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Chapter 1

Introduction

This monogram is written with the graduate student in mind. I had in mind to write a short, crisp
book that would introduce my students to the basic ideas and concepts behind many body physics.
At the same time, I felt very strongly that I should like to share my excitement with this field, for
without feeling the thrill of entering uncharted territory, I do not think one has the motivation to
learn and to make the passage from learning to research.

Traditionally, as physicists we ask “what are the microscopic laws of nature ?”, often proceeding
with the brash certainty that once revealed, these laws will have such profound beauty and symmetry,
that the properties of the universe at large will be self-evident. This basic philosophy can be traced
from the earliest atomistic philosophies of Democritus, to the most modern quests to unify quantum
mechanics and gravity.

The dreams and aspirations of many body physics interwine the atomistic approach with a com-
plimentary philosophy- that of emergent phenomena. From this view, fundamentally new kinds of
phenomena emerge within complex assemblies of particles which can not be anticipated from an à
priori knowledge of the microscopic laws of nature. Many body physics aspires to synthesize from
the microscopic laws, new principles that govern the macroscopic realm, asking

What new principles and laws emerge as we make the journey from the microscopic to the macro-
scopic?

This is a comparatively new scientific philosophy. Darwin was the perhaps the first to seek an
understanding of emergent laws of nature. Following in his footsteps, Boltzmann was probably
the first physicist to appreciate the need to understand how emergent principles are linked to mi-
croscopic physics, From Boltzmann’s biography[1], we learn that he was strongly influenced and
inspired by Darwin. In more modern times, a strong advocate of this philosophy has been Philip
Anderson, who first introduced the phrase “emergent phenomenon” into physics[2]. In an influen-
tial article entitled “More is different” written in 1967,[2] P.W. Anderson captured the philosophy
of emergence, writing

“The behavior of large and complex aggregations of elementary particles, it turns out, is not to
be understood in terms of a simple extrapolation of the properties of a few particles. Instead,
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at each level of complexity entirely new properties appear, and the understanding of the new
behaviors requires research which I think is as fundamental in its nature as any other.”

P. W. Anderson from “More is Different” , 1967.

In an ideal world, I would hope that from this short course your knowledge of many body
techniques will grow hand-in-hand with an appreciation of the motivating philsophy. In many ways,
this dual track is essential, for often, one needs both inspiration and overview to steer one lightly
through the formalism, without getting bogged down in mathematical quagmires.

I have tried in the course of the book to mention aspects of the history of the field. We often
forget that act of discovering the laws of nature is a very human and very passionate one. Indeed,
the act of creativity in physics research is very similar to the artistic process. Sometimes, scientific
and artistic revolution even go hand in hand - for the desire for change and revolution often crosses
between art and sciences[3]. I think it is important for students to gain a feeling of this passion
behind the science, and for this reason I have often included a few words about the people and the
history behind the ideas that appear in this text. There are unfortunately, very few texts that tell
the history of many body physics. Pais’ book “Inward Bound” has some important chapters on
the early stages of many body physics. A few additional references are included at the end of this
chapter[4, 5, 6, 7]

There are several texts that can be used as reference books in parallel with this monogram, of
which a few deserve special mention. The student reading this book will need to consult stan-
dard references on condensed matter and statistical mechanics. Amongst the various references
let me recommend “Statistical Physics Part II” by Landau and Pitaevksii[8]. For a conceptual un-
derpining of the concepts of condensed matter physics, may I refer you to the Anderson’s classic
“Basic Notions in Condensed Matter Physics”[9]. Amongst the classic references to many body
physics let me mention “AGD”[10], Methods of Quantum Field Theory by Abrikosov, Gorkhov and
Dzyaloshinksi. This is the text that drove the quantum many body revolution of the sixties and sev-
enties, yet it is still very relevant today, if rather terse. Other many body texts which introduce the
reader to the Green function approach to many body physics include “Many Particle Physics” by G.
Mahan[11], notable for the large number of problems he provides, “Green Functions for “Green’s
functions for Solid State Physics” by Doniach and Sondheimer[12] and the very light introduction
to the subject “Feynman diagrams in Solid State Physics” by Richard Mattuck[13]. Amongst the
more recent treatments, let me note Alexei Tsvelik’s “Quantum Field Theory” in Condensed Matter
Physics”[14], provides a wonderful introduction to many of the more modern approaches to con-
densed matter physics, including an introduction to bosonization and conformal field theory. As a
reference to the early developments of many body physics, I recommend “The Many Body Prob-
lem”, by David Pines[15], which contains a compilation of the classic early papers in the field.
Lastly, let me recommend the reader to numerous excellent online reference sources, in addition to
the online physics archive http://arXiv.org, let me mention writing include online lecture notes on
many body theory by Ben Simon and Alexander Atlund[16] and lecture notes on Solid State Physics
and Many Body Theory by Chetan Nayak[17].

Here is a brief summary of what we will cover:
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1. Scales and complexity, where we discuss the gulf of time (T), length-scale (L), particle num-
ber (N) and complexity that separates the microscopic from the macroscopic.

2. Second Quantization. Where make the passage from the wavefunction, to the field operator,
and introduce the excitation concept.

3. Introducing the fundamental correlator of quantum fields: the Green’s functions. Here we
develop the tool of Feynman diagrams for visualizing and calculating many body processes.

4. Finite temperature and imaginary time. By replacing it −→ τ, e−iHt −→ e−Tτ, we will see
how to extend quantum field theory to finite temperature, where we will find that there is an
intimate link between fluctuations and dissipation.

5. The disordered metal. Second quantized treatment of weakly disordered metals: the Drude
metal, and the derivation of “Ohm’s law” from first principles.

6. Opening the door to Path Integrals, linking the partition function and S-matrix to an integral
over all possible time-evolved paths of the many-body system. Z =

∫
PATH e

−S/!.

7. The concept of broken symmetry and generalized rigidity, as illustrated by superconductivity
and pairing.

8. A brief introduction to the physics of local moment systems

Finally, a brief note on the conventions used in this book. This book uses standard SI notation,
which means abandoning some of the notational elegance of cgs units, but brings the book into line
with the international standards. Also, following a convention followed in the early Russian texts
on physics and many body physics, and by Mahan’s many body physics[11], I use the convention
that the charge on the electron is

e = −1.602 · · · × 10−19C

In other words e = −|e| denotes the magnitude and the sign of the electron charge. This convention
minimizes the number of minus signs required. With this notation, the Hamiltonian of an electron
in a magnetic field is given by

H =
(p − eA)2

2m
+ eV

where A is the vector potential and V the electric potential. The magnitude of the electron charge is
denoted by |e| in formulae, such as the electron cyclotron frequency ωc = |e|Bm .
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Chapter 2

Scales and Complexity

We do infact know the microscopic physics that governs all metals, chemistry, materials and possi-
bly life itself. In principle, all can be determined from the many-particle wavefunction

Ψ(%x1, %x2 . . . %xN , t), (2.1)

which in turn, is governed by the Schödinger equation[1, 2], written out for identical particles as


−
!2

2m

N∑

j=1
∇2
j +

∑

i< j
V(%xi − %x j) +

∑

j
U(%x j)



Ψ = i!

∂Ψ

∂t
(2.2)

[ Schrödinger, 1926]

There are of course many details that I have omitted- for instance, if we’re dealing with electrons
then V(x) is the Coulomb interaction potential,

V(%x) =
e2

4πεo
1
|%x|
, (2.3)

and e = −|e| is the charge on the electron. In an electromagnetic field we must “gauge” the deriva-
tives ∇ → ∇ − i(e/!)A, U(x) → U(x) + eΦ(%x), where %A is the vector potential and Φ(%x) is the
electric potential. Also, to be complete, we must discuss spin, the antisymmetry of Ψ under particle
exchange and of course, the elastic displacements of the atoms in the crystal. With these provisos,
we have every reason to believe that this is the equation that governs the microsopic behavior of
materials.

Unfortunately this knowledge is only the beginning. Why? Because at the most pragmatic level,
we are defeated by the sheer complexity of the problem. Even the task of solving the Schrödinger
equation for modest multi-electron atoms proves insurmountable without bold approximations. The
problem facing the condensed matter physicist, with systems involving 1023 atoms, is qualitatively
more severe. The amount of storage required for numerical solution of Schrodinger equation grows
exponentially with the number of particles, so with a macroscopic number of interacting particles
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this becomes far more than a technical problem- it becomes one of principle. Indeed, we believe that
the gulf between the microscopic and the macroscopic is something qualitative and fundamental,
so much so that new types of property emerge in macroscopic systems that we can not anticipate a
priori by using brute-force analyses of the Schrödinger equation.

The “Hitchhiker’s guide to the Galaxy” [3] describes a super computer called “Deep Thought”
that after millions of years spent calculating ‘the answer to the ultimate question of life and the
universe’, reveals it to be 42. Adams’ cruel parody of reductionism holds a certain sway in physics
today. Our ”forty two”, is Schroedinger’s many body equation: a set of relations that whose com-
plexity grows so rapidly that we can’t trace its full consequences to macroscopic scales. All is fine,
provided we wish to understand the workings of isolated atoms or molecules up to sizes of about a
nanometer, but between the nanometer and the micron, wonderful things start to occur that severely
challenge our understanding. Physicists, have coined the term “emergence” from evolutionary biol-
ogy to describe these phenomena[4, 5, 6, 7].

The pressure of a gas is an example of emergence: it’s a co-operative property of large numbers
of particles which can not be anticipated from the behavior of one particle alone. Although Newton’s
laws of motion account for the pressure in a gas, a hundred and eighty years elapsed before Maxwell
developed the statistical description of atoms needed to understand pressure.

Let us dwell a little more on this gulf of complexity that separates the microscopic from the
macroscopic. We can try to describe this gulf using four main catagories of scale:

• T. Time 1015.

• L. Length 107.

• N. Number of particles. 1022

• C Complexity.

2.1 Time scales

We can make an estimate of the characteristic quantum time scale by using the uncertainty principle
∆τ∆E ∼ !, so that

∆τ ∼
!

[1eV]
∼

!

10−19J
∼ 10−15s, (2.4)

Although we know the physics on this timescale, in our macroscopic world, the the characteristic
timescale ∼ 1s, so that

∆τMacro
∆τQuantum

∼ 1015. (2.5)

To link quantum, and macroscopic timescales, we must make a leap comparable with an extrapola-
tion from the the timescale of a heart-beat to the age of the universe. (10 billion yrs ∼ 1017 s.)

16
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Figure 2.1: The typical size of a de Broglie wave is 10−10m, to be compared with a typical scale
1cm of a macroscopic crystal.

2.2 L: Length scales

An approximate measure for the characteristic length scale in the quantum world is the de Broglie
wavelength of an electron in a hydrogen atom,

LQuantum ∼ 10−10m, (2.6)

so
LMacroscopic
LQuantum

∼ 108 (2.7)

At the beginning of the 20th century, the leading philosopher physicist Mach argued to Boltzmann
that the atomic hypothesis was metaphysical as one could never envisage a machine with the res-
olution to image anything so small. Today, this incredible gulf of scale can today be spanned by
scanning tunneling microscopes, able to resolve electronic details on the surface of materials with
sub-Angstrom resolution.

2.3 N: particle number

To visualize the number of particles in a single mole of substance, it is worth reflecting that a crystal
containing a mole of atoms occupies a cube of roughly 1cm3. From the quantum perspective, this is
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a cube with approximately 100million atoms along each edge. Avagadros number

NMacroscopic = 6 × 1023 ∼ (100 million)3 (2.8)

a number which is placed in perspective by reflecting that the number of atoms in a grain of sand is
roughly comparable with the number of sand-grains in a 1 mile beach. Notice however that we are
used to dealing with inert beaches, where there is no interference between the constituent particles.

2.4 C: Complexity and Emergence.
Real materials are like macroscopic atoms, where the quantum interference amongst the constituent
particles gives rise to a range of complexity and diversity that constitutes the largest gulf of all.
We can attempt to quantify the ”complexity” axis by considering the number of atoms per unit cell
of a crystal. Whereas there are roughly 100 stable elements, there are roughly 1002 stable binary
compounds. The number of stable tertiary compounds is conservatively estimated at more than 106,
of which still only a tiny fraction have been explored experimentally. At each step, the range of
diversity increases, and there is reason to believe that at each level of complexity, new types of
phenomenon begin to emerge.

But it is really the confluence of length and time scale, particle number and complexity that
provides the canvas on which emergent properties develop. While classical matter develops new
forms of behavior on large scales, the potential for quantum matter to develop emergent properties
is far more startling. For instance, similar atoms of niobium and gold, when scaled up to the micron-
scale, form crystals with dramatically different properties. Electrons roam free across gold crystals,
forming the conducting fluid that gives it lustrous metallic properties. Up to about 30 nanometers,
there is little to distinguish copper and niobium, but beyond this scale, the electrons in niobium
pair up into “Cooper pairs” . By the time we reach the scale of a micron, these pairs congregate
by the billions into a pair condensate transforming the crystal into an entirely new metallic state: a
superconductor, which conducts without resistance, excludes magnetic fields and has the ability to
levitate magnets.

Niobium is elemental superconductor, with a transition temperature Tc =9.2K that is pretty typ-
ical of conventional “low temperature” superconductors. When experimentalists began to explore
the properties of quaternary compounds in the 1980s, they came across the completely unexpected
phenomenon of high temperature superconductivity. Even today, two decades later, research has
only begun to explore the vast universe of quaternary compounds, and the pace of discovery has not
slackened. In the two years preceeding publication of this book, physicists have discovered a new
family of iron-based high temperature superconductors, and I’d like to think that before this book
goes out of print, many more families will have come to light.

Superconductivity is only a beginning. It is first of all, only one of a large number of broken
symmetry states that can develop in “hard” quantum matter. But in assemblies of softer, organic
molecules, a tenth of a micron is already enough for the emergence of life. Self-sustaining microbes
little more than 200 nanometers in size have been recently been discovered. While we more-or-
less understand the principles that govern the superconductor, we do not yet understand those that
govern the emergence of life on roughly the same spatial scale[8].
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Figure 2.2: Condensed matter of increasing complexity. As the number of inequivalent atoms per
“unit cell” grows, the complexity of the material and the potential for new types of behavior grows.
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Chapter 3

Quantum Fields

3.1 Overview
At the heart of quantum many body theory lies the concept of the quantum field. Like a classical
field φ(x), a quantum field is a continuous function of position, excepting now, this variable is an
operator φ̂(x). Like all other quantum variables, the quantum field is in general a strongly fluctuating
degree of freedom that only becomes sharp in certain special eigenstates; its function is to add or
subtract particles to the system. The appearance of particles or “quanta” of energy E = !ω is
perhaps the greatest single distinction between quantum, and classical fields.

This astonishing feature of quantum fields was first recognized by Einstein, who in 1905 and
1907 made the proposal that the fundamental excitations of continuous media - the electromagnetic
field and crystalline matter in particular, are carried by quanta[1, 2, 3, 4], with energy

E = !ω.

