coordinates.
... [5]
We now compute

$$
\begin{aligned}
& p_{x}=\partial F_{2} / \partial x=\frac{x}{r} P_{1}-\frac{y}{r^{2}} P_{2}, \\
& p_{y}=\partial F_{2} / \partial y=\frac{y}{r} P_{1}+\frac{x}{r^{2}} P_{2} .
\end{aligned}
$$

Hence the inversion is easy

$$
\begin{aligned}
P_{1} & =p_{x} \frac{x}{r}+p_{y} \frac{y}{r}, \\
P_{2} & =x p_{y}-y p_{x} .
\end{aligned}
$$

Note that P_{2} is the angular momentum L^{z}, as one expects.
d) Verify that the new coordinates satisfy the canonical algebra by computing the 4 poisson brackets $\left\{Q_{i}, P_{j}\right\}_{q, p}$.
For this problem we use the definition of the Poisson brackets

$$
\{A, B\}=(\partial A / \partial x)\left(\partial B / \partial p_{x}\right)-\left(\partial A / \partial p_{x}\right)(\partial B / \partial x)+(x \leftrightarrow y) .
$$

Working through the partial derivatives, we can check the quoted result. We should note that Q_{1}, Q_{2} only depend on x, y and not on p_{x}, p_{y} and hence half the terms in the Poisson brackets are identically zero.

3. Action problem

a) For the simple harmonic oscillator

$$
H=p^{2} /(2 m)+k q^{2} / 2,
$$

calculate the action

$$
J(E)=\oint p d q
$$

by integrating over a complete cycle. From the derivative with respect to energy, calculate the time period.
There are many ways of calculating the $J(E)$. The simplest is to use Greens theorem which relates it to the area of the surface in (p, q) plane, with $p^{2} /(2 m)+k q^{2} / 2 \leq E$. A more algebraic method is useful since it generalizes to the next problem too. We solve $p^{2} /(2 m)+$ $k q^{2} / 2=E$ for p in terms of q, E and find two roots

$$
p_{ \pm}= \pm \sqrt{m k} \sqrt{q_{m}^{2}-q^{2}},
$$

where

$$
q_{m}=\sqrt{2 E / k} .
$$

The two roots correspond to the two signs of the velocity, rightward or leftwards. We need to use both of them for the closed path integral. By a simple argument

$$
J(E)=\int_{-q_{m}}^{q_{m}} d q p_{+}+\int_{q_{m}}^{-q_{m}} d q p_{-}=2 \int_{-q_{m}}^{q_{m}} d q p_{+}
$$

where the closed path is being traversed in a clockwise sense. Writing $q=q_{m} \cos (\theta)$ the integral is written as

$$
J(E)=-2 \sqrt{m k} q_{m}^{2} \int_{0}^{\pi} \sin ^{2} \theta d \theta==-2 \pi \sqrt{m / k} E .
$$

We may use the formula

$$
T(E)=d J(E) / d E=-2 \pi \sqrt{m / k} .
$$

The sign is ignored since it switches with the sense in which we go around the orbit.This gives the time period, which is independent of E for the harmonic oscillator.
b) Do the same calculation for the quartic oscillator

$$
H=p^{2} /(2 m)+k q^{4} / 4
$$

where you can use scaling to get the energy dependence of the action, and ignore (i.e. leave undetermined) the fairly cumbersome integral, which is dimensionless and hence less important.
This problem can be done in a very similar way as above, we need to redefine

$$
q_{m}=(4 E / k)^{\frac{1}{4}},
$$

so that

$$
p_{ \pm}= \pm \sqrt{m k / 2} \sqrt{\left(q_{m}^{4}-q^{4}\right)} .
$$

Repeating the steps in part (a), we get

$$
J(E)=2 \sqrt{m k / 2} \int_{-q_{m}}^{q_{m}} d q \sqrt{\left(q_{m}^{4}-q^{4}\right)}
$$

We next scale $q=q_{m} \cos \theta$ so that

$$
J(E)=2 \sqrt{m k / 2} q_{m}^{3} \int_{0}^{\pi} d \theta \sin \theta \sqrt{1-\sin ^{4} \theta}
$$

We can write this as

$$
J(E)=A E^{3 / 4},
$$

where A is independent of the energy E. Taking the derivative

$$
d J / d E=T(E)=3 A / 4 E^{-1 / 4}
$$

c) Show that time period can be written as

$$
T(E)=\iint d p d q \delta(H-E)
$$

by differentiating the formula for $J(E)$ and evaluate this integral for the Harmonic oscillator directly to confirm the result of (a).
As discussed in part (a) we can write

$$
J(E)=\iint d p d q \Theta\left(E-p^{2} /(2 m)-k q^{2} / 2\right) .
$$

We use

$$
T(E)=d J(E) / d E=\iint d p d q \delta\left(E-p^{2} /(2 m)-k q^{2} / 2\right),
$$

where we took the derivative inside the integral sign and used the hint $d \Theta(x) / d x=\delta(x)$.
$\{$ Hint: This problem requires you to use the familiar formulat $\delta(x)=$ $\frac{d}{d x} \Theta(x)$ where Θ is the Heaviside step function. \}

4. Thermodynamics and partial derivatives Example 1

a) We worked out a few examples of thermodynamic potentials,

$$
\begin{array}{r}
d E=T d S-p d V+\mu d N \\
d F=-S d T-p d V+\mu d N \\
d \Omega=-S d T-p d V-N d \mu
\end{array}
$$

Using the standard conditions for exact differentials, this leads to the Maxwell relations. For example from the first equation we read

$$
\frac{\partial^{2} E}{\partial S \partial V}=\frac{\partial^{2} E}{\partial V \partial S}
$$

and hence

$$
-\left.\frac{\partial p}{\partial S}\right|_{V, N}=\left.\frac{\partial T}{\partial V}\right|_{S, N}
$$

This is an example of a Maxwell relation. It is infact rather useless since we did not choose the potential strategically. We get more useful ones by rewriting the first equation by moving S to one side and everything else to the other. Doing this, write down the 3 Maxwell relations from the first equation.
b) Similarly write down the 4 Maxwell relations from the second and third potentials by dropping the number variation.
5. Thermodynamics and partial derivatives Example 2

Using the tricks in Landau Lifshitz Stat Mech (Pages 49-51 - scan in the website) show
a)

$$
\begin{equation*}
\left.\frac{\partial C_{p}}{\partial P}\right|_{T}=-\left.T \frac{\partial^{2} V}{\partial T^{2}}\right|_{P} \tag{10}
\end{equation*}
$$

This is Eq 16.2 of LL.
b) Show that (16.6)

$$
\left.\frac{\partial E}{\partial P}\right|_{T}=-\left.T \frac{\partial V}{\partial T}\right|_{P}-\left.P \frac{\partial V}{\partial P}\right|_{T}
$$

$$
\begin{align*}
& \text { c)Show that (16.8-1) } \tag{5}\\
& \qquad\left.\frac{\partial E}{\partial T}\right|_{P}=C_{p}-\left.P \frac{\partial V}{\partial T}\right|_{P}
\end{align*}
$$

6. No submission required but verify these important identities for Jacobians

Page 51 LL, (I), (II), (III), (IV), (V).
\{We will use these in the next few classes \}

