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The Heisenberg representation removes all time-dependence from the wavefunction, so that
|ψH⟩ = |ψs(0)⟩ and all time-evolution is transfered to the operators,

AH(τ) = eiH(−iτ)AS e−iH(−iτ) = eHτAS e−Hτ. (9.6)

so that the Heisenberg equation of motion becomes

∂AH
∂τ
= [H, AH]

If we apply this to the free particle Hamiltonian

H =
∑
ϵkc†kck

we obtain

∂ck
∂τ

= [H, ck] = −ϵkck
∂c†k
∂τ

= [H, c†k] = ϵkc†k (9.7)

so that
ck(τ) = e−ϵkτck
c†k(τ) = eϵkτc†k

}
(p.s c†k(τ) = (ck(−τ))† ! (ck(τ))† ). (9.8)

Notice a key difference to the real-time formalism: in the imaginary time Heisenberg representation,
creation and annihilation operator are no longer Hermitian conjugates.

We go on next, to develop the Interaction representation, which freezes time-evolution from the
non-interacting part of the Hamiltonian H0, so that

|ψI(τ)⟩ = eH0τ|ψs(τ)⟩ = eH0τe−Hτ|ψH⟩ = U(τ)|ψH⟩

where U(τ) = eH0τe−Hτ is the time evolution operator. The relationship between the Heisenberg and
the interaction representation of operators is given by

AH(τ) = eHτAS e−Hτ = U−1(τ)AI(τ)U(τ)

In the interaction representation, states can be evolved between two times as follows

|ψI(τ1)⟩ = U(τ1)U−1(τ2))|ψI(τ2)⟩ = S (τ1, τ2)|ψI(τ2)⟩

The equation of motion for U(τ) is given by

−
∂

∂τ
U(τ) = −

∂

∂τ

[
eHoτe−Hτ

]

= eHoτVe−Hτ

= eHoτVe−HoτU(τ)
= VI(τ)U(τ) (9.9)
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and a similar equation applies to S (τ1, τ2),

−
∂

∂τ
S (τ1, τ2) = VI(τ1)S (τ1, τ2). (9.10)

These equations parallel those in real time, and following exactly analogous procedures, we de-
duce that the imaginary time evolution operator in the interaction representation is given by a time-
ordered exponential, as follows

U(τ) = T exp
[
−

∫ τ

0
VI(τ)dτ

]

S (τ1, τ2) = T exp
[
−

∫ τ2

τ1

VI(τ)dτ
]
. (9.11)

One of the immediate applications of these results, is to provide a perturbation expansion for
the partition function. We can relate the partition function to the time-evolution operator in the
interaction representation as follows

Z = Tr
[
e−βH

]
= Tr

[
e−βHoU(β)

]

=

Z0︷!!!!!︸︸!!!!!︷
Tr

[
e−βH0

]

⟨U(β)⟩0︷!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!︷⎛
⎜⎜⎜⎜⎜⎜⎝
Tr

[
e−βHoU(β)

]

Tr
[
e−βH0

]

⎞
⎟⎟⎟⎟⎟⎟⎠

= Z0⟨U(β)⟩0 (9.12)

enabling us to write the ratio of the interacting, to the non-interacting partition function as the
expectation value of the time-ordered exponential in the non-interacting system.

Z
Z0
= e−β∆F = ⟨T exp

[
−

∫ β

0
VI(τ)dτ

]
⟩ (9.13)

Notice how the logarithm of this expression gives the shift in Free energy resulting from interac-
tions. The perturbative expansion of this relation in powers of V is basis for the finite temperature
Feynman diagram approach.

9.2 Imaginary Time Green Functions

The finite temperature Green function is defined to be

Gλλ′(τ − τ′) = −⟨Tψλ(τ)ψλ′†(τ′)⟩ = −Tr
[
e−β(H−F)ψλ(τ)ψλ′†(τ′)

]
(9.14)

where ψλ can be either a fermionic or bosonic field, evaluated in the Heisenberg representation,
F = −T lnZ is the Free energy. The T inside the angle brackets the time-ordering operator. Provided
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H is time independent, time-translational invariance insures that G is solely a function of the time
difference τ−τ′. In most cases, we will refer to situations where the quantum number λ is conserved,
which will permit us to write

Gλλ′(τ) = δλλ′Gλ(τ).
For the case of continuous quantum numbers λ, such as momentum, it is convention to promote the
quantum number into the argument of the Green function, writing G(p, τ) rather than Gp(τ).