Einstein made this bold leap in two stages - first by showing that Planck’s theory of black-body
radiation could be re-interpreted in terms of photons[1, 2], and one year later generalizing the idea
to the vibrations inside matter[3] which, he reasoned must also be made up of tiny wave packets
of sound that we now call “phonons”. From his phonon hypothesis Einstein was able to explain
the strong temperature dependence of the specific heat in Diamond - a complete mystery from a
classical standpoint. Yet despite these early successes, it took a further two decades before the
machinery of quantum mechanics gave Einstein’s ideas a concrete mathematical formulation.

Quantum fields are intimately related to the idea of second quantization. First quantization
permits us to make the jump from the classical world, to the simplest quantum systems. The classical
momentum and position variables are replaced by operators, such as

E → i!∂t,
p → p̂ = −i!∂x, (3.1)

whilst the Poisson bracket which relates canonical conjugate variables is now replaced by the quan-
tum commutator[5, 6]:

[x, p] = i!. (3.2)
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Classical string.

Quantum string.

φ(  )x

π(  )x

φ(  )x

xπ(  )

Figure 3.1: Contrasting a classical, and a quantum string.

The commutator is the key to first quantization, and it is the non-commuting property that leads to
quantum fluctuations and the Heisenberg uncertainty principle. (See examples). Second quantiza-
tion permits us to take the next step, extending quantum mechanics to

• Macroscopic numbers of particles.

• Develop an “excitation” or “quasiparticle” description of the low energy physics.

• Describe the dynamical response and internal correlations of large systems.

• To describe collective behavior and broken symmetry phase transitions.

In its simplest form, second quantization elevates classical fields to the status of operators. The
simplest example is the quantization of a classical string, as shown in Fig. 3.1. Classically, the
string is described by a smooth field φ(x) which measures the displacement from equilibrium, plus
the conjugate field π(x) which measures the transverse momentum per unit length. The classical
Hamiltonian is

H =
∫

dx
[
T
2
(
∇xφ(x)

)2
+

1
2ρ
π(x)2

]
(3.3)

where T is the tension in the string and ρ the mass per unit length. In this case, second-quantization
is accomplished by imposing the canonical commutation relations

[φ(x), π(y)] = i!δ(x − y), Canonical commutation relation (3.4)
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Carbon withCarbon without
Exclusion principleExclusion principle

Figure 3.2: Without the exclusion principle, all electrons would occupy the same atomic orbital.
There would be no chemistry, no life.

In this respect, second-quantization is no different to conventional quantization, except that the de-
grees of freedom are defined continuously throughout space. The basic method I have just described
works for describing collective fields, such as sound vibrations, or the electromagnetic field, but we
also need to know how to develop the field theory of identical particles, such as an electron gas in a
metal, or a fluid of identical Helium atoms.

For particle fields, the process of second-quantization is more subtle, for here we the under-
lying fields have no strict classical counterpart. Historically, the first steps to dealing with such
many particle systems were made in atomic physics. In 1925 Pauli proposed his famous “exclu-
sion principle”[7] to account for the diversity of chemistry, and the observation that atomic spectra
could be understood only if one assumed there was no more than one electron per quantum state.
(Fig. 3.2.) A year later, Dirac and Fermi examined the consequences of this principle for a gas of
particles, which today we refer to as “fermions”. Dirac realized that the two fundamental varieties
of particle- fermions and bosons could be related to the parity of the many-particle wavefunction
under particle exchange[8]

Ψ(particle at A, particle at B) = eiΘΨ(particle at B, particle at A) (3.5)

If one exchanges the particles twice, the total phase is e2iΘ. If we are to avoid a many-valued
wavefunction, then we must have

e2iΘ = 1⇒ eiΘ = ±1
{

bosons
fermions (3.6)

The choice of eiΘ = 1 leads to a wavefunction which is completely antisymmetric under particle
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exchange, which immediately prevents more than one particle in a given quantum state. 1

In 1927, Jordan and Klein realized that to cast physics of a many body system into a more
compact form, one needs to introduce an operator for the particle itself-the field operator. With
their innovation, it proves possible to unshackle ourselves from the many body wavefunction. The
particle field

ψ̂(x) (3.7)

operator can be very loosely regarded as a quantization of the one-body Schrodinger wavefunction.
Jordan and Klein[9] proposed that the particle field, and its complex conjugate are conjugate vari-
ables. With this insight, the second-quantization of bosons is achieved by introducing a non-zero
commutator between the particle field, and its complex conjugate. The new quantum fields that
emerge play the role of creating, and destroying particles (see below)

ψ(x), ψ∗(x)︸!!!!!!!︷︷!!!!!!!︸
1 ptcle wavefunction

[ψ(x), ψ†(y)] = δ(x − y)
−→ ψ̂(x), ψ̂†(x)︸!!!!!!!︷︷!!!!!!!︸

destruction /creation operator

Bosons (3.8)

For fermions, the existence of an antisymmetric wavefunction, means that particle fields must anti-
commute, i.e

ψ(x)ψ(y) = −ψ(y)ψ(x), (3.9)

a point first noted by Jordan, and then developed by Jordan and Wigner[? ]. The simplest example
of anticommuting operators, is provided by the Pauli matrices: we are now going to have to get used
to a whole continuum of such operators! Jordan and Wigner realized that the second-quantization
of fermions requires that the the non-trivial commutator between conjugate particle fields must be
replaced by an anticommutator

ψ(x), ψ∗(x)︸!!!!!!!︷︷!!!!!!!︸
1 ptcle wavefunction

{ψ(x), ψ†(y)} = δ(x − y)
−→ ψ̂(x), ψ̂†(x)︸!!!!!!!︷︷!!!!!!!︸

destruction /creation operator

Fermions. (3.10)

The operation {a, b} = ab + ba denotes the anticommutator. Remarkably, just as bosonic physics
derives from commutators, fermionic physics derives from an algebra of anticommutators.

How real is a quantum field and what is its physical significance? To begin to to get a feeling of
its meaning, let us look at some key properties. The transformation from wavefunction, to operator
also extends to more directly observable quantities. Consider for example, the electron probability
density ρ(x) = ψ∗(x)ψ(x) of a one-particle wavefunction ψ(x). By elevating the wavefunction to the
status of a field operator, we obtain

ρ(x) = |ψ(x)|2 −→ ρ̂(x) = ψ̂†(x)ψ̂(x), (3.11)

which is the density operator for a many body system. Loosely speaking, the squared magnitude of
the quantum field represents the density of particles

1In dimensions below three, it is possible to have wavefunctions with several Reimann sheets, which gives rise to the
concept of fractional statistics and “anyons”.
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Another aspect of the quantum field we have to understand, is its relationship to the many-body
wavefunction. This link depends on a new concept, the “vacuum”. This unique state, denoted by
|0〉 is devoid of particles, and for this reason it is the only state for which there is no amplitude to
destroy a particle so

ψ(x)|0〉 = 0. The vacuum (3.12)

We shall see that as a consequence of the canonical algebra, the creation operator ψ̂†(x) increments
the number of particles by one, creating a particle at x, so that

|x1〉 = ψ†(x1)|0〉 (3.13)

is a single particle at x1,
|x1, . . . xN〉 = ψ†(xN) . . . ψ†(x1)|0〉 (3.14)

is the N-particle state with particles located at x1 . . . xN and

〈x1, . . . xN | = 〈0|[ψ†(xN) . . . ψ†(x1)]† = 〈0|ψ(x1) . . . ψ(xN) (3.15)

is its conjugate “bra” vector. The wavefunction of an N particle state, |N〉 is given by the overlap of
〈x1, . . . xN | with |N〉:

ψ(x1, . . . xN) = 〈x1, . . . xN |N〉 = 〈0|ψ(x1) . . . ψ(xN)|N〉 (3.16)

So many body wavefunctions correspond to matrix elements of the quantum fields. From this link
we can see that the exchange symmetry under particle exchange is directly linked to the exchange
algebra of the field operators. For Bosons and Fermions respectively, we have

〈0| . . . ψ(xr)ψ(xr+1) . . . |N〉 = ±〈0| . . . ψ(xr+1)ψ(xr) . . . |N〉 (3.17)

(where + refers to Bosons, −to fermions), so that

ψ(xr)ψ(xr+1) = ±ψ(xr+1)ψ(xr) (3.18)

From this we see that Bosonic operators commute, but fermionic operators must anticommute.
Thus it is the exchange symmetry of identical quantum particles that dictates the commuting, or
anticommuting algebra of the associated quantum fields.

Unlike a classical field, quantum fields are in a state of constant fluctuation. This applies to
both collective fields, as in the example of the string in Fig. 3.1, and to quantum fluids. Just as the
commutator between position and momentum gives rise to the uncertainty principle: [x, p] = i! −→
∆x∆p>

˜
!, the canonical commutation, or anticommutation relations give rise to a similar relation

between the amplitude and phase of the quantum field. Under certain conditions the fluctuations of
a quantum field can be eliminated, and in these extreme limits, the quantum field begins to take on
a tangible classical existence. In a bose superfluid for example, the quantum field becomes a sharp
variable, and we can really ascribe a meaning to the expectation of the quantum field

〈ψ(x)〉 = √ρseiθ (3.19)
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Figure 3.3: Action of creation operator on vacuum to create (i) a one particle and (ii) a three particle
state

where ρs measures the density of particles in the superfluid condensate. We shall see that there is a
completely parallel uncertainty relation between the phase and density of quantum fields,

∆N∆θ >
˜

1 (3.20)

where θ is the average phase of a condensate and N the number of particles it contains. When N
is truly macroscopic, the uncertainty in the phase may be made arbitrarily small, so that in a Bose
superfluid, the phase becomes sufficiently well defined that it becomes possible to observe interfer-
ence phenomenon! Similar situations arise inside a Laser, where the phase of the electromagnetic
field becomes well-defined, or a superconductor, where the phase of the electrons in the condensate
becomes well defined.

In the next two chapters we shall go back and see how all these features appear systematically
in the context of “free field theory”. We shall begin with collective bosonic fields, which behave as
a dense ensemble of coupled Harmonic oscillators. In the next chapter, we shall move to conserved
particles, and see how the exchange symmetry of the wavefunction leads to the commutation, and
anticommutation algebra of bose and Fermi fields. We shall see how this information enables us to
completely solve the properties of a non-interacting Bose, or Fermi fluid.

It is the non-commuting properties of quantum fields that generate their intrinsic “graininess”.
Because of this, quantum fields, though nominally continuous degrees of freedom, can always be

28



bk.pdf June 28, 2011 15

c©2011 Piers Coleman Chapter 3.

decomposed in terms of a discrete particular content. The action of a collective field involves the
creation of a wavepacket centered at x by both the creation, and destruction of quanta, schematically,

φ(x) =
∑

k

[
boson creation,
momentum -k +

boson destruction
momentum k

]
e−ik·x, (3.21)

Examples of such quanta, include quanta of sound, or phonons, and quanta of radiation, or photons.
In a similar way, the action of a particle creation operator creates a wavepacket of particles at x,
schematically,

ψ†(x) =
∑

k

[
particle creation
momentum k

]
e−ik·x. (3.22)

When the underlying particles develop coherence, the quantum field begins to behave classically.
It is the ability of quantum fields to describe continuous classical behavior and discrete particulate
behavior in a unified way that makes them so very special.

Example. By considering the positivity of the quantity 〈A(λ)†A(λ)〉, where Â = x̂+ iλp and λ is
a real number, prove the Heisenberg uncertainty relation ∆x∆p ≥ !2 .

Example. How does the uncertainty principle prevent the collapse of the Hydrogen atom. Is the
uncertainty principle enough to explain the stability of matter?

3.2 Collective Quantum Fields

Here, we will begin to familiarize ourselves with quantum fields by developing the field theory of a
free, bosonic field. It is important to realize that a bosonic quantum field is fundamentally nothing
more than a set of linearly coupled oscillators, and in particular, so long as the system is linear, the
modes of oscillation can always be decomposed into a linear sum of independent normal modes.
Each normal mode is nothing more than a simple harmonic oscillator, which provides the basic
building block for bosonic field theories.

Our basic strategy for quantizing collective, bosonic fields, thus consists of two basic parts.
First, we must reduce the Hamiltonian to its normal modes. For translationally invariant systems,
this is just a matter of Fourier transforming the field, and its conjugate momenta. Second, we then
quantize the normal mode Hamiltonian as a sum of independent Harmonic oscillators.

H(φ, π) [F.T.]
−→ Normal Co-ords φq∼(aq+a†−q)

−→ H =
∑

q
!ωq(nq + 1

2 ) (3.23)
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Figure 3.4: Family of zero, one and three-dimensional Harmonic crystals.

The first part of this procedure is essentially identical for both quantum, and classical oscillators.
The second-stage is nothing more than the quantization of a single Harmonic oscillator. Consider
the family of lattices shown in Figure 3.4. We shall start with a single oscillator at one site. We shall
then graduate to one and higher dimensional chain of oscillators, as shown in Fig 3.4.

3.3 Harmonic oscillator: a zero-dimensional field theory

Although the Schrodinger approach is most widely used in first quantization, it is the Heisenberg
approach that opens the door to second-quantization. In the Schrödinger approach, one solves the
wave-equation (

−!2∂2
x

2m
+

1
2
mω2x2

)
ψn = Enψn (3.24)

from which one finds the energy levels are evenly spaced, according to

En = (n +
1
2

)!ω, (3.25)

where ω is the frequency of the oscillator.
The door to second-quantization is opened by re-interpreting these evenly spaced energy levels

in terms of “quanta”, each of energy !ω. The nth excited state corresponds to the addition of n
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quanta to the ground-state. We shall now see how we can put mathematical meat on these words by
introducing an operator “a†” that creates these quanta, so that the n-th excited state is obtained by
acting n times on the ground-state with the creation operator.

|n〉 =
1
√
n!

(a†)n|0〉. (3.26)

Let us now see how this works. The Hamiltonian for this problem involves conjugate position and
momentum operators as follows

H =
p2

2m +
1
2mω

2x2

[x, p] = i!,


 . (3.27)

In the ground-state, the particle in the Harmonic potential undergoes zero-point motion, with an
uncertainty in position and momentum ∆p and ∆x which satisfy ∆x∆p ∼ !. Since the zero-point
kinetic and potential energies are equal, ∆p2/2m = mω2∆x2/2, so

∆x =
√
!

mω
, ∆p =

√
mω! (3.28)

define the scale of zero-point motion. It is useful to define dimensionless position and momentum
variables by factoring out the scale of zero-point motion

ξ =
x
∆x
, pξ =

p
∆p
. (3.29)

One quickly verifies that [ξ, pξ] = i are still canonically conjugate, and that now

H =
!ω

2

[
ξ2 + p2

ξ

]
. (3.30)

Next, introduce the “creation” and “annihilation” operators

a† =
1
√

2
(ξ − ipξ), “creation operator”

a =
1
√

2
(ξ + ipξ), “annihilation operator”. (3.31)

Since [a, a†] = −i2
(
[ξ, pξ] − [pξ, ξ]

)
= 1, these operators satisfy the algebra

[a, a] = [a†, a†] = 0

[a, a†] = 1.




canonical commutation rules (3.32)

It is this algebra which lies at the heart of bosonic physics, enabling us to interpret the creation and
annihilation operators as the objects which add, and remove quanta of vibration to and from the
system.
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To follow the trail further, we rewrite the Hamiltonian in terms of a and a†. Since ξ = (a +
a†)/
√

2, pξ = (a − a†)/
√

2i, the core of the Hamiltonian can be rewritten as

ξ2 + p2
ξ = a

†a + aa† (3.33)

But aa† = a†a + 1, from the commutation rules, so that

H = !ω[a†a +
1
2

]. (3.34)

This has a beautifully simple interpretation. The second term is just the zero-point energy E0 =

!ω/2 The first term contains the “number operator”

n̂ = a†a, ”number operator” (3.35)

which counts the number of vibrational quanta added to the ground state. Each of these quanta
carries energy !ω.

