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1. In the canonical ensemble we saw that

F = −kT logZ, Z =
∑
n

e−βεn ,

where εn are the eigenvalues of the N particle system. Similarly for
the Grand Canonical Ensemble, we saw

Ω = −kT logZ, Z =
∑
n,Nn

e−β(εn−µNn),

a) Show that

N̄2 − N̄2 = α
dN̄

dµ
,

with a suitable α. From this show that the mean value N̄ is very close
to being sharp. (We discussed this in class, I would like you to fill in
the details). . . . [15]

Let us note that for any value of r the average is defined as:

N̄ r =

∑
n,Nn

N r
ne
−β(εn−µNn)∑

n,Nn
e−β(εn−µNn)

=
∂rβµZ

Z
.

From this it follows that

N̄ = ∂βµ logZ

and

∂βµN̄ = N̄2 − N̄2.

We can rewrite the left hand side as kBT∂µN̄ .

What this means is that in the grand canonical ensemble we will find
N̄2 to be N̄2, a large term of O(N2) plus a correction ∂βµN̄ , which is
only of the O(N). Hence the number of particles is sharp as N →∞.



b) Show that as T → 0 the variable

F − E

vanishes, from the property of E = ε̄n and the definition of F . . . . [10]

We recall that F = −kBT logZ and from the definition of the partition
function, Ē = −∂β logZ. We may therefore write

Ē = ∂ββF = F − T∂TF,

where we used β∂β = −T∂T . Hence

Ē − ∂ββF = −T∂TF.

The right hand side vanishes as T → 0 provided −∂TF is non-singular.
In fact −∂TF is the entropy S and vanishes at T = 0 by the third law.
Hence the required result.

2. a) Using the N spin half problem

H = −B
∑
j

σj ,

with σj = ±1, calculate the partition function Z =
∑

σj
e−βH , and the

free energy F . . . . [5]

We calculate as follows

Z =
∑
···σj ···

eβB
∑
i σi = (2 cosh(βB))N , F = −NkBT log(2 cosh(βB)).

b) Calculate the magnetization M = −dF/dB and susceptibility χ =
dM/dB/B→0. . . . [10]

By straightforward differentiation at finite B we get

M = N tanhβB,

χ = dM/dB
∣∣
B→0

= Nβ cosh−2(βB)
∣∣
B→0

= Nβ.

c) Calculate the specific heat C as a function of T . . . . [5]



We use C = dĒ/dT and

Ē = ∂ββF = −NB tanhβB,

and hence

C = NkB
B2

(kBT )2
1

cosh2 βB
.

d) Discuss briefly the T = 0 limit of C and χ. . . . [5]

We see that χ diverges as T → 0 when we set B = 0, whereas it is
finite if we leave B non-zero. The heat capacity C vanishes as B → 0
and also as B →∞ at any non-zero T . As T → 0 we see that C → 0.

3. Consider the ideal gas of non-interacting particles in the grand canon-
ical ensemble. We can write

Ω(T, µ, V ) = −kBT log{
∞∑
N=0

eβµNZN (T, V )}

where ZN is the canonical partition function

ZN =
1

N !

∫ N∏
i=1

d3qid
3pi

h3
e−β

∑
i

p2i
2m .

a) Show that

ZN =
1

N !

(
V

λ3th

)N
where λth = h/

√
2πmkBT is the thermal wavelength. . . . [10]

We note that in ZN the integration over the different particles decouple
so we can write

ZN =
1

N !
ΦN ,

where

Φ =

∫
d3qd3p

h3
e−β~p.~p/(2m).

We can further decouple the three components of ~p and write this as

Φ =
V

h3
φ3; φ =

∫
dpe−βp

2/(2m) =
√

2πmkBT ,



so

Φ =
V

λ3T
.

and hence

ZN =
1

N !

(
V

λ3T

)N
b) Carry out the sum over N exactly and show that the grand potential

Ω = −kBTeβµ
V

λ3th
.

. . . [5]

ZGC =
∑
N

ZNe
βµN =

∑
N

1

N !

(
eβµ

V

λ3T

)N
= e

{
eβµ V

λ3
T

}
.

Using Ω = −kBT logZGC the required result follows.

c) From Ω calculate expressions for N̄ , P in terms of µ, T and V. . . . [5]

From thermodynamics

dΩ = −S dT − p dV −N dµ

and hence

p = −∂V Ω = kBT
eβµ

λ3T
,

N̄ = −∂µΩ = V
eβµ

λ3T
,

d) By inversion find µ as a function of density and T. . . . [5]

This is obvious from the above result for N̄ . Dividing and taking logs
we get:

µ = kBT log nλ3T .

4. Consider a set of N quantum harmonic oscillators

H =

N∑
i=1

~ω(ni +
1

2
)



a) Calculate the partition function Z by summing e−βH over all ni.
. . . [15]

Z =
∑
···ni···

e−β~ω(ni+
1
2
) =

∏
i

 ∑
ni=0,1,2,..

e−β~ω(ni+
1
2
)

 =
1

(2 sinh β~ω
2 )N

where we used the geometric sum formula.

b) From this calculate the average energy E, and specific heat C as
functions of T,N. . . . [5]

Let us use

E = ∂ββF = N
β~ω

2
coth

β~ω
2
.

We may calculate the heat capacity from this using

C = ∂TE =
N

kBT 2
(
β~ω

2
)2/ sinh2 β~ω

2

c) Find the probability p(n) that a particular oscillator is in its nth

quantum level. . . . [5]

For a particular oscillator i0 say, we can define the probability of an
excited state ni by summing over all other variables. Using the fac-
torization (i.e. independence) of all sites we thus obtain

p(ni) =
exp−β~ω(ni + 1

2)∑
ni=0,1,... exp−β~ω(ni + 1

2)
= e−β~ωni

(
1− e−β~ω

)
.

5. This is optional. This is a type of problem that you might encounter
in actual experimental physics, and for that reason also in the quals

An experiment on the heat capacity was performed on a unknown
amount of La2CuO4, and the resulting data for a large range of T was
fit very well to

C =
k2BT

∆
sech2kBT

∆
× c0,

where the dimensionless constant c0 = 1.025 × 1024, and the con-
stant ∆ = 10K. Assume that the heat capacity is purely from non-
interacting Copper spins (each atom has a spin half), and neglecting



phonons, compute the entropy at T � ∆/kB, and from this find the
mass of the system.

{Required Data: Atomic weight of Oxygen=16, Cu=63.5,La=139.
You will need to argue that each mole containing the Avogadro num-
ber of formula units has a known number of copper spin half particles.
You will also need to make an educated guess about the entropy of
these spins. }