As an example, consider a non-interacting system with Hamiltonian

H =
∑
ϵλψ
†
λψλ, (9.15)

where ϵλ = Eλ −µ is the one-particle energy, shifted by the chemical potential. Here, the equal time
expectation value of the fields is

⟨ψλ′†ψλ⟩ = δλλ′
{
n(ϵλ) (Bosons)
f (ϵλ) (Fermions) (9.16)

where

n(ϵλ) =
1

eβϵλ − 1
f (ϵλ) =

1
eβϵλ + 1

(9.17)

are the Bose and Fermi functions respectively. Similarly,

⟨ψλψ†λ′ ⟩ = δλλ′ ± ⟨ψλ′†ψλ⟩ = δλλ′
{
1 + n(ϵλ) (Bosons)
1 − f (ϵλ) (Fermions) (9.18)

Using the time evolution of the operators,

ψλ(τ) = e−ϵλτψλ(0)
ψ†λ(τ) = eϵλτψ†λ(0) (9.19)

we deduce that

Gλλ′(τ − τ′) = −
[
θ(τ − τ′)⟨ψλψ†λ′ ⟩ + ζθ(τ′ − τ)⟨ψ†λ′ψλ⟩

]
e−ϵλ(τ−τ

′) (9.20)

where we have re-introduced ζ = 1 for Bosons and −1 for fermions, from Chapter 8. If we now
write Gλλ′(τ − τ′) = δλλ′Gλ(τ − τ′), then

Gλ(τ) = −e−ϵλτ.
{
[(1 + n(ϵλ))θ(τ) + n(ϵλ)θ(−τ)] (Bosons)[
(1 − f (ϵλ))θ(τ) − f (ϵλ)θ(−τ)

]
(Fermions) (9.21)

There are several points to notice about this Green’s function:

• Apart from prefactors, at zero temperature the imaginary time Green’s function Gλ(τ) is equal
to zero-temperature Green’s function Gλ(t), evaluated at a time t = −iτ, Gλ(τ) = −iGλ(−iτ).

• If τ < 0 the Green function satisfies the relation

Gλλ′(τ + β) = ζGλλ′(τ)

so that the bosonic Green function is periodic in imaginary time, while the fermionic Green
function is antiperiodic in imaginary time, with period β.
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9.2.1 Periodicity and Antiperiodicity

The (anti) periodicity observed in the last example is actually a general property of finite temperature
Green functions. To see this, take −β < τ < 0, then we can expand the Green function as follows

Gλλ′(τ) = ζ⟨ψ†λ′(0)ψλ(τ)⟩
= ζTr

[
e−β(H−F)ψ†λ′eτHψλe−τH

]
(9.22)

Now we can use the periodicity of the trace Tr(AB) = Tr(BA) to cycle the operators on the left of
the trace over to the right of the trace, as follows

Gλλ′(τ) = ζTr
[
eτHψλe−τHe−β(H−F)ψ†λ′

]

= ζTr
[
eβFeτHψλe−(τ+β)Hψ†λ′

]

= ζTr
[
e−β(H−F)e(τ+β)Hψλe−(τ+β)Hψ†λ′

]

= ζTr⟨ψλ(τ + β)ψ†λ′(0)⟩
= ζGλλ′(τ + β) (9.23)

This periodicity, or antiperiodicity was noted by Matsubara[1]. In the late 1950’s, Abrikosov,
Gorkov and Dzyalozinski[2] observed that we are in fact at liberty to extend the function outside
G(τ) outside the range τ ∈ [−β, β] by assuming that this periodicity, or antiperiodicity extends in-
definitely along the entire imaginary time axis. In otherwords, there need be no constraint on the
value of τ in the periodic or antiperiodic boundary conditions

Gλλ′(τ + β) = ±Gλλ′(τ)

With this observation, it becomes possible to carry out a Fourier expansion of the Green func-
tion in terms of discrete, frequencies. Today we use the term coined by Abrikosov, Gorkov and
Dzyaloshinskii, calling them “Matsubara” frequencies[2].

