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1. Canonical Transformations Example 1

a) From the theory of canonical transformations calculate the trans-
formation generated by F1(q,Q) = Q/q of the free particle problem

H = p2/(2m).

. . . [10]

From the “theoretical” equations p = ∂F1/∂q and P = −∂F1/∂Q
obtained in class, we see that

p = −Q/q2, P = −1/q.

Therefore we can solve for the old in terms of the new variables,

q = −1/P, p = −QP 2

or the inverses,
P = −1/q, Q = −pq2.

Hence in the new variables the free particle Hamiltonian H = p2/(2m)
becomes:

H = P 4Q2/(2m).

b) Find the Hamiltonian equations of motion in the new representa-
tion, and solve them exactly. . . . [10]

The new Hamiltonian EOM read

Q̇ = {Q,H}, Ṗ = {P,H}

where the brackets are the Poisson brackets. Thus the strange looking
EOM are now



Q̇ = 2Q2P 3/m, Ṗ = −QP 4/m.

To solve them we observe that

Q̇P + 2QṖ = 0,

and hence
dQ/Q+ 2dP/P = 0

so that
QP 2 = A,

where A is some constant. This means that dP/dt = −AP 2/m which
can be solved easily by separating terms so that

dP/P 2 = −a/mdt

so integrating
1/P = B +At/m

and
Q = A/P 2 = A(B +At/m)2.

We see that these correspond to the usual solution of the free particle
problem p = A where A=const, and x = x0 + tA.

2. Canonical Transformations Example 2

a) Show that a canonical transformation from q, p to any required
Q ≡ Q(q) (i.e. a function of q only) can be generated by the generator
F2(q, P ). . . . [5]

We can choose F2(q, P ) = PQ(q) where Q(q) is an arbitrary function
of q. From the theory of transformations, this implies two equations

p = ∂F2/∂q, Q = ∂F2/∂P = Q(q).

With these two equations we can fully invert and express q, p in terms
ofQ,P . SinceQ is only a function of q and not of p, this transformation
is called a contact transformation.

b) Find the F2(q, P ) necessary to make the transformation in 2 dimen-
sions from ~r = {x, y} to the standard polar coordinates r, θ . . . . [5]



We want to transform from x, y to r, θ using

x = r cos(θ), y = r sin(θ)

Hence (q, p) variables are the pair (x, px) and (y, py) andQ1 = r, Q2 =
θ. The theory helps us to compute P1, P2 automatically so that the
new set is also canonical.

Writing
F2(q, P ) = P1r + P2θ,

with
Q1 = r =

√
x2 + y2, and Q2 = θ = arctan(y/x).

c) Using (b) find the full transformation from ~q, ~p to the new canonical
momenta and coordinates. . . . [5]

We now compute

px = ∂F2/∂x =
x

r
P1 −

y

r2
P2,

py = ∂F2/∂y =
y

r
P1 +

x

r2
P2.

Hence the inversion is easy

P1 = px
x

r
+ py

y

r
,

P2 = xpy − ypx.

Note that P2 is the angular momentum Lz, as one expects.

d) Verify that the new coordinates satisfy the canonical algebra by
computing the 4 poisson brackets {Qi, Pj}q,p. . . . [5]

For this problem we use the definition of the Poisson brackets

{A,B} = (∂A/∂x) (∂B/∂px)− (∂A/∂px) (∂B/∂x) + (x↔ y).

Working through the partial derivatives, we can check the quoted re-
sult. We should note that Q1, Q2 only depend on x, y and not on px, py
and hence half the terms in the Poisson brackets are identically zero.



3. Action problem

a) For the simple harmonic oscillator

H = p2/(2m) + kq2/2,

calculate the action

J(E) =

∮
pdq,

by integrating over a complete cycle. From the derivative with respect
to energy, calculate the time period. . . . [5]

There are many ways of calculating the J(E). The simplest is to use
Greens theorem which relates it to the area of the surface in (p,q)
plane, with p2/(2m) + kq2/2 ≤ E. A more algebraic method is useful
since it generalizes to the next problem too. We solve p2/(2m) +
kq2/2 = E for p in terms of q, E and find two roots

p± = ±
√
mk

√
q2m − q2,

where
qm =

√
2E/k.

