Physics 210- Fall 2018
Classical and Statistical mechancis

Solution to Home Work # 3
Solution Posted on November 29, 2018

1. Canonical Transformations Example 1

a) From the theory of canonical transformations calculate the trans-
formation generated by Fi(q, Q) = Q/q of the free particle problem

H = p/(2m).

... [10]

From the “theoretical” equations p = 9F;/0q and P = —0F/0Q
obtained in class, we see that

p=-Q/¢*, P=-1/q.

Therefore we can solve for the old in terms of the new variables,

¢g=-1/P, p=-QP*

or the inverses,
P=-1/q, Q=—pg’.

Hence in the new variables the free particle Hamiltonian H = p?/(2m)
becomes:

H = P'Q?/(2m).

b) Find the Hamiltonian equations of motion in the new representa-
tion, and solve them exactly. ...[10]

The new Hamiltonian EOM read

Q:{QaH}v P:{PvH}

where the brackets are the Poisson brackets. Thus the strange looking
EOM are now



Q =2Q°P3/m, P =—-QP*/m.
To solve them we observe that
QP +2QP =0,
and hence
dQ/Q + 2dP/P =0
so that

where A is some constant. This means that dP/dt = —AP?/m which
can be solved easily by separating terms so that

dP/P? = —a/mdt
so integrating
1/P =B+ At/m
and
Q = A/P? = A(B + At/m)>.
We see that these correspond to the usual solution of the free particle

problem p = A where A=const, and x = x¢ + tA.

. Canonical Transformations Example 2

a) Show that a canonical transformation from ¢,p to any required
Q@ = Q(q) (i-e. a function of g only) can be generated by the generator
(g, P). . I9]

We can choose F»(q, P) = PQ(q) where Q(q) is an arbitrary function
of g. From the theory of transformations, this implies two equations

p=0F/0q, Q=0F,/0P = Q(q).

With these two equations we can fully invert and express ¢, p in terms
of @, P. Since @ is only a function of ¢ and not of p, this transformation
is called a contact transformation.

b) Find the F5(q, P) necessary to make the transformation in 2 dimen-
sions from 7= {z,y} to the standard polar coordinates r,6 .  ...[5]



We want to transform from z,y to r, 6 using
x =rcos(f), y = rsin(0)

Hence (g, p) variables are the pair (z,p,) and (y,p,) and Q1 =1, Q2 =
0. The theory helps us to compute Pi, P, automatically so that the
new set is also canonical.

Writing
Fy(q,P) = Py + Py#,
with
Qr=r= m, and Q2 = 6 = arctan(y/z).

¢) Using (b) find the full transformation from ¢, p"to the new canonical
momenta and coordinates. ... [5]

We now compute

Pz = 8F2/al' = Epl — EPQ’
r r2

x
Dy = 8F2/8y = %Pl + ﬁPQ'
Hence the inversion is easy

£ Y
Pl =Pz— + Py—,
r r
Py = xpy — ype.
Note that P, is the angular momentum L7, as one expects.

d) Verify that the new coordinates satisfy the canonical algebra by
computing the 4 poisson brackets {Q;, Pj}qp- ... 9]

For this problem we use the definition of the Poisson brackets
{A, B} = (0A/0) (9B dp.) — (0A/9p.) (9B/0x) + (x ¢ y).

Working through the partial derivatives, we can check the quoted re-
sult. We should note that 1, Q2 only depend on z, y and not on p,, p,
and hence half the terms in the Poisson brackets are identically zero.



3. Action problem

a) For the simple harmonic oscillator
H = p/(2m) + kq?/2,

calculate the action

J(E) = j{ pdg,
by integrating over a complete cycle. From the derivative with respect
to energy, calculate the time period. ... [5]

There are many ways of calculating the J(E). The simplest is to use
Greens theorem which relates it to the area of the surface in (p,q)
plane, with p?/(2m) + kq?/2 < E. A more algebraic method is useful
since it generalizes to the next problem too. We solve p?/(2m) +
kq?/2 = E for p in terms of ¢, E and find two roots

p+ = £Vmky/¢?, — ¢,
where
am =V 2E/k.

The two roots correspond to the two signs of the velocity, rightward or
leftwards. We need to use both of them for the closed path integral.
By a simple argument

qdm —dm qm
J(E)Z/ dqp++/ dq p- =2/ dq py
—qm dm —4m

where the closed path is being traversed in a clockwise sense. Writing
q = qm cos(f) the integral is written as

J(E) = —2vV'mk ¢, / sin’6 df == —2rx+/m/k E.
0

We may use the formula

T(E) = dJ(E)/dE = —2rn\/m/k.

The sign is ignored since it switches with the sense in which we go
around the orbit.This gives the time period, which is independent of
E for the harmonic oscillator.



b) Do the same calculation for the quartic oscillator
H = p*/(2m) + kq' /4,

where you can use scaling to get the energy dependence of the action,
and ignore (i.e. leave undetermined) the fairly cumbersome integral,
which is dimensionless and hence less important. ... 9]

This problem can be done in a very similar way as above, we need to
redefine

ST

am = (4E/k)%,
so that

p = £/mk/2V/ (g}, — ¢*).
Repeating the steps in part (a), we get

qm
J(E) = 2y/mk/2 / dq /(g — q*).-
Y —Qdm
We next scale ¢ = ¢y, cos § so that
J(E) = 2\/mk‘/2q§n/ df sin® /1 —sin* 6.
0

We can write this as
J(E) = AE3/4,

where A is independent of the energy E. Taking the derivative
dJ/dE = T(E) = 3A/4E~'/4,

¢) Show that time period can be written as
T(E) = //dpdq 0(H — E),

by differentiating the formula for J(F) and evaluate this integral for
the Harmonic oscillator directly to confirm the result of (a). ...[10]

As discussed in part (a) we can write

18) = [ [ v dg 05 - 32/(2m) - he?/2).
We use

7(8) = a)(B)/dE = [ [ dp dg 6(E - 5 (2m) b 2),



where we took the derivative inside the integral sign and used the hint

dO(z)/dx = 6(x).

{ Hint: This problem requires you to use the familiar formulat §(z) =
4 ©(z) where © is the Heaviside step function. }

. Thermodynamics and partial derivatives Example 1

a) We worked out a few examples of thermodynamic potentials,

dE =T dS — pdV + udN
dF = —SdT — pdV + udN
dQ = —SdT —pdV — Ndpu

Using the standard conditions for exact differentials, this leads to the
Maxwell relations. For example from the first equation we read

O’E  O*E
dSoV VoS
and hence
Op oT
THg VN = W|S,N-

This is an example of a Maxwell relation. It is infact rather useless
since we did not choose the potential strategically. We get more use-
ful ones by rewriting the first equation by moving S to one side and
everything else to the other. Doing this, write down the 3 Maxwell
relations from the first equation. ...[10]

b) Similarly write down the 4 Maxwell relations from the second and
third potentials by dropping the number variation. ...[10]
. Thermodynamics and partial derivatives Example 2

Using the tricks in Landau Lifshitz Stat Mech (Pages 49-51 - scan in
the website) show

a)

0C, L&V,
or'T — T oar2't
This is Eq 16.2 of LL. ... [10]
b) Show that (16.6)
oF oV 1%
apIT = Taple = Paplr



<t

¢)Show that (16.8-1)

ot

oF ov
ar'? =%~ Par

oT P

6. No submission required but verify these important identities for Jaco-
bians

Page 51 LL, (I), (II), (III), (IV), (V).

{We will use these in the next few classes }