9.2.2 Matsubara Representation

The Matsubara frequencies are defined as

νn = 2πnkBT (Boson)
ωn = π(2n + 1)kBT (Fermion). (9.24)

where by convention, νn is reserved for Bosons and ωn for fermions. These frequencies have the
property that

eiνn(τ+β) = eiνnτ

eiωn(τ+β) = −eiωnτ (9.25)

The periodicity or antiperiodicity of the Green function is then captured by expanding it as a linear
sum of these functions:

Gλλ′(τ) =
{

T
∑
n Gλλ′(iνn)e−iνnτ Boson

T
∑
n Gλλ′(iωn)e−iωnτ Fermion (9.26)
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and the inverse of these relations is given by

Gλλ′(iαn) =
∫ β

0
dτGλλ′(τ)eiαnτ, (αn =

{
Matsubara frequency

}
) (9.27)

Example : Free Fermions and Free Bosons

For example, let us use (9.27) to derive the propagator for non-interacting fermions or bosons with
H =

∑
ϵλψ
†
λψλ. For fermions, the Matsubara frequencies are iωn = π(2n + 1)kBT so using the real

time propagator(9.21), we obtain

Gλ(iωn) = −
∫ β

0
dτe(iωn−ϵλ)τ

[1+e−βϵλ ]−1︷!!!!!!!︸︸!!!!!!!︷
(1 − f (ϵλ))

= −
1

iωn − ϵλ

−1︷!!!!!!!!!!!︸︸!!!!!!!!!!!︷
(e(iωn−ϵλ) − 1)
1 + e−βϵλ

(9.28)

so that

Gλ(iωn) =
1

iωn − ϵλ
Free Fermions (9.29)

In a similar way, for free Bosons, where the Matsubara frequencies are iνn = π2nkBT , using (9.27)
and (9.21), we obtain

Gλ(iνn) = −
∫ β

0
dτe(iνn−ϵλ)τ

[1−e−βϵλ ]−1︷!!!!!!︸︸!!!!!!︷
(1 + n(ϵλ))

= −
1

iνn − ϵλ

−1︷!!!!!!!!!!︸︸!!!!!!!!!!︷
(e(iνn−ϵλ) − 1)
1 − e−βϵλ

(9.30)

so that

Gλ(iνn) =
1

iνn − ϵλ
Free Bosons (9.31)

Remarks

• Notice how the finite temperature propagators (9.29) and (9.31) are essentially identical for
free fermions and bosons. All the information about the statistics is encoded in the Matsubara
frequencies.
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• With the replacement ω → iωn the finite temperature propagator for Free fermions (9.29)
is essentially identical to the zero temperature propagator, but notice that the inconvenient
iδsign(ϵλ) in the denominator has now disappeared.

Example: Finite temperature Propagator for the Harmonic Oscillator

As a second example, let us calculate the finite temperature Green function

D(τ) = −⟨T x(τ)x(0)⟩ (9.32)

and its corresponding propagator

D(iν) =
∫ β

0
eiνnτD(τ) (9.33)

for the simple harmonic oscillator

H = !ω(b†b +
1
2
)

x =
√
!

2mω
(b + b†) (9.34)

Expanding the Green function in terms of the creation and annihilation operators, we have

D(τ) = −
!

2mω
⟨T (b(τ) + b†(τ))(b(0) + b†(0))⟩

= −
!

2mω
(
⟨Tb(τ)b†(0)⟩ + ⟨Tb†(τ)b(0)⟩

)
, (9.35)

where terms involving two creation or two annihilation operators vanish. Now using the derivations
that led to (9.21 )

−⟨Tb(τ)b†(0)⟩ = G(τ) = −[(1 + n(ω))θ(τ) + n(ω)θ(−τ)]e−ωτ. (9.36)

and

−⟨Tb†(τ)b(0)⟩ = −[n(ω)θ(τ) + (1 + n(ω))]eωτ
= [(1 + n(−ω))θ(τ) + n(−ω)θ(−τ)]eωτ. (9.37)

which corresponds to −G(τ) with the sign of ω inverted. With this observation,

D(τ) =
!

2mω
[G(τ) − {ω→ −ω}] . (9.38)

When we Fourier transform the first term inside the brackets, we obtain 1
iνn−ω , so that

D(iνn) =
!

2mω

[
1

iνn − ω
−

1
iνn + ω

]

=
!