To see this, we need to introduce the concept of the vacuum, defined as the unique state such
that

a|0〉 = 0. (3.36)

From (12.133), this state is clearly an eigenstate of H, with energy E = !ω/2. We now assert that
the state

|N〉 =
1
λN

(a†)N |0〉 (3.37)

where λN is a normalization constant, contains N quanta.
To verify that n̂ counts the number of bosons, we use the commutation algebra to show that

[n̂, a†] = a† and [n̂, a] = −a, or

n̂a† = a†(n̂ + 1)
n̂a = a(n̂ − 1) (3.38)

which means that when a† or a act on a state, they respectively add, or remove one quantum of
energy. Suppose that

n̂|N〉 = N|N〉 (3.39)

for some N, then from (3.38),

n̂ a†|N〉 = a†(n̂ + 1)|N〉 = (N + 1) a†|N〉 (3.40)

so that a†|N〉 ≡ |N + 1〉 contains N + 1 quanta. Since (3.39) holds for N = 0, it holds for all N. To
complete the discussion, let us fix λN by noting that from the definition of |N〉,

〈N − 1|aa†|N − 1〉 =
(
λN
λN−1

)2
〈N|N〉 =

(
λN
λN−1

)2
, (3.41)

32



bk.pdf June 28, 2011 17

c©2011 Piers Coleman Chapter 3.

hω

n quanta

Figure 3.5: Illustrating the excitation picture for a single harmonic oscillator.

but since aa† = n̂ + 1, 〈N − 1|aa†|N − 1〉 = N〈N − 1|N − 1〉 = N. Comparing these two expressions,
it follows that λN/λN−1 =

√
N, and since λ0 = 1, λN =

√
N!.

Summarizing the discussion

H = !ω(n̂ + 1
2 )

n̂ = a†a, “number operator”

|N〉 = 1√
N!

(a†)N |0〉 N-Boson state

(3.42)

Using these results, we can quickly learn many things about the quantum fields a and a†. Let us
look at a few examples. First, we can transform all time dependence from the states to the operators
by moving to a Heisenberg representation, writing

a(t) = eiHt/!ae−iHt/! Heisenberg representation (3.43)

This transformation preserves the canonical commutation algebra, and the form of H. The equation
of motion of a(t) is given by

da
dt
=
i
!

[H, a(t)] = −iωa(t) (3.44)

so that the Heisenberg operators are given by

a(t) = e−iωta,
a†(t) = eiωta† (3.45)

Using these results, we can decompose the original momentum and displacement operators as fol-
lows

x̂(t) = ∆xξ(t) =
∆x
√

2
(
a(t) + a†(t)

)
=

√
!

2mω
(
ae−iωt + a†eiωt

)

33

Chapter 3. c©Piers Coleman 2011

p̂(t) = ∆ppξ(t) = −i
√
m!ω

2
(
ae−iωt − a†eiωt

)
(3.46)

Notice how the displacement operator- a priori a continuous variable, has the action of creating and
destroying discrete quanta.

We can use this result to compute the correlation functions of the displacement.

Example 1. Calculate the autocorrelation function S (t − t′) = 1
2 〈0|{x(t), x(t

′)}|0〉 and the
“response” function R(t − t′) = (i/!)〈0|[x(t), x(t′)]|0〉 in the ground-state of the quantum
Harmonic oscillator.

Solution We may expand the correlation function and response function as follows

S (t1 − t2) =
1
2
〈0|x(t1)x(t2) + x(t2)x(t1)|0〉

R(t1 − t2) = (i/!)〈0|x(t1)x(t2) − x(t2)x(t1)|0〉 (3.47)

But we may expand x(t) as given in (3.46). The only term which survives in the ground-state,
is the term proportional to aa†, so that

〈0|x(t)x(t′)|0〉 =
!

2mω
〈0|aa†|0〉e−iω(t1−t2) (3.48)

Now using (3.47) we obtain

1
2
〈0|{x(t), x(t′)}|0〉 =

!

2mω
cos

[
ω(t − t′)

]
“Correlation function”

−i〈0|[x(t), x(t′)]|0〉 =
1
mω

sin
[
ω(t − t′)

]
”Response function”

• We shall later see that R(t − t′) gives the response of the ground-state to an applied force
F(t′), so that at a time t, the displacement is given by

〈x(t)〉 =
∫ t

−∞
R(t − t′)F(t′)dt′ (3.49)

Remarkably, the response function is identical with a classical Harmonic oscillator.

Example 2. Calculate the number of quanta present in a Harmonic oscillator with characteristic
frequency ω, at temperature T .

To calculate the expectation value of any operator at temperature T , we need to consider an
ensemble of systems in different quantum states |Ψ〉 =

∑
n cn|n〉. The expectation value of

operator Â in state |Ψ〉 is then

〈Â〉 = 〈Ψ|Ψ〉 =
∑

m,n
c∗mcn〈m|Â|n〉 (3.50)
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In a position basis, this would be

〈Â〉 =
∑

m,n
c∗mcn

∫
dxψ∗m(x)A(x)ψm(x) (3.51)

But now we have to average over the typical state |Ψ〉 in the ensemble, which gives

〈Â〉 =
∑

m,n
c∗mcn〈m|Â|n〉 =

∑

m,n
ρmn〈m|Â|n〉 (3.52)

where ρmn = c∗mcn is the “density matrix”. If the ensemble is in equilibrium with an incoherent
heat bath, at temperature T , quantum statistical mechanics asserts that there are no residual
phase correlations between the different energy levels, which acquires a Boltzmann distribution

ρmn = c∗mcn = pnδn,m (3.53)

where pn = e−βEn/Z is the Boltzman distribution, with β = 1/kBT , and kB is Boltzmann’s
constant. Let us now apply this to our problem, where

Â = n̂ = a†a (3.54)

is the number operator. In this case,

〈n̂〉 =
∑

n
(e−βEn/Z)〈n|n̂|n〉 =

1
Z

∑

n
ne−βEn (3.55)

To normalize the distribution, we must have
∑
n pn = 1, so that

Z =
∑

n
e−βEn (3.56)

Finally, since En = !ω(n + 1
2 ),

〈n̂〉 =
∑
n e−β!ω(n+ 1

2 )n
∑
n e−β!ω(n+ 1

2 )
=

∑
n e−λnn∑
n e−λn

, λ = β!ω. (3.57)

The sum in the denominator is a geometric series
∑

n
e−λn =

1
1 − e−λ

, (3.58)

and the numerator is given by
∑

n
e−λnn = −

∂

∂λ

∑

n
e−λn =

e−λ

(1 − e−λ)2 (3.59)

so that
〈n̂〉 =

1
eλ − 1

=
1

eβ!ω − 1
(3.60)

which is the famous Bose-Einstein distribution function.
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3.4 Collective modes: phonons

We now extend the discussion of the last section from zero to higher dimensions. Let us go back
to the lattice shown in Fig 3.4 . To simplify our discussion, let imagine that at each site there is a
single elastic degree of freedom. For simplicity, let us imagine we are discussing the longitundinal
displacement of an atom along a one-dimensional chain that runs in the x-direction. For the j-th
atom,

x j = x0
j + φ j. (3.61)

If π j is the conjugate momentum to x j, then the two variables must satisfy canonical commutation
relations

[φi, π j] = i!δi j. (3.62)

Notice how variables at different sites are fully independent. We’ll imagine that our one-dimensional
lattice has Ns sites, and we shall make life easier by working with periodic boundary conditions, so
that φ j+Ns ≡ φ j and π j ≡ π j+Ns . Suppose nearest neighbors are connected by a “spring”, in which
case, the total total energy is then a sum of kinetic and potential energy

Ĥ =
∑

j=1,Ns



π2
j

2m
+
mω2

2
(φ j − φ j+1)2


 (3.63)

where m is the mass of an atom.
Now the great simplifying feature of this model, is that that it possesses translational symmetry,

so that under the translation
π j → π j+1, φ j → φ j+1 (3.64)

the Hamiltonian and commutation relations remain unchanged. If we shrink the size of the lattice
to zero, this symmetry will become a continuous translational symmetry. The generator of these
translations is the crystal momentum operator, which must therefore commute with the Hamiltonian.
Because of this symmetry, it makes sense to transform to operators that are diagonal in momentum
space, so we’ll Fourier transform all fields as follows:

φ j =
1√
Ns

∑
q eiqR jφq,

π j =
1√
Ns

∑
q eiqR jπq,


 Rj = ja. (3.65)

The periodic boundary conditions, φ j = φ j+Ns , π j = π j+Ns mean that the values of q entering in this
sum must satisfy qL = 2πn, where L = Nsa is the length of the chain and n is an integer, thus

q =
2π
L
n, (n ∈ [1,Ns]) (3.66)

Notice that q ∈ [0, 2π/a] defines the range of q. As in any periodic structure, the crystal momentum
is only defined modulo a reciprocal lattice vector, which in this case is 2π/a, so that q + 2π

a ≡ q,
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(you may verify that (q + 2π
a )Rj = qRj + 2πm, which is why we restrict n ∈ [1,Ns]). The functions

1√
Ns
eiqR j ≡ 〈 j|q〉 form a complete orthogonal basis, so that in particular

∑

j
〈q′| j〉〈 j|q〉 ≡

1
Ns

∑

j
ei(q−q

′)Rj = 〈q′|q〉 ≡ δq,q′ . orthogonality (3.67)

is one if q = q′, but zero otherwise (see exercise 3.1). This result is immensely useful, and we
shall use it time and time again. Using the orthogonality relation, we can check that the inverse
transformations are

φq =
1√
Ns

∑
j e−iqR jφ j

πq =
1√
Ns

∑
q e−iqR jπ j (3.68)

Notice that since φ j and π j are Hermitian operators, it follows that φ†q = φ−q and π†q = π−q. Using
the orthogonality, we can verify the transformed commutation relations are

[φ−q, πq′] =
1
Ns

∑

i, j
ei(qRi−q

′Rj)
i!δi j︷!︸︸!︷

[φi, π j]

=
i!
Ns

∑

j
ei(q−q

′)Rj = i!δqq′ (3.69)

We shall now see that πq and φq are quantized version of “normal co-ordinates” which bring
the Hamiltonian back into the standard Harmonic oscillator form. To check that the Hamiltonian is
truly diagonal in these variables we

1. expand φ j and π j in terms of their Fourier components,

2. regroup the sums so that the summation over momenta is on the outside,

3. Eliminate all but one summation over momentum by carrying out the internal sum over site
variables. This will involve terms like N−1

s
∑

j ei(q+q
′)Rj = δq+q′ , which constrains q′ = −q and

eliminates the sum over q′.

With a bit of practice, these steps can be carried out very quickly. In transforming the potential
energy, it is useful to rewrite it in the form

V =
mω2

2

∑

j
φ j(2φ j − φ j+1 − φ j−1). (3.70)

The term in brackets can be Fourier transformed as follows:

ω2(2φ j − φ j+1 − φ j−1) =
1
√
Ns

∑

q

4ω2 sin2(qa/2)≡ω2
q︷!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!︷

ω2[2 − eiqa − e−iqa]× φq eiqR j
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≡
1
√
Ns

∑

q
ω2
q φq eiqR j , (3.71)

where we have defined ω2
q = 4ω sin2(qa/2). Inserting this into (3.70), we obtain

V =
m
2

∑

q,q′
ω2
q φ−q′φq

δq,q′︷!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!︷
N−1
s

∑

j
ei(q−q

′)Rj

=
∑

q

mω2
q

2
φ−qφq. (3.72)

Carrying out the same procedure on the kinetic energy, we obtain

H =
∑

q




1
2m
πqπ−q +

mω2
q

2
φqφ−q


 (3.73)

which expresses the Hamiltonian in terms of “normal co-ordinates”, φq and πq. So far, all of the
transformations we have preserved the ordering of the operators, so it is no surprise that the quantum
and classical expressions for the Hamiltonian in terms of normal co-ordinates are formally identical.

Now before we go on, it is perhaps useful to note that at q = 0, ωq = 0, so that there is
no contribution to the potential energy from the q = 0 mode, which corresponds to a uniform
translation of the entire system. To separate the uniform motion from the oscillatory modes, it is
useful to split the q = 0 part of the Hamiltonian off from the remainder,

H =

HCM︷︸︸︷
1

2m
π2

0 +
∑

q!0




1
2m
πqπ−q +

mω2
q

2
φqφ−q




where the first term is just the center of mass energy.
The next step merely repeats the procedure carried out for the single harmonic oscillator. We

define a set of conjugate creation and annihilation operators

aq =
√

mωq
2!

(
φq +

i
mωqπq

)

a†q =
√

mωq
2!

(
φ−q − i

mωqπ−q
)




[aq, a†q′] = −i2!

[
[φq, π−q′] − [πq, φ−q′]

]
= δq,q′ (3.74)

Note that the second expression for a†q is obtained by taking the complex conjugate of aq, and
remembering that φ†q = φ−q and π†q = π−q, since the underlying fields are real.

The inversion of these expressions is

πq = −i
√

mωq!
2

(
aq − a†−q

)

φa =
√

!

2mωq
(
aq + a†−q

)




(3.75)
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Notice how the Fourier component of the field at wavevector q either destroys a phonon of momen-
tum q or creates a phonon of momentum −q. Both have reduce the total momentum by q.

From these expressions, it follows that

πqπ−q =
mωq!

2
(
a†−qa−q + aqa†q − a†−qa†q − aqa−q

)

φqφ−q =
!

2mωq
(
a†−qa−q + aqa†q + a†−qa†q + aqa−q

)
(3.76)

Adding the two terms inside the Hamiltonian then gives

H = HCM +
1
2

∑

q!0
!ωq

(
a†qaq + aqa†q

)
, (3.77)

or using the commutation relations,

H = HCM +
∑

q!0
!ωq

(
a†qaq +

1
2
)

(3.78)

Since each set of aq and a†q obey canonical commutation relations, we can immediately identify
nq = a†qaq as the number operator for quanta in the q-th momentum state. Remarkably, the system
of coupled oscillators can be reduced to a sum of independent Harmonic oscillators, with charac-
teristic frequency ωq, energy !ωq and momentum q. Each normal mode of the original classical
system corresponds to particular phonon excitation.