The two roots correspond to the two signs of the velocity, rightward or
leftwards. We need to use both of them for the closed path integral.
By a simple argument

J(E) =

∫ qm

−qm
dq p+ +

∫ −qm

qm

dq p− = 2

∫ qm

−qm
dq p+

where the closed path is being traversed in a clockwise sense. Writing
q = qm cos(θ) the integral is written as

J(E) = −2
√
mk q2m

∫ π

0
sin2θ dθ == −2π

√
m/k E.

We may use the formula

T (E) = dJ(E)/dE = −2π
√
m/k.

The sign is ignored since it switches with the sense in which we go
around the orbit.This gives the time period, which is independent of
E for the harmonic oscillator.



b) Do the same calculation for the quartic oscillator

H = p2/(2m) + kq4/4,

where you can use scaling to get the energy dependence of the action,
and ignore (i.e. leave undetermined) the fairly cumbersome integral,
which is dimensionless and hence less important. . . . [5]

This problem can be done in a very similar way as above, we need to
redefine

qm = (4E/k)
1
4 ,

so that
p± = ±

√
mk/2

√
(q4m − q4).

Repeating the steps in part (a), we get

J(E) = 2
√
mk/2

∫ qm

−qm
dq

√
(q4m − q4).

We next scale q = qm cos θ so that

J(E) = 2
√
mk/2q3m

∫ π

0
dθ sin θ

√
1− sin4 θ.

We can write this as
J(E) = AE3/4,

where A is independent of the energy E. Taking the derivative

dJ/dE = T (E) = 3A/4E−1/4.

c) Show that time period can be written as

T (E) =

∫ ∫
dp dq δ(H − E),

by differentiating the formula for J(E) and evaluate this integral for
the Harmonic oscillator directly to confirm the result of (a). . . . [10]

As discussed in part (a) we can write

J(E) =

∫ ∫
dp dq Θ(E − p2/(2m)− kq2/2).

We use

T (E) = dJ(E)/dE =

∫ ∫
dp dq δ(E − p2/(2m)− kq2/2),



where we took the derivative inside the integral sign and used the hint
dΘ(x)/dx = δ(x).

{ Hint: This problem requires you to use the familiar formulat δ(x) =
d
dxΘ(x) where Θ is the Heaviside step function. }

4. Thermodynamics and partial derivatives Example 1

a) We worked out a few examples of thermodynamic potentials,

dE = T dS − p dV + µdN

dF = −S dT − p dV + µdN

dΩ = −S dT − p dV −N dµ

Using the standard conditions for exact differentials, this leads to the
Maxwell relations. For example from the first equation we read

∂2E

∂S∂V
=

∂2E

∂V ∂S

and hence

− ∂p
∂S
|V,N =

∂T

∂V
|S,N .

This is an example of a Maxwell relation. It is infact rather useless
since we did not choose the potential strategically. We get more use-
ful ones by rewriting the first equation by moving S to one side and
everything else to the other. Doing this, write down the 3 Maxwell
relations from the first equation. . . . [10]

b) Similarly write down the 4 Maxwell relations from the second and
third potentials by dropping the number variation. . . . [10]

5. Thermodynamics and partial derivatives Example 2

Using the tricks in Landau Lifshitz Stat Mech (Pages 49-51 - scan in
the website) show

a)
∂Cp
∂P
|T = −T ∂

2V

∂T 2
|P

This is Eq 16.2 of LL. . . . [10]

b) Show that (16.6)

∂E

∂P
|T = −T ∂V

∂T
|P − P

∂V

∂P
|T



. . . [5]

c)Show that (16.8-1) . . . [5]

∂E

∂T
|P = Cp − P

∂V

∂T
|P

6. No submission required but verify these important identities for Jaco-
bians

Page 51 LL, (I), (II), (III), (IV), (V).

{We will use these in the next few classes }