2mω

[
2ω

(iνn)2 − ω2

]
. (9.39)

This expression is identical to the corresponding zero temperature propagator, evaluated at fre-
quency z = iνn.
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Example 9.1: Consider a system of non-interacting Fermions, described by the Hamiltonian
H =

∑
λ ϵλc†λcλ where ϵλ = Eλ − µ and Eλ is the energy of a one-particle eigenstate and µ is the

chemical potential.
Show that the total number of particles in equilibrium is

N(µ) = T
∑
Gλ(iωn)eiωnO

+

where Gλ(iωn) = (iωn − ϵλ)−1 is the Matsubara propagator. Using the relationship N = −∂F/∂µ
show that that Free energy is given by

F(T, µ) = −kBT
∑

λ,iωn

ln
[
−Gλ(iωn)−1

]
eiωnO

+

+C(T ) (9.40)

Solution: The number of particles in state λ can be related to the equal time Green’s function
as follows

Nλ = ⟨c†λcλ⟩ = −⟨Tcλ(0−)c†λ⟩ = Gλ(0−).

Rewriting Gλ(τ) = T
∑
iωn Gλe

−iωnτ, we obtain

N(µ) =
∑

λ

Nλ = T
∑

λ,iωn

Gλ(iωn)eiωn0
+

Now since −∂F/∂µ = N(µ), it follows that

F = −
∫ µ

dµN(µ) = −T
∑

λ,iωn

∫ µ

dµ
eiωnO+

iωn − Eλ + µ

= −T
∑

λ,iωn

ln [ϵλ − iωn] eiωnO
+

= −T
∑

λ,iωn

ln
[
−Gλ(iωn)−1

]
eiωnO

+

+C(T ). (9.41)

We shall shortly see that C = 0 using Contour integral methods.

Example 9.2: Consider an electron gas where the spins are coupled to a magnetic field, so that
ϵλ ≡ ϵk −µBσB. Write down an expression for the magnetization and by differentiating w.r.t the
field B, show that the temperature dependent magnetic susceptibility is given by

χ(T ) =
∂M
∂B

∣∣∣∣∣
B=0
= −2µ2BkBT

∑

k,iωn

G(k)2

where G(k) ≡ G(k, iωn) is the Matsubara propagator.
Solution: The magnetization is given by

M = µB
∑

λ,σ

σ⟨c†kσckσ⟩ = µBT
∑

kσ,iωn

σGσ(k, iωn)eiωn0
+
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Differentiating this w.r.t. B and then setting B = 0, we obtain

χ =
∂M
∂B

∣∣∣∣∣
B=0
= −µ2BT

∑

kσiωn

σ2Gσ(k, iωn)2
∣∣∣∣∣∣∣
B=0

= −2µ2BkBT
∑

k,iωn

G(k)2 (9.42)

9.3 The contour integral method

In practice, we shall do almost all of our finite temperature calculations in the frequency domain.
To obtain practical results, we will need to be able to sum over the Matsubara frequencies, and this
forces us to make an important technical digression. As an example of the kind of tasks we might
want to carry out, consider how we would calculate the occupancy of a given momentum state in a
Fermi gas at finite temperature, using the Matsubara propagator G(p, iωn). This can be written in
terms of the equal time Green function, as follows

⟨c†pσcpσ⟩ = G(p, 0−) = T
∑

n

1
iωn − ϵ(p)

eiωnO
+

. (9.43)

A more involved example, is the calculation of the finite temperature dynamical spin susceptibility
χ(q) of the Free electron gas at wavevector and frequency q ≡ (q, iνn). We shall see that this quantity
derives from a Feynman polarization bubble diagram which gives

χ(q) = −2µ2BT
∑

p
G(p + q)G(p) = 2µ2B

∑

p

⎛
⎜⎜⎜⎜⎜⎝kBT

∑

r
G(p + q, iωr + iνn)G(p, iωr)

⎞
⎟⎟⎟⎟⎟⎠ . (9.44)

where the −1 derives from the Fermion loop. In both cases, we need to know how to do the sum
over the discrete Matsubara frequencies, and to do this, we use the method of contour integration.
To make this possible, observe that the Fermi function f (z) = 1/[ezβ+1] has poles of strength −kBT
at each discrete frequency z = iωn, because

f (iωn + δ) =
1

eβ(iωn+δ) + 1
= −

1
βδ
= −

kBT
δ

so that for a general function F(iωn), we may write

kBT
∑

n
F(iωn) = −

∫

C

dz
2πi

F(z) f (z) (9.45)

where the contour integral C is to be taken anticlockwise around the poles at z = iωn as shown in
Fig. 9.3 (a)
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Our result for the electron propagator, ignoring the “vertex corrections” to the scattering self-energy
is given by