We can immediately generalize all of our results from a single Harmonic oscillator. For example,
the general state of the system will now be an eigenstate of the phonon occupancies,

|Ψ〉 = |nq1 , nq2 . . . nqN 〉 =
∏

⊗
|nqi〉 =



∏

i

(a†qi)nqi√
nqi!


 |0〉 (3.79)

where the vacuum is the unique state that is annihilated by all of the aq. In this state, the occupation
numbers nq are diagonal, so this is an energy eigenstate with energy

E = Eo +
∑

q
nq!ωq (3.80)

where Eo = 1
2
∑
q !ωq is the zero-point energy.

Remarks

• The quantized displacements of a crystal are called phonons. Quantized fluctuations of mag-
netization in a magnet are “magnons”.

• We can easily transform to a Heisenberg representation, whereapon aq(t) = aqe−iωqt.

39

Chapter 3. c©Piers Coleman 2011

q

2   /a

sin(q a/2)ω   =   2ω 

ω

πq0

2ω

qL=14

2π/L

Figure 3.6: Illustrating the excitation picture for a chain of coupled oscillators, length L=14.

• We can expand the local field entirely in terms of phonons. Using (3.75), we obtain

φ j(t) =
1
√
Ns

∑

q
φqeiqR j

= φCM(t) +
1
√
Ns

∑

q!0

√
!

2mωq

[
aq(t) + a†−q(t)

]
eiqR j . (3.81)

where φCM = 1
Ns

∑
j φ j is the center of mass displacement.

• The transverse displacements of the atoms can be readily included by simply upgrading the
displacement and momentum φ j and π j to vectors. For “springs”, the energies associated with
transverse and longitudinal displacements are not the same because the stiffness associated
with transverse displacements depends on the tension. Nevertheless, the Hamiltonian has
an identical form for the one longitudinal and two transverse modes, provided one inserts a
different stiffness for the transverse modes. The initial Hamiltonian is then simply a sum over
three degenerate polarizations λ ∈ [1, 3]

Ĥ =
∑

λ=1,3

∑

j=1,Ns



π2
jλ

2m
+
mω2
λ

2
(φ jλ − φ j+1λ)2


 (3.82)

where ω2
1 = ω

2 for the longitudinal mode, and ω2
2,3 = T/a, where T is the tension in the

spring, for the two transverse modes. By applying the same procedure to all three modes, the
final Hamiltonian then becomes

H =
∑

λ=1,3

∑

q
!ωqλ

(
a†qλaqλ +

1
2
)
.
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where ωqλ = 2ωλsin(qa/2). Of course, in more realistic crystal structures, the energies of the
three modes will no longer be degenerate.

• We can generalize all of this discussion to a 2 or 3 dimensional square lattice, by noting that
the orthogonality relation becomes

N−1
s

∑

j
e−i(q−q′)·R j = δq−q′ (3.83)

where now,
q = 2π

L
(ii, i2 . . . iD) (3.84)

and Rj is a site on the lattice. The general form for the potential energy is slightly more
complicated, but one can still cast the final Hamiltonian in terms of a sum over longitudinal
and transverse modes.

• The zero-point energy Eo = 1
2
∑
q !ωq is very important in He − 4 and He − 3 crystals, where

the lightness of the atoms gives rise to such large phonon frequencies that the crystalline phase
is unstable and melts at ambient pressure under the influence of quantum zero point motion.
The resulting “quantum fluids” exhibit the remarkable property of superfluidity.

3.5 The Thermodynamic Limit
In the last section, we examined a system of coupled oscillators on a finite lattice. By restricting
a system to a finite lattice, we impose a restriction on the maximium wavelength, and hence, the
excitation spectrum. This is known as an “infra-red” cut-off. When we take L → ∞, the allowed
momentum states become closer and closer together, and we now have a continuum in momentum
space.

What happens to the various momentum summations in the thermodynamic limit, L → ∞?
When the allowed momenta become arbitrarily close together, the discrete summations over mo-
mentum must be replaced by continuous integrals. For each dimension, the increment in momentum
appearing inside the discrete summations is

∆q =
2π
L

(3.85)

so that L∆q2π = 1. Thus in one dimension, the summation over the discrete values of q can be formally
rewritten as ∑

q j
{. . . } = L

∑

q j

∆q
2π
{. . . } (3.86)

where q j = 2π jL , and j ∈ [1,Ns]. When we take L → ∞, q becomes a continuous variable
q ∈ [0, 2π/a], where a = L/Ns is the lattice spacing, so that the summation can now be replaced by
a continuous integral:

∑

q
{. . . } −→L

∫ 2π/a

0

dq
2π
{. . . } (3.87)
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qx

qz

2π/L

qy

Figure 3.7: Illustrating the grid of allowed momenta for a three-dimensional crystal of dimensions
L3. In the limit L → ∞, the grid becomes a continuum, with (L/2π)3 points per unit volume of
momentum space.

Similarly, in in D-dimensions, we can regard the D-dimensional sum over momentum as a sum
over tiny hypercubes, each of volume

(∆q)D =
(2π)D

LD
(3.88)

so that LD (∆q)D
(2π)D = 1 and

∑

q
{. . . } = LD

∑

q

(∆q)D

(2π)D
{. . . } −→LD

∫

0<qi<2π/a

dDq
(2π)D

{. . . } (3.89)

where the integral is over a hypercube in momentum space, with sides of length 2π/a.
Once the momentum sums become continuous, we need to change the normalization of our

states. By convention, we now normalize our plane wave basis per unit volume, writing

〈x|k〉 −→ eik·x (3.90)

In a finite volume, this means that the orthogonality condition on these plane waves is

〈k′|k〉 =
∫

dDxei(k−k′)·x = LDδk−k′ , (3.91)

where δk−k′ is the discrete delta function on the grid of allowed wavevectors. In the thermodynamic
limit, this becomes ∫

dDxei(k−k′)·x = (2π)DδD(k − k′) (3.92)
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so that the continuum limit of the discrete delta-function is given by

LDδkk′ −→ (2π)DδD(k − k′) (3.93)

Example 4. Re-express the Hamiltonian Ĥ of a simplified three-dimensional Harmonic crystal
in terms of phonon number operators and calculate the zero-point energy, where

H =
∑

j

π2
j

2m
+

∑

j,a=(x̂,ŷ,ẑ)

mω2
o

2
(Φ j − Φ j+a)2 (3.94)

where φ j ≡ φ(x j) and π j ≡ π(x j) denote canonically conjugate (scalar) displacement, and
momenta at site j, and â = (x̂, ŷ, ẑ) denotes the unit vector separating nearest neigbor atoms.

Solution First we must Fourier transform the co-ordinates and the Harmonic potential. The
potential can be re-written as

V̂ =
1
2

∑

i, j
Vi− jφiφ j (3.95)

where
VR = mω2

o

∑

a=(x̂,ŷ,ẑ)
(2δR − δR−a − δR+a) (3.96)

The Fourier transform of this expression is

Vq =
∑

R
VRe−iq·R

= mω2
o

∑

a=(x̂,ŷ,ẑ)
(2 − e−iq·a − eiq·a)

= mω2
o

∑

l=x,y,z
[2 − cos(qla)] (3.97)

so that writing Vq = m(ωq)2, it follows that the normal mode frequency are given by

ωq = 2ωo[sin2(qxa/2) + sin2(qya/2) + sin2(qza/2)]
1
2 (3.98)

Fourier transforming the fields

φ j =
1
√
Ns

∑

q
φqeiq·x

π j =
1
√
Ns

∑

q
πqeiq·x (3.99)

where q = 2π
L (i, j, k) are the discrete momenta of a cubic crystal of volume L3, with periodic

boundary conditions, we find

H =
∑

q

[πqπ−q

2m
+
mω2

q

2
φqφ−q

]
(3.100)
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Defining the creation and annihilation operator

bq =

√
mωq

2!
(
φq +

i
mωq
πq

)
, b†q =

√
mωq

2!
(
φ−q −

i
mωq
π−q

)
, (3.101)

we reduce the Hamiltonian to its standard form

H =
∑

q
!ωq

(
n̂q +

1
2
)

(3.102)

where n̂q = b†qbq is the phonon number operator.
In the ground-state, nq = 0, so that the zero-point energy is

Eo =
∑

q

!ωq

2
−→ V

∫
d3q

(2π)3
!ωq

2
(3.103)

where V = L3. Substituting for ωq, we obtain

Eo = V
∏

l=1,3

∫ 2π/a

0

dql
2π
!ωo

√∑

l=1,3
sin2(qla/2)

= Ns!ωoI3 (3.104)

where
I3 =

∫

0<u1,u2,u3<π

d3u
π3

√∑

l=1,3
sin2(ul) = 1.19 (3.105)

and Ns is the number of sites.

Remarks

• The zero point energy per unit cell of the crystal is !ωo(I3/π3), a finite number.
• Were we to take the “continuum limit”, taking the lattice separation to zero, the zero-point

energy would diverge, due to the profusion of ultraviolet modes.

3.6 Continuum Limit

In contrast to the thermodynamic limit, when we take the continuum limit we remove the discrete
character of the problem, allowing fluctuations of arbitrarily small wavelength, and hence arbitrarily
large energy. For a discrete system with periodic boundary conditions, the momentum in any one
direction can not exceed 2π/a. By taking a to zero, we remove the ultra-violet cut-off in momentum.

As a simple example, we shall consider a one-dimensional string. The important lesson that we
shall learn, is that both the discrete model, and the continuum model have the same long-wavelength
physics. Their behavior will only differ on very short distances, at high frequencies and short times.
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x

Continuum limit  a    0

π(x)
(x)φ

πja

T
T

T

T
φj

j

Figure 3.8: Illustrating a (a) discrete and a (b) continuous string. By taking the length between
units in the string to zero, maintaining the density per unit length and the tension, we arrive at the
continuum limit.

This is a very simple example of the concept of renormalization. Provided we are interested in low
energy properties, the details of the string at short-distances- whether it is discrete, or continuous
don’t matter.

Of course, in many respects, the continuum model is more satisfying and elegant. We shall see
however, that we always have to be careful in going to the continuum limit, because this introduces
quantum fluctuations on arbitrarily short length scales. These fluctuations don’t affect the low en-
ergy excitations, but they do mean that the zero-point fluctuations of the field become arbitrarily
large.

Let us start out with a discrete string, as shown in fig 3.8. For small displacements, the Hamil-
tonian for this discrete string is identical to that of the last section, as we can see by the following
argument. If a string is made up of point particles of mass m, separated by a distance a, with a
tensile force T acting between them, then for small transverse displacements φ j, the link between
the j th and j + 1th particle is expanded by an amount ∆s j = (φ j − φ j+1)2/2a, raising the potential
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energy by an amount T∆s j. The Hamiltonian is then

Ĥ =
∑

j=1,Ns



π2
j

2m
+
T
2a

(φ j − φ j+1)2


 (3.106)

which reverts to (3.63) with the replacement T/a→ mω2.
To take the continuum limit, we let a→ 0, preserving ρ = m/a. In this limit, we may replace

a
∑

j
→

∫
dx,

(φ j − φ j+1)2

a2 → (∇xφ(x))2, (3.107)

Making the replacement
π j/a→ π(x j) (3.108)

we obtain

H =
∫

dx
[
T
2
(
∇xφ

)2
+

1
2ρ
π(x)2

]
(3.109)

On the discrete lattice, the commutation relations

[φ(xi), π(x j)] = i!δ̃(xi − x j), (3.110)

where δ̃(xi − x j) = a−1δi j. In the limit a→ 0, δ̃(xi − x j) behaves as a Dirac delta function, so that in
this limit,

[φ(x), π̃(y)] = i!δ(x − y) (3.111)

We now make the jump to Fourier space, writing

φ(x) =
∫

dq
2π
φqeiqxe−ε|q|/2 (3.112)

with a similar relation between π(x) and πq. In the continuum limit, q is no longer bounded by the
cut-off 2π/a. To control the wild fluctuations that arise at high momentum we still need some kind
of cut-off, and this is why we introduce the small exponential convergence factor into the inverse
Fourier transform. Now it is just a question of repeating the same steps of the last section, but for
the continuous fields φq and πq. We may confirm that in the canonical commutation relation, we
must now replace 〈q|q′〉 = δqq′ by 〈q|q′〉 = 2πδ(q − q′), so that

[φq, π−q′] = i!2πδ(q − q′) (3.113)

When we transform the Hamiltonian, we obtain

H =
∫

dq
2π

[πqπ−q

2ρ
+
ρω2

q

2
φqφ−q

]
e−ε|q| (3.114)
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where now ωq = c|q|, and c =
√
T/ρ is the velocity of the phonons. Notice how this has almost

exactly the same form as the the discrete lattice. Defining the creation and annihilation operator by
the relations

φq =

√
!

2ρωq
[aq + a†−q]

πq = −i
√
!ρωq

2
[aq − a†−q] (3.115)

we find that the creation and annihilation operators satisfy

[aq, a†q′] = 2πδ(q − q′). (3.116)

We may now rewrite the Hamiltonian as

H =
∫ ∞

−∞

dq
2π
!ωq

2
(
a†qaq + a−qa†−q

)
e−ε|q| (3.117)

If we re-order the Boson operators, we obtain

H =
∫ ∞

∞

dq
2π
!ωq

(
a†qaq +

“L′′︷!︸︸!︷
2πδ(0)

1
2
)
e−|εq|/2 (3.118)

The first terms corresponds to the excitations of string, and we recognize the last term as the zero-
point energy of the string. Had we been less ambitious, and started out on a finite, but long lattice ,
the term 2 πδ(0) would be replaced by L, which is merely the statement that the zero-point energy
scales with the length,

EZP = L
∫

dq
2π
!c|q|e−ε|q| =

L!c
2πε2

(3.119)

is the total zero-point energy. Once we remove the momentum cut-off, the momentum sum is un-
bounded and the zero-point energy per unit length becomes infinite in the continuum limit. It often
proves convenient to remove this nasty infinity by introducing the concept of “normal ordering”.
If we take any operator A, then we denote its normal ordered count-part by the symbol : A :. The
operator : A : is the same as A, excepting that all the creation operators have been ordered to the left
of all of the annihilation operators. All commutators associated with the ordering are neglected, so
that the normal ordered Hamiltonian is

: H :=
∫ ∞

−∞

dq
2π
!ωqa†qaq, (ωq = c|q|) (3.120)

measures the excitation energy above the ground-state.
Finally, let us look at the field correlations in the continuum string. The fields in co-ordinate

space are given by

φ(x, t) =
∫

dq
2π

√
!

2ρωq
[
aq(t) + a−q(t)

]
eiqxe−ε|q|/2 (3.121)
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where, as in the case of the Harmonic oscillator

aq(t) = aqe−iωqt, a†q(t) = aqeiωqt, (3.122)

Note:

• The generalization of the “quantum string” two higher dimensions is written

H =

∫
ddx

[
T
2
(
∇φ

)2
+

1
2ρ
π(x)2

]

[φ(x), π(y)] = i!δd(x − y). (3.123)

Sometimes, it is useful to rescale φ(x)→ φ(x)/√ρ, π(x)→ π(x)√ρ, so that

H =
1
2

∫
ddx

[(
c∇φ

)2
+π(x)2

]

[φ(x), π̃(y)] = i!δd(x − y). (3.124)

In two dimensions, this describes a fluctuating quantum membrane.

• In particle physics, the “massive” version of the above model, written as

H =
1
2

∫
ddx

[
φ

(
−c2∇2 +

(mc2

!

)2)
φ + π2

]
(3.125)

where c is the speed of light, is called the “Klein-Gordon Hamiltonian”. In this model, the
elementary quanta have energy Eq =

√
(!cq)2 + (mc2)2.

Example 5. Calculate the the equal-time ground-state correlation function

S (x) =
1
2
〈0|(φ(x) − φ(0))2|0〉. (3.126)

for a one-dimensional string.

Solution: Let us begin by rewriting

S (x) = 〈0|(φ(0)2 − φ(x)φ(0))|0〉 (3.127)

where we have used translational invariance to replace the expectation value of φ(x)2 by the
expectation value of φ(0)2. When we expand φ(x) and φ(0) in terms of creation and annihilation
operators, only the terms of the form 〈0|aqa†−q′ |o〉 = 〈0|[aq, a†−q′ ]|o〉 = (2π)δ(q−q′) will survive.
Let us write this out explicitly:

S (x) =

∫
dqdq′

(2π)2
!

2ρc
√
|q||q′|

〈0|[aq + a†−q][a−q′ + a†q′ ]|0〉(eiqx − 1)e−|q|ε
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=
!

2ρc

∫
dq
2π
e−|q|ε

(1 − eiqx

|q|

)

=

(
!

ρc

) [
1

4π
ln

( ε2 + x2

ε2
)
]

(3.128)

where to obtain the last step, we first calculate

dS
dx
=
!

ρc
Im

∫ ∞

0

dq
π
e−q(ε−ix) =

(
!

2πρc

)
Im

1
ε − ix

(3.129)

and then integrate the answer on x, noting that S (0) = 0.
Remarks

• Note that at small distances the fluctuations in the string displacement grow as ln(|x|).
This is because the number of short-wavelength fluctuations is unbounded.

• Note also that we could have obtained this result by working with a discrete string, and
taking a→ 0 at the end of the calculation. Had we done this, we would have found that

S (x) =
!

2m

∑

q

(1 − eiqx

ωq

)
(3.130)

which has the same long-wavelength behavior.
• Had we repeated this calculation in D dimensions, the integral over q becomes a d-

dimensional integral. In this case,

S (x) ∼
∫

dDq
(1 − eiqx

|q|

)
∼

1
xD−1 (3.131)

In higher dimensions, the phase space for number of short-wavelength fluctuations grows
as qD, which leads to stronger fluctuations at short-distances.

3.7 Exercises
1. Consdier the orthogonality relation in equation (3.67)

∑

j
〈qm| j〉〈 j|qn〉 ≡

1
Ns

∑

j
ei(qn−qm)Rj = δnm, (3.132)

where qn = n 2π
L , q = n 2π

L = n
2π
Nsa are the discrete wavevectors, Ns = L/a is the number of sites in the

chain and a is the lattice spacing. By substituting Rj = ja and treating this expression as a geometric
series, show that

∑

j
〈qm| j〉〈 j|qn〉 ≡

1
Ns

∑

j
ei(qn−qm)Rj =

1
Ns

sin[π(n − m)]
sin[ πNs

(n − m)]
≡ δnm
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thereby proving orthogonality.

2. For the Harmonic oscillator H = !ω[a†a + 1
2 ], we know that

〈n̂〉 = n(ω) =
1

eβ!ω − 1
, (3.133)

where β = 1/(kBT ) and n̂ = a†a is the number operator. In the ground-state, using the equations
of motion for the creation and annihilation operators, we showed that the zero-point fluctuations in
position were described by the correlation function

1
2
〈{x(t), x(0)}〉 =

!

2mω
cosωt. (3.134)

Generalize this result to finite temperatures. You should find that there are two terms in the correlation
function. Please give them a physical interpretation.

3. (a) Show that if a is a canonical bose operator, the canonical transformation

b = ua + va†,
b† = ua† + va, (3.135)

(where u and v are real), preserves the canonical commutation relations, provided u2 − v2 = 1.

(b) Using the results of (a), diagonalize the Hamiltonian

H = ω(a†a +
1
2

) +
1
2
∆(a†a† + aa), (3.136)

by transforming it into the form H = ω̃(b†b + 1
2 ). Find ω̃, u and v in terms of ω and ∆. What happens

when ∆ = ω?

(c) The Hamiltonian in (b) has a boson pairing term. Show that the ground-state of H can be written
as coherent condensate of paired bosons, given by

|0̃〉 = e−α(a†a†)|0〉.

Calculate the value of α in terms of u and v. (Hint: |0̃〉 is the vacuum for b, i.e b|0̃〉 = (ua+ va†)|0̃〉 = 0.
Calculate the commutator of [a, e−αa†a†] by expanding the exponential as a power series. Find a value
of α that guarantees that b annihilates the vacuum |0̃〉. )

4. (Harder) Find the classical normal mode frequencies and normal co-ordinates for the one dimensional
chain with Hamiltonian

H =
∑

j



p2
j

2mj
+
k
2

(φ j − φ j−1)2

 (3.137)

where at even sites m2 j = m and at odd sites m2 j+1 = M. Please sketch the dispersion curves.

(ii) What is the gap in the excitation spectrum?

(iii)Write the diagonalized Hamiltonian in second quantized form and discuss how you might arrive at
your final answer. You will now need two types of creation operator.
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5. (Harder) According to the “Lindeman” criterion, a crystal melts when the rms displacement of its
atoms exceeds a third of the average separation of the atoms. Consider a three dimensional crystal
with separation a, atoms of mass m and a nearest neigbor quadratic interaction V = mω2

2 (%ΦR − %ΦR+a)2.
(i) Estimate the amplitude of zero point fluctuations using the uncertainty principle, to show that if

!

mωa2 > ζc (3.138)

where ζc is a dimensionless number of order one, the crystal will be unstable, even at absolute zero,
and will melt due to zero-point fluctuations. (Hint... what would the answer be for a simple harmonic
oscillator?)
(ii) Calculate ζc in the above model. If you like, to start out, imagine that the atoms only move in one
direction, so that Φ is a scalar displacement at the site with equilibrium position R. Calculate the rms
zero-point displacement of an atom

√
〈0|Φ(x)2|0〉. Now generalize your result to take account of the

fluctuations in three orthogonal directions.
(iii)Suppose !ω/kB = 300K, and the atom is a Helium atom. Assuming that ω is independent of
atom separation a, estimate the critical atomic separation ac at which the solid becomes unstable to
quantum fluctuations. Note that in practice ω is dependent on a, and rises rapidly at short distances,
with ω ∼ a−α, where α > 2. Is the solid stable for a < ac or for a > ac?

6. (Harder) Find the transformation that diagonalizes the Hamiltonian

H =
∑

j

{
J1(a†i+1ai + H.c) + J2(a†i+1a†i + H.c)

}
(3.139)

where the ith site is located at Rj = a j. You may find it helpful to (i) transform to momentum
space, writing a j = 1

N1/2

∑
q eiqRjaq and (ii) carrying out a canonical transformation of the form bq =

uqaq + vqa†−q, where u2 − v2 = 1. What happens when J1 = J2?

7. (Harder) This problem sketches the proof that the displacement of the quantum Harmonic oscillator,
originally in its ground-state (in the distant past), is given by

〈x(t)〉 =
∫ ∞

0
R(t − t′) f (t′)dt′, (3.140)

where
R(t − t′) =

i
!
〈0|[x(t), x(t′)]|0〉 (3.141)

is the “response function” and x(t) is the position operator in the Heisenberg representation of H0. A
more detailed discussion can be found in chapter 10.
An applied force f (t) introduces an additional forcing term to the harmonic oscillator Hamiltonian

Ĥ(t) = H0 + V(t) = Ĥ0 − f (t)x̂, (3.142)

where H0 = !ω(a†a + 1
2 ) is the unperturbed Hamiltonian. To compute the displacement of the Har-

monic oscillator, it is convenient to work in the “interaction representation”, which is the Heisenberg
representation for H0. In this representation, the time-evolution of the wavefunction is due to the force
term. The wavefunction of the harmonic oscillator in the interation representation |ψI(t)〉 is related to
the Schrodinger state |ψS (t)〉 by the relation |ψI(t)〉 = eiH0t/!|ψS (t)〉.
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(a) By using the equation of motion for the Schrodinger state i!∂t |ψS (t)〉 = (H0 +V(t))|ψS (t)〉, show
that the time evolution of the wavefunction in the interaction representation is

i!∂t |ψI(t)〉 = VI(t)|ψI(t)〉 = − f (t)x̂(t)|ψI(t)〉, (3.143)

where VI(t) = eiH0t/!V̂(t)e−iH0t/! = −x(t) f (t) is the force term in the interaction representation.
(b) Show that if |ψ(t)〉 = |0〉 at t = −∞, then the leading order solution to the above equation of

motion is then
|ψI(t)〉 = |0〉 +

i
!

∫ t

−∞
dt′ f (t′)x̂(t′)|0〉 + O( f 2), (3.144)

so that
〈ψI(t)| = 〈0| −

i
!

∫ t

−∞
dt′ f (t′)〈0|x̂(t′) + O( f 2). (3.145)

(c) Using the results just derived expand the expectation value 〈ψI(t)|x(t)|ψI(t)〉 to linear order in f ,
obtaining the above cited result.
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Chapter 4

Conserved Particles

The method we have just examined is fine for “collective excitations” of a medium, but it does
not make it self-evident how we should proceed for systems of conserved particles, such as a gas
of Helium-4 atoms, or an electron gas inside a metal. Now we shall return to discuss conserved
particles.

First quantized quantum mechanics can deal with many body physics, through the introduction
of a many particle wavefunction. This is the approach favored in fields such as quantum chemistry,
where the number of electrons is large, but not macroscopic. The quantum chemistry approach
revolves around the many-body wavefunction. For N particles, this a function of 3N variables and
N spins. The Hamiltonian is then an operator expressed in terms of these co-ordinates:

ψ −→ ψ(x1, x2 . . . xN , t)

H −→
∑

j

[
−
!2

2m
∇2
j + U(x j)

]
+

1
2

∑

i< j
V(xi − x j) (4.1)

With a few famous exceptions this method is cumbersome, and ill-suited to macroscopically large
systems. The most notable exceptions occur in low dimensional problems, where wavefunctions of
macroscopically large ensembles of interacting particles have been obtained. Examples include

• Bethe Ansatz solutions to interacting one dimensional, and impurity problems[1, 2, 3, 4].

• Laughlin’s wavefunction for interacting electrons in high magnetic fields, at commensurate
filling factors[5, 6].

Second-quantization provides a general way of approaching many body systems in which the wave-
function plays a minor role. As we mentioned in chapter 3, the essence of second-quantization is
a process of raising the Schrödinger wavefunction to the level of an operator which satisfies cer-
tain “canonical commutation” or “canonical anticommutation” algebras”. In first quantized physics
physical properties of a quantum particle, such as its density, Kinetic energy, potential energy can
be expressed in terms of the one-particle wavefunction. Second quantization elevates each of these
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quantities to the status of an operator by replacing the one-particle wavefuncion by its corresponding
field operator:

ψ(x, t) −→ ψ̂(x, t)
one particle wavefunction Field operator

O(ψ∗, ψ) −→ Ô(ψ̂†, ψ̂)




2nd Quantization (4.2)

For example, Born’s famous expression for the one-particle (probability) density becems an operator
as follows:

ρ(x) = |ψ(x)|2 −→ ρ̂(x) = ψ̂†(x)ψ̂(x), (4.3)

so that the potential energy associated with an external potential is

V̂ =
∫

d3xU(x)ρ̂(x). (4.4)

Similarly, the Kinetic energy in first-quantization

T [ψ∗, ψ] =
∫

d3xψ∗(x)
[
−
!2

2m
∇2

]
ψ(x) (4.5)

becomes the operator

T̂ =
∫

d3xψ̂†(x)
[
−
!2

2m
∇2

]
ψ̂(x). (4.6)

Finally

H =
∫

d3xψ̂†(x)
[
−
!2

2m
∇2 + U(x)

]
ψ(x) +

1
2

∫
d3xd3x′V(x − x′) : ρ̂(x)ρ̂(x′) : (4.7)

is the complete many-body Hamiltonian in second-quantized form. Here V(x− x′) is the interaction
potential between the particles, and the symbol “:” reflects the fact that order of the operators counts.
“: . . . :” is the normal ordering operator denotes that all creation operators between the two colons
must be ordered to lie to the left of all destruction operators.

4.1 Commutation and Anticommutation Algebras
In 1928, Jordan and Wigner[7] proposed that the microscopic field operators describing identical
particles divide up into two types. These are axioms of quantum field theory. For identical bosons,
field operators satisfy a commutation algebra, whereas for Fermions, the field operators satisfy an
anticommutation algebra. Since we will be dealing with many of their properties in parallel, it useful
to introduce a unified notation for commutators and anticommutators as follows

{a, b} = ab + ba ≡ [a, b]+ ,
[a, b] = ab − ba ≡ [a, b]− , (4.8)
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so that
[a, b]± = ab ± ba. (4.9)

We shall adopt the +/− subscript notation in this chapter, while we are discussing both fermions
and bosons together.

The algebra of field operators is then

[ψ(1), ψ(2)]± = [ψ†(2), ψ†(1)]± = 0

[ψ(1), ψ†(2)]± = δ(1 − 2)




Fermions/ Bosons (4.10)

When spin is involved, 1 ≡ (x1, σ1) and δ(1 − 2) = δ(D)(x1 − x2)δσ1σ2 . We shall motivate these
axioms in two ways: (i) by showing, in the case of Bosons, that they are a natural result of trying
to quantize the one-particle wavefunction. ; (ii) by showing that they lead to the first quantized
formulation of many-body physics, naturally building the particle exchange statistics into the math-
ematical framework.

Table 5.1 summarizes the main points of second-quantization that we shall now discuss in detail.

4.1.1 Heuristic Derivation for Bosons

The name second-quantization derives from the notion that many body physics can be obtained
by quantizing the one-particle wavefunction. Philosophically, this is very tricky, for surely, the
wavefunction is already a quantum object? Let us imagine however, a thought experiment, when
we prepare a huge number of non-interacting particles, prepared in such a way that they are all in
precisely the same quantum state. The feasibility of this does not worry us here, but note that it can
actually be done for a large ensemble of bosons, by condensing them into a single quantum state.
In this circumstance, every single particle lies in the same one-particle state. If we time evolve the
system we can begin to think of the single-particle wavefunction as if it is a classical variable.