G(k, z) =
1

z − ϵk + i 12τsgnIm(z)

where we have boldly extended the Green function into the complex plane. We may now make a
few remarks:

• The original pole of the Green function has been broadened. The electron “spectral function”,

A(k,ω) =
1
π
ImG(k,ω − iδ) =

1
π

(2τ)−1

(ω − ϵk)2 + (2τ)−2

is a Lorentzian of width 1/τ. The electron of momentum k now has a lifetime τ due to elastic
scattering effects.

• Although the electron has a mean-free path, l = vFτthe electron propagator displays no fea-
tures of diffusion. The main effect of the finite scattering rate is to introduce a decay length
into the electron propagation. The electron propagator does not bear any resemblance to the
“diffusion propagator” χ = 1/(iν−Dq2) that is the Greens function for the diffusion equation
(∂t − D∇2)χ = −δ(x, t). The physics of diffusion and Ohm’s law do not appear until we are
able to examine the charge and spin response functions, and for this, we have to learn how to
compute the density and current fluctuations in thermal equilibrium. (Chapter 10).

• The scattering rate that we have computed is often called the “classical” electron scattering
rate. The neglected higher order diagrams with vertex corrections are actually smaller than
the leading order contribution by an amount of order

1
ϵFτ
=
1
kFl

This small parameter defines the size of “quantum corrections” to the Drude scattering physics,
which are the origin of the physics of electron localization. To understand how this small num-
ber arises in the self-energy, consider the first vertex correction to the impurity scattering,

k  + k   ! k1 2

k2 k 1k k

(9.93)

This diagram is given by

Σ2 =

−i 12τ︷!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!︷

N(0)
∫

dϵ1
iωn − ϵ1

−i 12τ︷!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!︷

N(0)
∫

dϵ2
iωn − ϵ2

∼ −i
kF vF︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷∫

dΩ1dΩ2
(4π)2

1
iωn − ϵk1+k2−k
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∼ i
1
τ
×
1
kFl

(9.94)

where the last term in the integral derives from the central propagator in the self-energy. In this
self-energy, the momentum of the central propagator is entirely determined by the momentum
of the two other internal legs, so that the energy associated with this propagator is ϵ−k+k1+k2 .
This energy is only close to the Fermi energy when k1 ∼ −k2, so that only a small fraction
1/(kFl) of the possible directions of k2 give a large contribution to the scattering processes.

9.7 Interacting electrons and phonons

The electron phonon interaction is one of the earliest successes of many body physics in condensed
matter. In many ways, it is the condensed matter analog of quantum-electrodynamics - and the
early work on the electron phonon problem was carried out by physicists who had made their early
training in the area of quantum electrodynamics.

When an electron passes through a crystal, it attracts the nearby ions, causing a local build-up
of positive charge. Perhaps a better analogy, is with a supersonic aircraft, for indeed, an electron is
a truly supersonic particle inside crystals, moving at many times the velocity of sound. To get an
idea of just how much faster the electron moves in comparison with sound, notice that the ratio of
the sound velocity vs to the Fermi velocity vF is determined by the ratio of the Debye frequency to
the Fermi energy, for

vs
vF
∼
∇kωk
∇kϵk

∼
ωD/a
ϵF/a

=
ωD
ϵF

where a is the size of the unit cell. Now an approximate estimate for the Debye frequency is given
by ω2D ∼ k/M, where M is the mass of an atomic nucleus and k ∼ ϵF/a2 is the “spring constant”
associated with atomic motions, thus

ω2D ∼
(ϵF
a2

) 1
M

and
ω2D
ϵ2F
∼

1
(ϵFa2)︸︷︷︸
∼1/m

1
M
∼
m
M

so that the ratio
vs
vF
∼

√
m
M
∼

1
100
.

so an electron moves at around Mach 100. As it moves through the crystal, it leaves behind it a very
narrow wake of “positively charged” distortion in the crystal lattice which attracts other electrons,
long after the original disturbance has passed by. This is the origin of the weak attractive inter-
action produced by the exchange of virtual phonons. This attractive interaction is highly retarded,
quite unlike the strongly repulsive Coulomb interaction that acts between electrons which is almost
instantaneous in time. (The ratio of characteristic timescales being ∼ ϵF

ωD
∼

√
M
m ∼ 100). Thus-
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whereas two electrons at the same place and time, feel a strong mutual Coulomb repulsion, two elec-
trons which arrive at the same place, but at different times can be subject to an attractive electron
phonon interaction. It is this interaction that is responsible for the development of superconductivity
in many conventional metals.