Let us briefly recall one-particle quantum mechanics. If the particle is in a state |ψ〉, then we can
always expand the state in terms of a complete basis {|n〉}, as follows:

|ψ(t)〉 =
∑

n
|n〉

ψn(t)︷!!︸︸!!︷
〈n|ψ(t)〉 =

∑

n
|n〉ψn(t) (4.11)

so that |ψn(t)|2 = pn(t) gives the probability of being in state n. Now applying Schrodinger’s equa-
tion, Ĥ|ψ〉 = i!∂t|ψ〉 gives

i!ψ̇n(t) =
∑

m
〈n|H|m〉ψm(t)

i!ψ̇∗n(t) = −
∑

m
〈m|H|n〉ψ∗m(t) (4.12)

Now if we write the ground-state energy as a functional of the bm(t), we get

H(ψ, ψ∗) = 〈H〉 =
∑

m,n
ψ∗mψn〈m|H|n〉 (4.13)
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Table. 5.1. First and Second Quantization treatment of conserved particles.

First Quantization Second Quantization

Wavefn −→ Field
Operator ψ(x) = 〈x|ψ〉 ψ̂(x)

Commutator [x, p] = i! [ψ̂(x), ψ̂†(x′)]∓ = δD(x − x′)

Density ρ(x) = |ψ(x)|2 ρ̂(x) = ψ̂†(x)ψ̂(x)

Arbitrary Basis ψλ = 〈λ|ψ〉 ψ̂λ

Change of Basis 〈s̃|ψ〉 =
∑
λ〈s̃|λ〉〈λ|ψ〉 âs =

∑
λ〈s̃|λ〉ψ̂λ

Orthogonality 〈λ|λ′〉 = δλλ′ [ψλ, ψ†λ′]∓ = δλλ′

One ptcle Energy p2

2m + U
∫
x ψ̂
†(x)

(
− !

2

2m + U(x)
)
ψ̂(x)

Interaction
∑
i< j V(xi − x j) V̂ = 1

2
∫
x,x′ V(x − x′) : ρ̂(x)ρ̂(x′) :

= 1
2
∑
V(q)c†k+qc†k′−qck′ck

Many Body
Wavefunction Ψ(x1, x2 . . . xN) 〈0|ψ̂(x1) . . . ψ̂(xN)|0〉

Schrödinger Eqn
(∑
Hi +

∑
i< j Vi j

)
Ψ = i!Ψ̇

[
H (0) +

∫
x′ ρ̂(x

′)V(x′ − x)
]
ψ̂(x) = i!ψ̇(x)

we see that the equations of motion can be written in Hamiltonian form

ψ̇m =
∂H(ψ, ψ∗)
i!∂ψ∗m

, (c.f q̇ =
∂H
∂p

)

i!ψ̇∗m = −
∂H(ψ, ψ∗)
∂ψm

, (c.f ṗ = −
∂H
∂q

) (4.14)

so we can identify
{ψn, i!ψ∗n} ≡ {qn, pn} (4.15)

as the canonical position and momentum co-ordinates.
But suppose we don’t have a macroscopic number of particles in a single state. In this case, the

amplitudes ψn(t) are expected to undergo quantum fluctuations. Let us examine what happens if we
“second-quantize” these variables, making the replacement

[qn, pm] = i!δnm = i![ψn, ψ†m] (4.16)
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or

[ψn, ψm] = [ψ†n, ψ†m] = 0,

[ψn, ψ†m] = δnm

(4.17)

In terms of these operators, our second quantized Hamiltonian becomes

H =
∑

m,l
ψ̂†mψ̂l〈m|H|l〉 (4.18)

If we now use this to calculate the time-evolution of the quantum fields we obtain

−i!∂tψ j = [Ĥ, ψ j] =
∑

m,l
〈m|H|l〉

−δm jψl︷!!!!!!!︸︸!!!!!!!︷
[ψ†mψl, ψ j] (4.19)

Eliminating the sum over m, we obtain

−i!∂tψ j = −
∑

l
〈 j|H|l〉ψl

−i!∂tψ† j = [Ĥ, ψ† j] =
∑

l
ψ†l〈l|H| j〉, (4.20)

where the complex conjugated expression gives the time evolution of ψ†l. Remarkably, the equa-
tions of motion of the operators match the time evolution of the one-particle amplitudes. But now
we have operators, we have all the new physics associated with quantum fluctuations of the particle
fields.

4.2 What about Fermions?

Remarkably, as Jordan and Wigner first realized, we recover precisely the same time-evolution
if second-quantize the operators using anticommutators[7], rather than commutators, and it this
is what gives rise to fermions and the exclusion principle. But for fermions, we can not offer a
heurtistic argument, because they don’t condense: as far as we know, there is no situation in which
individual fermi field operators behave semi-classically. although of course, in a superconductor,
pairs of fermions that behave semi-classically.

In fact, all of the operations we carried out above work equally well with either canonical com-
mutation or canonical anticomutation relations:

[ψn, ψm]± = [ψ†n, ψ†m]± = 0,

[ψn, ψ†m]± = δnm

(4.21)
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where the ± refers to fermions/bosons respectively.
To evaluate the equation of motion of the field operators, we need to know the commutator

[H, ψn]. Using the relation
[ab, c] = a[b, c]± ∓ [a, c]±b (4.22)

we may verify that

[ψ†mψl, ψ j] = ψ†m[
0︷︸︸︷
ψl, ψ j]±

−δm j︷!!!!!!!!︸︸!!!!!!!!︷
∓[ψ†m, ψ j]± ψl

= −δmjψl (4.23)

so that

−i!∂tψ j = [Ĥ, ψ j] =
∑

m,l
〈m|H|l〉

−δm jψl︷!!!!!!!︸︸!!!!!!!︷
[ψ†mψl, ψ j]

= −
∑

l
〈 j|H|l〉ψl (4.24)

independently of whether we use an anticommuting, or commuting algebra.
Let us now go on, and look at some general properties of second-quantized operators that hold

for both bosons and fermions.

4.3 Field operators in different bases
Let us first check that our results don’t depend on the one-particle basis we use. To do this, we
must confirm that the commutation or anticommutation algebra of bosons or fermions is basis in-
dependent. Suppose we have two bases of one-particle states: the {|r〉} basis, and a new {|s̃〉} basis,
where

|ψ〉 =
∑

r
|r〉ψr =

∑

s
|s̃〉as (4.25)

where 〈s̃|ψ〉 = as, 〈r|ψ〉 = ψr. Introducing the completeness relation 1 =
∑
r |r〉〈r| into the first

expression, we obtain
as︷︸︸︷
〈s̃|ψ〉 =

∑

r
〈s̃|r〉

ψs︷︸︸︷
〈r|ψ〉 (4.26)

If this is how the one-particle states transform between the two bases, then we must use the same
unitary transformation to relate the field operators that destroy particles in the two bases

âs =
∑

r
〈s̃|r〉ψ̂r (4.27)

The commutation algebra of the new operators is now

[âs, â†p]± =
∑

l,m
〈s̃|l〉

δlm︷!!!!!!︸︸!!!!!!︷
[ψ̂l, ψ̂†m]±〈m|p̃〉 (4.28)
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This is just the pre- and post-multiplication of a unit operator by the unitary matrix Usl = 〈s̃|l〉 and
its conjugate U†mp = 〈m|p̃〉. The final result, is unity, as expected:

[âs, â†p]± =
∑

r
〈s̃|r〉〈r|p̃〉 = 〈s̃|p̃〉 = δsp (4.29)

In other words, the canonical commutation algebra is preserved by unitary transformations of basis.
A basis of particular importance, is the position basis. The one-particle wavefunction can always

be decomposed in a discrete basis, as follows

ψ(x) = 〈x|ψ(t)〉 =
∑

n
〈x|n〉ψn (4.30)

where 〈x|n〉 = φn(x) is the wavefunction of the nth state. We now define the corresponding destruc-
tion operator

ψ̂(x) =
∑

m
〈x|m〉ψ̂m (4.31)

which defines the field operator in real space. Using completeness of the one-particle eigenstates
1 =

∫
dDx|x〉〈x|, we can expand the orthogonality relation δnm = 〈n|m〉 as

δnm = 〈n|

1=
∫
dDx|x〉〈x|

︷︸︸︷
1̂ |m〉 =

∫
dDx〈n|x〉〈x|m〉.

By integrating (4.31) over x with 〈n|x〉, we can then invert this equation to obtain

ψn =

∫
dDx〈n|x〉ψ(x), ψ†n =

∫
dDxψ†(x)〈x|n〉 (4.32)

You can see by now, that so far as transformation laws are concerned, ψn ∼ 〈n| and ψ(x) ∼ 〈x|
transforms like “bra” vectors, whilst their conjugates transform like “kets”.

By moving to a real-space representation, we have traded in a discrete basis, for a continuous
basis. The corresponding “unit” operator appearing in the commutation algebra now becomes a
delta-function.

[ψ(x), ψ†(y)]± =
∑

n,m
〈x|n〉〈m|y〉

δnm︷!!!!!!!︸︸!!!!!!!︷
[ψn, ψ†m]±

=
∑

n
〈x|n〉〈n|y〉 = 〈x|y〉

= δ3(x − y) (4.33)

where we have assumed a three-dimensional system.
Another basis of importance, is the basis provided by the one-particle energy eigenstates. In this

basis 〈l|H|m〉 = Elδlm, so the Hamiltonian becomes diagonal

H =
∑

l
Elψ†lψl =

∑
Eln̂l (4.34)
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The Hamiltonian of the non-interacting many-body system thus divides up into a set of individual
components, each one describing the energy associated with the occupancy of a given one-particle
eigenstate. The eigenstates of the many-body Hamiltonian are thus labelled by the occupancy of the
lth one-particle state. Of course, in a real-space basis the Hamiltonian becomes more complicated.
Formally, if we transform this back to the real-space basis, we find that

H =
∫

dDxdDx′ψ†(x)〈x|H|x′〉ψ(x′) (4.35)

For free particles in space, the one-particle Hamiltonian is

〈x|H|x′〉 =
[
−
!2

2m
∇2 + U(x)

]
δD(x − x′) (4.36)

so that the Hamiltonian becomes

H =
∫

dDxψ†(x)
[
−
!2

2m
∇2 + U(x)

]
ψ(x) (4.37)

which despite its formidable appearance, is just a a transformed version of the diagonalized Hamil-
tonian (4.34).

Example 4.1: By integrating by parts, taking care with the treatment of surface terms, show
that the second quantized expression Hamiltonian (4.37) can be re-written in the form

H =
∫

dDx
(
!2

2m
|∇ψ(x)|2 + U(x)|ψ(x)|2

)
, (4.38)

where we have taken a notational liberty common in field theory, denoting |∇ψ(x)|2 ≡ %∇ψ†(x) ·
%∇ψ(x) and |ψ(x)|2 ≡ ψ†(x)ψ(x).
Solution: Let us concentrate on the kinetic energy term in the Hamiltonian, writing H = T +U,
where

T =
∫

dDxψ†(x)
(
−
!2

2m
∇2

)
ψ(x). (4.39)

Integrating this term by parts we can split it into a “bulk” and a “surface” term, as follows:

T = −
!2

2m

∫
dDx%∇ψ†(x) · %∇ψ(x) +

!2

2m

TS︷!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!︷∫
dDx%∇ ·

(
ψ†(x)%∇ψ(x)

)
. (4.40)

Using the divergence theorem, we can rewrite the total derivative as a surface integral

TS = −
!2

2m

∫
d%S ·

(
ψ†(x)%∇ψ(x)

)
(4.41)

Now it is tempting to just drop this term as a surface term that “vanishes at infinity”. However,
here we are dealing with operators, so this brash step requires a little contemplation before we
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take it for granted. One way to deal with this term is to use periodic boundary conditions. In
this case there really are no boundaries, or more strictly speaking, opposite boundaries cancel
(
∫
R dS +

∫
L dS = 0), so the surface term is zero. But suppose we had used hard wall boundary

conditions, what then?
Well, in this case, we can decompose the field operators in terms of the one-particle eigenstates
of the cavity. Remembering that under change of bases, ψ(x) ∼ 〈x| and ψ†(x) ∼ |x〉 behave as
bras and kets respectively, we write

ψ(x) =
∑

n

φn(x)︷︸︸︷
〈x|n〉 ψn, ψ†(x) =

∑

n
ψ†n

φ∗n(x)
︷︸︸︷
〈n|x〉 .

Substituting these expressions into TS (4.41), the surface term becomes

TS =
∑

n,m
t(S )
nmψ

†
nψm

tSnm = −
!2

2m

∫
d%S · φ∗n(x)%∇φm(x) (4.42)

Provided φn(x) = 0 on the surface, it follows that the matrix elements tSnm = 0 so that T̂S = 0.
Thus whether we use hard-wall or periodic boundary conditions, we can drop the surface con-
tribution to the Kinetic energy in (4.40), enabling us to write

T =
!2

2m

∫
dDx|%∇ψ(x)|2

and when we add in the potential term, we obtain (4.38).

4.4 Fields as particle creation and annihilation operators.

By analogy with collective fields, we now interpret the quantity n̂l = ψ†lψl as the number number
operator, counting the number of particles in the one-particle state l. The total particle number
operator is then

N =
∑

l
ψ†lψl (4.43)

Using relation (4.22), it is easy to verify that for both fermions and bosons,

[N̂, ψl] = [n̂l, ψl] = −ψl, [N̂, ψ†l] = [n̂l, ψ†l] = ψ†l. (4.44)

In other words, N̂ψ†l = ψ†l(N̂ + 1) so that ψ†l adds a particle to state l. Similarly, since N̂ψl =
ψl(N̂ − 1), ψl destroys a particle from state l.

There is however a vital and essential difference between bosons and fermions. For bosons, the
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number of particles nl in the lth state is unbounded, but for fermions, since

ψ†
2
l =

1
2
{ψ†l, ψ†l} = 0 (4.45)

the amplitude to add more than one particle to a given state is always zero. We can never add more
than one particle to a given state: in otherwords, the exclusion principle follows from the algebra!
The occupation number bases for bosons and fermions are given by

|n1, n2 . . . nl . . .〉 =
∏

l
(ψ† l)nl√

nl!
|0〉, (nr = 0, 1, 2 . . . ) bosons

|n1, n2 . . . nr〉 = (ψ†r)nr . . . (ψ†1)n1 |0〉, (nr = 0, 1) fermions
(4.46)

A specific example for fermions, is

|
1
1

2
0

3
1

4
1

5
0

6
1〉 = ψ†6ψ†4ψ†3ψ†1|0〉 (4.47)

which contains particles in the 1st, 3rd, 4th and 6th one-particle states. Notice how the order in
which we add the particles affects the sign of the wavefunction, so exchanging particles 4 and 6
gives

ψ†4ψ
†

6ψ
†

3ψ
†

1|0〉 = −ψ†6ψ†4ψ†3ψ†1|0〉 = −|
1
1

2
0

3
1

4
1

5
0

6
1〉 (4.48)

By contrast, a bosonic state is symmetric, for example

|
1
8

2
0

3
5

4
2

5
4

6
1〉 =

1
√

4!2!5!8!
ψ†6(ψ†5)4(ψ†4)2(ψ†3)5(ψ†1)8|0〉 (4.49)

To get further insight, let us transform the number operator to a real-space basis by writing

N̂ =

∫
dDxdDy

∑

l
ψ†(x)

δD(x−y)︷!!!︸︸!!!︷
〈x|l〉〈l|y〉ψ(y) (4.50)

so that
N̂ =

∫
dDxψ†(x)ψ(x) (4.51)

From this expression, we are immediately led to identify

ρ(x) = ψ†(x)ψ(x) (4.52)

as the density operator. Furthermore, since

[ρ(y), ψ(x)] = ∓[ψ†(y), ψ(x)] ± ψ(y) = −δ3(x − y)ψ(y). (4.53)

we can we can identify ψ(x) as the operator which annihilates a particle at x.
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Example 4.2: Using the result (4.53) that if

N̂R =
∫

y∈R
d3yρ(%y)

(4.54)

measures the number of particles in some region R, that

[N̂R, ψ(x)] =
{
−ψ(x), (x ∈ R)

0 (x " R) (4.55)

By localizing region R around x0, use this to prove that ψ(x0) annihilates a particle at position
x0.
Solution: By directly commuting N̂R with ψ(x), we obtain

[N̂R, ψ(x)] =
∫

y∈R
[ρ(y), ψ(x)] = −

∫

y∈R
δ3(x − y)ψ(y) =

{
−ψ(x), (x ∈ R)

0 (x " R)

Suppose |nR〉 is a state with a definite number nR of particles insideR. If the region R is centered
around x0, then it follows that

N̂Rψ(x0)|nR〉 = ψ(x0)(N̂R − 1)|nR〉 = (nR − 1)ψ(x0)|nR〉

contains one less particle. In this way, we see that ψ(x) annihilates a particle from inside region
R, no matter how small that region is made, proving that ψ(x) annihilates a particle at position
x0.