In an electron fluid, we must take into account the quantum nature of the sound-vibrations.
An electron can not continously interact with the surrounding atomic lattice - it must do so by
the emission and absorption of sound quanta or “phonons”. The basic Hamiltonian to describe
the electron phonon problem is the Frohlich Hamiltonian, derived by Fröhlich, a German emigré
to Britain, who worked in Liverpool shortly after the second-world war[7]. Fröhlich recognized
that the electron-phonon interaction is closely analogous to the electron-photon interaction of QED.
Fröhlich appreciated that this interaction would give rise to an effective attraction between electrons
and he was the first to identify it as the driving force behind conventional superconductivity.

To introduce the Frohlich Hamiltonian, we will imagine we have a three phonon modes labelled
by the index λ = (1, 2, 3), with frequency ωqλ. For the moment, we shall also ignore the Coulomb
interaction between electrons. The Fröhlich Hamiltonian is then

He =
∑

kσ
ϵkc†kσckσ

Hp =
∑

q,λ
ωqλ(a†qλaqλ +

1
2
)

HI =
∑

k,q,λ
gqλc†k+qσckσ

[
aqλ + a†−qλ

]
(9.95)

To understand the electron phonon coupling, let us consider how long-wavelength fluctuations of
the lattice couple to the electron energies. Let Φ⃗(x) be the displacement of the lattice at a given
point x, so that the strain tensor in the lattice is given by

uµν(x) =
1
2

(
∇µΦν(x) + ∇νΦµ(x)

)

In general, we expect a small change in the strain to modify the background potential of the lattice,
modifying the energies of the electrons, so that locally,

ϵ(k) = ϵ0(k) +Cµνuµν(x) + . . .

Consider the following, very simple model. In a free electron gas, the Fermi energy is related to the
density of the electrons N/V by

ϵF =
1
2m

(
3π2N
V

) 2
3

. (9.96)

When a portion of the lattice expands from V → V + dV , the positive charge of the background
lattice is unchanged, and preservation of overall charge neutrality guarantees that the number of
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electrons N remains constant, so the change in the Fermi energy is given by

δϵF
ϵF
= −

2
3
dV
V
∼ −

2
3
∇⃗ · Φ⃗

On the basis of this simple model, we expect the following coupling between the displacement
vector and the electron field

HI = C
∫

d3xψσ†(x)ψσ(x)∇⃗.Φ⃗ C = −
2
3
ϵF (9.97)

The quantity C is often called the “deformation potential”. Now the displacement of the the
phonons was studied in Chapter 4. In a general model, it is given by

Φ(x) = −i
∑

qλ
eλq ∆xqλ

[
aqλ + a†−qλ

]
eiq·x

where we’ve introduced the shorthand

∆xqλ =
(

!

2MNsωqλ

) 1
2

to denote the characteristic zero point fluctuation associated with a given mode. (Ns is the number
of sites in the lattice. ) The body of this expression is essentially identical to the displacement of a
one-dimensional harmonic lattice (see (3.81)), dressed up with additional polarization indices. The
unfamiliar quantity eλq is the polarization vector of the mode. For longitudinal phonons, for instance,
eLq = q̂. The “−i” infront of the expression has been introduced into the definition of the phonon
creation and annihilation operators so that the requirement that the Hamiltonian is hermitian (which
implies (eλq)∗ = −(eλ−q)) is consistent with the convention that e changes sign when the momentum
vector q is inverted.

The divergence of the phonon field is then

∇⃗ · Φ(x) =
∑

qλ
q · eλq∆xqλ

[
aqλ + a†−qλ

]
eiq·x

In this simple model, the electrons only couple to the longitudinal phonons, since these are the only
phonons that change the density of the unit cell. When we now Fourier transform the interaction
Hamiltonian, making the insertion ψσ(x) = 1√

V

∑
k ckσeik·x (9.97), we obtain

HI = C
∫

d3xψσ†(x)ψσ(x)∇⃗ · Φ⃗(x)

=
∑

k,k′,q,λ
c†k′σckσ

[
aqλ + a†−qλ

]
δk′−(k+q)︷!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!︷

1
V

∫
d3xei(q+k−k

′)·x ×C∆xqλ(q · eλq)
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=
∑

qkλ
gqλc†k+qσckσ

[
aqλ + a†−qλ

]
(9.98)

where

gqλ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Cq∆xqλ = Cq

(
!