Example 4.3: Suppose b%q destroys a boson in a cubic box of side length L,where %q = 2π
L (i, j, k)

is the momentum of the boson. Express the field operators in real space, and show they satisfy
canonical commutation relations. Write down the Hamiltonian in both bases.
Solution The field operators in momentum space satisfy [b%q, b†%q′ ] = δ%q%q′ . We may expand the
field operator in real space as follows

ψ(x) =
∑

q
〈%x|%q〉b%q (4.56)

Now
〈%x|%q〉 =

1
L3/2 e

i%q·%x (4.57)

is the one-particle wavefunction of a boson with momentum %q. Calculating the commutator
between the fields in real space, we obtain

[ψ(%x), ψ†(%y)] =
∑

%q,%q′
〈%x|%q〉〈%q′|%y〉

δ%q%q′︷!!!!︸︸!!!!︷
[b%q, b†%q′ ] =

∑

%q

〈%x|%q〉〈%q|%y〉
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=
1
L3

∑

q
ei%q·(%x−%y) = δ(3)(%x − %y). (4.58)

The last two steps could have been carried out by noting that
∑
q |q〉〈q| = 1, so that

[ψ(%x), ψ†(%y)] = 〈x|y〉 = δ3(x − y).
The Hamiltonian for the bosons in a box is

H = −
!2

2m

∫
d3xψ†(x)∇2ψ(x) (4.59)

We now Fourier transform this, writing

ψ†(x) =
1
L3/2

∑

q
e−i%q·%xb†q

∇2ψ(x) = −
1
L3/2

∑

q
q2ei%q·%xbq (4.60)

Substituting into the Hamiltonian, we obtain

H =
1
L3

∑

q, q′
εqb†q′bq

∫
d3x

L3δq−q′︷!︸︸!︷
eiq−q′·x =

∑

q
εqb†qbq, (4.61)

where
εq =

(
!2q2

2m

)
. (4.62)

is the one-particle energy.

4.5 The vacuum and the many body wavefunction
We are now in a position to build up the many-body wavefunction. Once again, of fundamental
importance here, is the notion of the vacuum, the unique state |0〉 which is annihilated by all field
operators. If we work in the position basis, we can add a particle at site x to make the one-particle
state

|x〉 = ψ†(x)|0〉, (4.63)
Notice that the overlap between two one-particle states is

〈x|x′〉 = 〈0|ψ(x)ψ†(x′)|0〉. (4.64)

By using the (anti) commutation algebra to move the creation operator in the above expression to
the right-hand side, where it annihilates the vacuum, we obtain

〈0|ψ(x)ψ†(x′)|0〉 = 〈0|

δ(3)(x−x′)︷!!!!!!!!!!!︸︸!!!!!!!!!!!︷
[ψ(x), ψ†(x′)]±|0〉 = δ(3)(x − x′). (4.65)
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We can equally well add many particles, forming the N-particle state:

|x1, x2 . . . xN〉 = ψ†(xN) . . . ψ†(x2)ψ†(x1)|0〉 (4.66)

Now the corresponding “bra” state is given by

〈x1, x2 . . . xN | = 〈0|ψ(x1)ψ(x2) . . . ψ(xN) (4.67)

The wavefunction of the N-particle state Ψ is the overlap with this state

Ψ(x1, x2, . . . xN) = 〈x1, x2 . . . xN |Ψ〉 = 〈0|ψ(x1)ψ(x2) . . . ψ(xN)|Ψ〉 (4.68)

The commutation/anticommutation algebra guarantees that the symmetry of this wavefunction un-
der particle exchange is positive for bosons, and negative for fermions, so that if we permute the
particles, (12 . . .N)→ (P1P2 . . . PN)

〈0|ψ(xP1)ψ(xP2) . . . ψ(xPN )|Ψ〉 = (∓1)P〈0|ψ†(x1)ψ(x2) . . . ψ(xN)|Ψ〉 (4.69)

where P is the number of pairwise permutations involved in making the permutation. Notice that for
fermions, this hard-wires the Pauli Exclusion principle into the formalism, and guarantees a node in
the wavefunction when any two particle co-ordinates are the same.

Example Two spinless fermions are added to a cubic box with sides of length L, in momentum
states k1 and k2, forming the state

|Ψ〉 = |k1,k2〉 = c†k2c
†

k1 |0〉 (4.70)

Calculate the two-particle wavefunction

Ψ(x1, x2) = 〈x1, x2|Ψ〉 (4.71)

Solution Written out explicitly, the wavefunction is

Ψ(x1, x2) = 〈0|ψ(x1)ψ(x2)c†k2c
†

k1 |0〉 (4.72)

To evaluate this quantity, we commute the two destruction operators to the right, until they
annihilate the vacuum. Each time a destruction operator passes a creation operator, we generate
a “contraction” term

{ψ(x), c†k} =
∫

d3y

δ3(x−y)︷!!!!!!!!!︸︸!!!!!!!!!︷
{ψ(x), ψ†(y)}〈y|k〉 = 〈x|k〉 = L−3/2eik·x (4.73)

Carrying out this procedure, we generate a sum of pairwise contractions, as follows:

〈0|ψ(x1)ψ(x2)c†k2c
†

k1 |0〉 = 〈x1|k1〉〈x2|k2〉 − 〈x1|k2〉〈x2|k1〉

=
1
L3

[
ei(k1·x1+k2·x2) − ei(k1·x2+k2·x1)

]
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4.6 Interactions
Second-quantization is easily extended to incorporate interactions. Classically, the interaction po-
tential energy between particles is given by

V =
1
2

∫
d3xd3x′V(x − x′)ρ(x)ρ(x′) (4.74)

so we might expect that the corresponding second-quantized expression is

1
2

∫
d3xd3x′V(x − x′)ρ̂(x)ρ̂(x′) (4.75)

This is wrong, because we have not been careful about the ordering of operators. Were we to use
(4.75), then a one-particle state would interact with itself! We require that the action of the potential
on the vacuum, or a one-particle state, gives zero

V̂ |0〉 = V̂ |x〉 = 0 (4.76)

To guarantee this, we need to be careful that we “normal-order” the field operators, by permuting
them so that all destruction operators are on the right-hand-side. All additional terms that are gener-
ated by permuting the operators are dropperd, but the signs associated with the permutation process
are preserved. We denote the normal ordering process by two semi-colons. Thus

: ρ(x)ρ(y) : = : ψ†(x)ψ(x)ψ†(y)ψ(y) :
= ∓ : ψ†(x)ψ†(y)ψ(x)ψ(y) :=: ψ†(y)ψ†(x)ψ(x)ψ(y) : (4.77)

and the correct expression for the interaction potential is then

V =
1
2

∫
d3xd3x′V(x − x′) : ρ̂(x)ρ̂(x′) :

=
∑

σ,σ′

1
2

∫
d3xd3x′V(x − x′)ψσ†(y)ψσ′ †(x)ψσ(x)ψσ(y) (4.78)

where we have written a more general expression for fields with spin.

Example. Show that the action of the operator V on the many body state |x1, . . . xN〉 is given
by

V̂ |x1, x2, . . . xN〉 =
∑

i< j
V(xi − x j)|x1, x2, . . . xN〉 (4.79)

Solution: To prove this, we first prove the intermediate result

[V̂ , ψ†(x)] =
∫

d3yV(x − y)ψ†(x)ρ(y). (4.80)
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This result can be obtained by expanding out the commutator as follows:

[V̂ , ψ†(x)] =
1
2

∫

y,y′
V(y − y′)ψ†(y)ψ†(y′)

δ(y−x)ψ(y′)±δ(y′−x)ψ(y)︷!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!︷
[ψ(y′)ψ(y), ψ†(x)]

= ψ†(x)
1
2

∫

y′
V(x − y′)ρ(y′) ±

1
2

∫

y
V(y − x)

±ψ†(x)ψ†(y)︷!!!!!!!︸︸!!!!!!!︷
ψ†(y)ψ†(x)ψ(y)

=

∫

y
V(x − y)ψ†(x)ρ(y), (4.81)

where the lower sign choice is for fermions.
We now calculate

V̂ |x1, . . . xN〉 = V̂ψ†(xN) . . . ψ†(x1)|0〉 (4.82)

by commuting V̂ successively to the right until it annihilates with the vacuum. At each stage,
we generate a “remainder term”. When we commute it past the the “jth” creation operator we
obtain

(4.83)

where the remainder is

R j =

∫
d3yψ†(xN) . . .V(y − x j)ψ†(x j)ρ(y) . . . ψ†(x1)|0〉 (4.84)

Next, using ρ(y)ψ†(xi) = ψ†(xi)ρ(y) + ψ†(xi)δ(y − xi), we commute the density operator to the
right until it annihilates the vacuum. The remainder terms generated by this process are then

R j =

j−1∑

i=1
V(xi − x j)ψ†(xN) . . . ψ†(x j) . . . ψ†(xi) . . . ψ†(x1)|0〉

=

j−1∑

i=1
V(xi − x j)|x1, x2 . . . xN〉. (4.85)

Our final answer is the sum of the remainders R j:

V̂ψ†(xN) . . . ψ†(x1)|0〉 =
∑

j=2,N
R j

=
∑

i< j
V(xi − x j)|x1, x2 . . . xN〉. (4.86)

In otherwords, the state |x1 . . . xN〉 is an eigenstate of the interaction operator, with eigenvalue
given by the classical interaction potential energy.

To get another insight into the interaction, we shall now rewrite it in the momentum basis. This
is very useful in translationally invariant systems, where momentum is conserved in collisions. Let
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us imagine we are treating fermions, with spin. The transformation to a momentum basis is then
Writing

ψσ(x) = “
∑

k
”〈x|k〉ckσ =

∫

k
ckσei(k·x)

ψσ(x) = “
∑

k
”c†kσ〈k|x〉 =

∫

k
c†kσe−i(k·x) (4.87)

where {ckσ, c†k′σ′ } = (2π)3δ3(k − k′)δσσ′ are canonical fermion operators and we have used the
short-hand notation ∫

k
=

∫
d3k

(2π)3 . (4.88)

We shall also Fourier transform the interaction

V(x − x′) =
∫

q
V(q)eiq·(x−x′). (4.89)

When we substitute these expressions into the interaction, we need to regroup the Fourier terms so
that the momentum integrals are on the outside, and the spatial integrals are on the inside. Doing
this, we obtain

V̂ =
1
2

∑

σσ′

∫

k1,2,3,4

V(q) × c†k4σc
†

k3σ′ck2σ′ck1σ × spatial integrals (4.90)

where the spatial integrals take the form
∫

d3xd3x′ei(k1−k4+q)·xei(k2−k3−q)·x′ = (2π)6δ(3)(k4 − k1 − q)δ(3)(k3 − k2 + q) (4.91)

which impose momentum conservation at each scattering event. Using the spatial integrals to elim-
inate the integrals over k3 and k4, the final result is

V̂ =
1
2

∑

σσ′

∫

k1,2,q

d3q
(2π)3V(q)c†k1+qσc†k2−qσ′ck2σ′ck1σ (4.92)

In other words, when the particles scatter at positions x and x′, momentum is conserved. Particle
1 comes in with momentum k1, and transfers momentum q to particle 2. Particle 2 comes in with
momentum k2, and thereby gains momentum q:

particle 1 k1 −→ k1 + q
particle 2 k2 −→ k2 − q (4.93)

as illustrated in Fig. 4.1. The matrix element associated with this scattering process is merely the
Fourier transform of the potential V(q).
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’σ

’σ2k  ,   k  ,  1 σ

2

q

V(q)

1 σk +q,  k - q,  

Figure 4.1: Scattering of two particles, showing transfer of momentum. q.

Example 4.4: Particles interact via a delta-function interaction V(x) = Ua3δ(3)(x). Write down
the second-quantized interaction in a momentum space representation.

Solution: The Fourier transform of the interaction is

V(q) =
∫

d3xUa3δ(x)e−iq·x = Ua3 (4.94)

so the interaction in momentum space is

V̂ =
∑

σσ′

Ua3

2

∫

k1,2,q

d3q
(2π)3 c

†
k1−qσc†k2+qσ′ck2σ′ck1σ (4.95)

Example 4.5: A set of fermions interact via a screened Coulomb (Yukawa) potential

V(r) =
Ae−λr

r
(4.96)

Write down the interaction in momentum space.

Solution: The interaction in momentum space is given by

V̂ =
1
2

∑

σσ′

∫

k1,2,q

d3q
(2π)3V(q)c†k1+qσc†k2−qσ′ck2σ′ck1σ (4.97)

where

V(q) =
∫

d3x
Ae−λr

r
e−iq·x (4.98)
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To carry out this integral, we use Polar co-ordinates with the z-axis aligned along the direction
q̂. Writing q · x = qr cos θ, then d3x = r2dφd cos θ → 2πr2d cos θ, so that

V(q) =
∫

4πr2drV(r)
1
2

∫ 1

−1
d cos θ

︸!!!!!!!!!!︷︷!!!!!!!!!!︸
〈e−iq·x〉= sin qr

qr

e−iqr cos θ (4.99)

so that for an arbitrary spherically symmetric potential

V(q) =
∫ ∞

0
4πr2drV(r)

(
sin qr
qr

)
(4.100)

In this case,

V(q) =
4πA
q

∫ ∞

0
dre−λr sin(qr) =

4πA
q2 + λ2 , (4.101)

Notice that the Coulomb interaction,

V(r) =
e2

4πε0r
, (4.102)

is the infinite range limit of the Yukawa potential, with λ = 0, A = e2/4πεo, so that for the
Coulomb interaction,

V(q) =
e2

q2εo
. (4.103)

Example 4.6: If one transforms to a new one particle basis, writing ψ(x) =
∑
sΦs(x)cs, show

that the interaction becomes

V̂ =
1
2

∑

lmnp
c†lc†mcncp〈lm|V |pn〉 (4.104)

where

〈lm|V |pn〉 =
∫

x,x′
Φ∗l (x)Φp(x)Φ

∗
m(x′)Φ∗n(x′)V(x − x′) (4.105)

is the matrix element of the interaction between the two particle states |lm〉 and |pn〉.