2MNsωqλ

) 1
2
(λ = L)

0 (otherwise )

Note that Ns = V/a3, where a is the lattice spacing. To go over to the thermodynamic limit, we
will replace our discrete momentum sums by continuous integrals,

∑
q ≡ V

∫
q →

∫
q. Rather than

spending a lot of time keeping track of how the volume factor is absorbed into the integrals, it is
simpler to regard V = 1 as a unit volume, replacing Ns → a−3 whenever we switch from discrete,
to continuous integrals. With this understanding, we will use

gq = Cq
√
!a3/(2Mωqλ) (9.99)

for the electron-phonon coupling to the longitudinal modes. Our simple model captures the basic
aspects of the electron phonon interaction, and it can be readily generalized. In a more sophisticated
model,

• C becomes momentum dependent and should be replaced by the Fourier transform of the
atomic potential. For example, if we compute the electron - phonon potential from given by
the change in the atomic potential Vatomic resulting from the displacement of atoms,

δV(x) =
∑

j
δVatomic(x − R

0
j − Φ⃗ j) = −

∑

j
Φ⃗ j · ∇⃗Vatomic(x − R

0
j)

we must replace interaction,

C → Vatomic(q) =
1
vcell

∫
d3xVatomic(x)e

−iq·x. (9.100)

• When the plane-wave functions are replaced by the detailed Bloch wavefunctions of the elec-
tron band, the electron phonon coupling becomes dependent on both the incoming and out-
going electron momenta, so that

gk′−kλ → gk′,kλ.

Nevertheless, much can be learnt from our simplified model In the discussion that follows, we
shall drop the polarization index, and assume that the phonon modes we refer to are exclusively
longitudinal modes.

In setting up the Feynman diagrams for our Frohlich model, we need to introduce two new
elements- a diagram for the phonon propagator, and a diagram to denote the vertex. If we denote
φq = aq + a†−q, then the phonon Green function is given by

D(q, τ − τ′) = −⟨Tφq(τ)φq(τ′)⟩ = T
∑

iνn

D(q)e−iνn(τ−τ
′) (9.101)
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where the propagator

D(q) =
2ωq

(iνn)2 − (ωq)2

is denoted by the diagram

(q, iνn)
= D(q, iνn) (9.102)

The interaction vertex between electrons and phonon is denoted by the diagram

k

k + q

q
= (i)3 × −gq = igq (9.103)

The factor i3 arises because we have three propagators entering the vertex, each donating a factor of
i. The −1gq derives from the interaction Hamiltonian in the time-ordered exponential. Combining
these two Feynman rules, we see that when two electrons exchange a boson, this gives rise to the
diagram

(q, νn)
1 2 = (igq)2D(q) = −(gq)2D(q) (9.104)

so that the exchange of a boson induces an effective interaction

Veff(q, z) = g
2
q

2ωq
(z)2 − ω2q

(9.105)

Notice three things about this interaction -

• It is strongly frequency dependent, reflecting the strongly retarded nature of the electron
phonon interaction. The characteristic phonon frequency is the Debye frequency ωD, and the
characteristic “restitution” time associated with the electron phonon interaction is τ ∼ 1/ωD,
whereas the corresponding time associated with the repulsive Coulomb interaction is of order
1/ϵF . The ratio ϵF/ωD ∼ 100 is a measure of how much more retarded the electron-phonon
interaction is compared with the Coulomb potential.

• It is weakly dependent on momentum, describing an interaction that is spatially local over
one or two lattice spacings.

• At frequencies below the Debye energy, ω<
˜
ωD the denominator in Veff changes sign, and the

residual low-energy interaction is actually attractive. It is this component of the interaction
that is responsible for superconductivity in conventional superconductors.

We wish to now calculate the effect of the electron-phonon interaction on electron propagation.
The main effect on the electron propagation is determined by the electron-phonon self energy. The
leading order Feynman diagram for the self-energy is given by
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