4.7 Equivalence with the Many Body Schroedinger Equation

In this section, we establish that our second-quantized version of the many body Hamiltonian is
indeed equivalent to the many-body Schroedinger equation. Let us start with the Hamiltonian for
an interacting gas of charged particles,
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H =

Ho︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷
∑

σ

∫

x
ψσ
†
[
−
!2∇2

2m
+ U(x) − µ

]
ψσ(x)+

V̂︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷
1
2

∑

σσ′

∫

x,x′
V(x − x′) : ρ̂(x)ρ̂(x′) : . (4.106)

where
∫
x ≡

∫
d3x, and by convention, we work in the Grand Canonical ensemble, subtracting the

term µN from the Schrödinger Hamiltonian HS , H = HS − µN. For a Coulomb interaction

V(x − x′) =
e2

4πεo|x − x′|
(4.107)

but the interaction might take other forms, such as the hard-core interaction between neutral atoms
in liquid He-3 and He-4.

The equation of motion of the field operator is

i!
∂ψσ
∂t
= −[H, ψσ]. (4.108)

Using the relations

[ψσ′ †(x′)Ox′ψσ′(x′), ψσ(x)] = −δσσ′δ3(x − x′)Oxψσ(x),
: [ρ(x1)ρ(x2), ψσ(x)] : = : [ρ(x1), ψσ(x)]ρ(x2) : + : ρ(x1)[ρ(x2), ψσ(x)] :

= −δ3(x1 − x)ρ(x2)ψσ(x) − δ3(x2 − x)ρ(x1)ψσ(x)

we can see that the comutators of the one- and two-particle parts of the Hamiltonian with the field
operator are

−[Ho, ψσ(x)] =
[
−
!2∇2

2m
+ U(x) − µ

]
ψσ(x)

−[V, ψσ(x)] =
∫

d3x′V(x′ − x)ρ(x′)ψσ(x) (4.109)

The final equation of motion of the field operator thus resembles a one-particle Schrodinger equa-
tion.

i!
∂ψσ
∂t
=

[
−
!2∇2

2m
+ U(x) − µ

]
ψσ(x) +

∫
d3x′V(x′ − x)ρ(x′)ψσ(x) (4.110)

If we now apply this to the many body wavefunction, we obtain

i!
∂Ψ(1, 2, . . .N)

∂t
= i!

∑

r=1,N
〈0|ψ(1) . . .

∂ψ(r)
∂t
. . . ψ(N)|Ψ〉

=
∑

j

[
−
!2∇2

j

2m
+ U(x j) − µ

]
Ψ
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+
∑

j

∫
d3x′V(x′ − x j)〈0|ψ(1) . . . ρ(x′)ψσ(x j) . . . ψ(N)|Ψ〉

By commuting the density operator to the left, until it annihilates with the vacuum, we find that

〈0|ψ(1) . . . ρ(x′)ψσ(x j) . . . ψ(N)|Ψ〉 =
∑

l< j
δ3(x′ − xl)〈0|ψ(1) . . . ψ(N)|Ψ〉 (4.111)

so that the final expression for the time evolution of the many body wavefunction is precisely the
same as we obtain in a first quantized approach.

i!
∂Ψ

∂t
=



∑

j
H (o)

j +
∑

l< j
V jl


Ψ (4.112)

Our second-quantized approach has the advantage that it builds in the exchange statistics, and it
does not need to make an explicit reference to the many body wavefunction.

4.8 Identical Conserved Particles in Thermal Equilibrium

4.8.1 Generalities

By quantizing the particle field, we have been led to a version of quantum mechanics with a vastly
expanded Hilbert space which includes the vacuum and all possible states with an arbitrary number
of particles. An exactly parallel development occurs in statistical thermodynamics, in making the
passage from a canonical, to a grand canonical ensemble, where systems are considered to be in
equilibrium with a heat and particle bath. Not surprisingly then, second quantization provides a
beautiful way of treating a grand canonical ensemble of identical particles.

When we come to treat conserved particles in thermal equilibrium, we have to take into the
account the conservation of two independent quantities

• Energy. E

• Particle number. N

Statistical mechanics usually begins with an ensemble of identical systems of definite particle num-
ber and energy E and N respectively. (More precisely, particle number and energy lying in the
narrow ranges [N,N + dN] and [E, E + dE], respectively). Such an ensemble is called a “mi-
crocanonical ensemble”. This is a confusing name, because it suggests something “small”, yet
typically, a microcanonical ensemble is an ensemble of identical, macroscopic systems that play
the role of a heat bath[8, 9, 10, 11]. The ergodic hypothesis of statistical mechanics assumes that
in such an ensemble, all accesible quantum states within this narrow band of allowed energies and
particle number are equally probable (“equal à priori probability”).

Now suppose we divide the system into two parts - a vast “heat bath” and a tiny sub-system,
exchanging energy and particles, as shown in Fig. 4.2 until they reach a state of thermal equilibrium.
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Figure 4.2: Illustrating equilibrium between a small system and a large heat bath. Inset illustrates
how the number of states with energy Eλ, particle number Nλ is proportional to the density of states
in the big system.

In the vast heat and particle bath, the energy levels are so close together, that they form a continuum.
The density of states per unit energy and particle number is taken to be W(E′,N′), where E′ is the
energy and N′ the number of particles in the bath. When the system is in a quantum state |λ〉
with energy Eλ, particle number Nλ, the large system has energy E′ = E − Eλ, particle number
N′ = N − Nλ.

Assuming equal à priori probability, the probability that the small system is in state |λ〉 is pro-
portional to the number of states W(E,N) of the heat bath with energy E − Eλ and particle number
N − Nλ,

p(Eλ,Nλ) ∝ W(E − Eλ,N − Nλ) = elnW(E−Eλ,N−Nλ). (4.113)

Now following Boltzmann, we can tentatively identify W(E,N) with the entropy S (E,N) of the
heat bath, (see exercise 4.4) according to the famous formula

S B(E,N) = kB lnW(E,N) (4.114)
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where we have included the subscript B to delineate the heat bath. It follows that

p(Eλ,Nλ) ∝ exp
[

1
kB
S B(E − Eλ,N − Nλ)

]
(4.115)

Now Eλ and Nλ are tiny perturbations to the total energy and particle number of the heat bath, so
we may approximate S (E − Eλ,N − Nλ) by a linear expansion,

S B(E − Eλ,N − Nλ) = S B(E,N) − Eλ
∂S B
∂E
− Nλ

∂S B
∂N
+ . . . . (4.116)

Now according to thermodynamics dE = TdS + µdN where T and µ are the temperature and
chemical potential, respectively, so that dS B = 1

T dE −
µ
T dN, allowing us to identify

1
kB
∂S B
∂E

=
∂lnW
∂E

=
1
kBT

≡ β,

1
kB
∂S B
∂N

=
∂lnW
∂N

= −
µ

kBT
≡ −µβ. (4.117)

These are the Lagrange multipliers associated with the conservation of energy and particle number1.
Once we have made this expansion, it follows that the probability to be in state |λ〉 is

pλ =
1
Z
e−β(Eλ−µNλ), (4.118)

where the normalizing partition function is Z =
∑
λ e−β(Eλ−µNλ).

To recast statistical mechanics in the language of many body theory, we need to rewrite the
above expression in terms of operators. Let us begin with the partition function, which we may
rewrite as

Z =
∑

λ

e−β(Eλ−µNλ)

=
∑

λ

〈λ|e−β(Ĥ−µN̂)|λ〉 = Tr[e−β(Ĥ−µN̂)]. (4.119)

Although we started with the eigenstates of energy and particle number, the invariance of the trace
under unitary transformations ensures that this final expression is independent of the many body
basis.

Next, we cast the expectation value 〈Â〉 in a basis-independent form. Suppose the quantity A,
represented by the operator Â, is diagonal in the basis of energy eigenstates |λ〉, then the expectation
value of A in the ensemble is

〈A〉 =
∑

λ

pλ〈λ|Â|λ〉 = Tr[ρ̂Â]. (4.120)

1Incidentally, if you are uncomfortable with the use of classical thermodynamics to identify these quantities in terms
of the temperature and chemical potential, you may regard these assignments as tentative, pending calculations of physical
properties that allow us to definitively identify them in terms of temperature and chemical potential.

76



bk.pdf June 28, 2011 39

c©2011 Piers Coleman Chapter 4.

Here we have elevated the probability distribution pλ to an operator- the Boltzmann density matrix:

ρ̂ =
∑

λ

|λ〉pλ〈λ| = Z−1e−β(Ĥ−µN̂) (4.121)

This derivation of (4.120) assumed that Â could be simultaneously diagonalized with the energy and
particle number. However, quantum statistical mechanics, makes the radical assertion that (4.120)
holds for all quantum operators Â representing observables, even when the operator Â does not
commute with Ĥ or N̂, and is thus not diagonal in the energy and particle number basis.

4.8.2 Identification of the Free energy: Key Thermodynamic Properties

There are a number of key thermodynamic quantities of great interest: the energy E, the particle
number N, the entropy S and the Free energy F = E − ST − µN. One of the key relations from
elementary thermodynamics is that

dE = TdS − µdN − PdV (4.122)

By putting F = E − TS − µN, dF = dE − dTS − S dT − µdN − Ndµ, one can also derive

dF = −S dT − Ndµ − PdV (4.123)

a relationship of great importance.
The energy and particle number can be easily written in the language of second-quantization as

E = Tr[Ĥρ̂],
N = Tr[N̂ρ̂], (4.124)

but what about the entropy? From statistical mechanics, we know that the general expression for
the entropy is given by

S = −kB
∑

λ

pλlnpλ (4.125)

Now since the diagonal elements of the density matrix are pλ, we can rewrite this expression as

S = −kBTr[ρ̂lnρ̂] (4.126)

If we substitute lnρ̂ = −β(Ĥ − µN̂) − lnZ into this expression, we obtain

S =
1
T

Trρ̂(H − µN) + kBlnZ

=
1
T

(E − µN) + kBlnZ (4.127)
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i.e −kBT lnZ = E − ST − µN, from which we identify

F = −kBT lnZ (4.128)

as the Free energy. Summarizing these key relationships all together, we have
Thermodynamic Relations

F = −kBT lnZ, Free energy

Z = Tr[e−β(Ĥ−µN̂)], Partition function

ρ̂ =
e−β(Ĥ−µN̂)

Z
, Density Matrix

N = Tr[N̂ρ̂] = −∂F∂µ Particle number
S = −kBTr[ρ̂lnρ̂] = −∂F∂T Entropy
P = −∂F∂V , Pressure

E − µN = Tr[(Ĥ − µN̂)ρ̂],= −∂ lnZ
∂β Energy

Notice how, in this way, all the key thermodynamic properties can be written as appropriate deriva-
tives of Free energy.

Example 4.7: (i) Enumerate the energy eigenstates of a single fermion Hamiltonian.

H = εc†c (4.129)

where {c, c†} = 1, {c, c} = {c†, c†} = 0.
(ii) Calculate the number of fermions at temperature T .
Solution (i) The states of this problem are the vacuum state and the one-particle state

|0〉 E = 0,
|1〉 = c†|0〉, E = ε.

(4.130)

(ii) The number of fermions at temperature T is given by

〈n̂〉 = Tr[ρ̂n̂] (4.131)

where n̂ = c†c,
ρ = e−β(Ĥ−µN̂)/Z (4.132)

is the density matrix, and where
Z = Tr[e−β(H−µN)] (4.133)
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is the “partition function”. For this problem, we can write out the matrices explicitly.

e−βH =
[
1 0
0 e−β(ε−µ)

]
, n̂ =

[
0 0
0 1

]
(4.134)

so that
Z = 1 + e−β(ε−µ) (4.135)

and
Tr[n̂e−βH] = e−β(ε−µ) (4.136)

The final result is thus
〈n̂〉 =

e−β(ε−µ)

1 + e−β(ε−µ)
=

1
eβ(ε−µ) + 1

(4.137)

which is the famous Fermi-Dirac function for the number of fermions in a state of energy ε,
chemical potential µ.

4.8.3 Independent Particles

In a system of independent particles with many energy levels, ελ each energy level can be regarded
as an independent member of a microcanonical ensemble. Formally, this is because the Hamiltonian
is a sum of independent Hamiltonians

H − µN =
∑

λ

(ελ − µ)n̂λ (4.138)

so that the partition function is then a product of the individual partition functions:

Z = Tr[
∏

λ ⊗
e−β(ελ−µ)n̂λ] (4.139)

and since the trace of an (exterior) product of matrices, is equal to the product of their individual
traces, (Tr

∏
λ⊗ =

∏
λ Tr),

Z =
∏

λ

Tr[e−β(ελ−µ)n̂λ] =
∏

λ

Zλ (4.140)

Since

Zλ =
{

1 + e−β(ελ−µ) Fermions
1 + e−β(ελ−µ) + e−2β(ελ−µ) + . . . = (1 − e−β(ελ−µ))−1 Bosons (4.141)

The corresponding Free energy is given by

F = ∓kBT
∑

λ

ln[1 ± e−β(ελ−µ)],
{

f ermions
bosons (4.142)
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The occupancy of the l th level is independent of all the other levels, and given by

〈n̂l〉 = Tr[ρ̂n̂l] = Tr[(
∏

⊗
ρ̂λ)n̂l]

=
∏

λ!l

=1︷︸︸︷
Tr[ρλ]×Tr[ρln̂l] =

1
eβ(εl−µ) ± 1

(4.143)

where (+) refers to Fermions and (−) to bosons.
In the next chapter, we shall examine the consequences of these relationships.

4.9 Exercises
1. In this question ci† and ci are fermion creation and annihilation operators and the states are fermion

states. Use the convention
|11111000 . . .〉 = c5

†c4
†c3
†c2
†c1
†|vacuum〉.

(a) Evaluate c3
†c6c4c6

†c3|111111000 . . .〉.
(b) Write |1101100100 . . .〉 in terms of excitations about the “filled Fermi sea” |1111100000 . . .〉 .

Interpret your answer in terms of electron and hole excitations.
(c) Find 〈ψ|N̂ |ψ〉 where |ψ〉 = A|100〉 + B|111000〉, N̂ =

∑
i ci†ci.

2. (a) (a) Consider two fermions, a1 and a2. Show that the Boguilubov transformation

c1 = ua1 + va†2
c†2 = −va1 + ua†2 (4.144)

where u and v are real, preserves the canonical anti-commutation relations if u2 + v2 = 1.
(b) Use this result to show that the Hamiltonian

H = ε(a†1a1 − a2a2
†) + ∆(a†1a†2 + H.c.) (4.145)

can be diagonalized in the form

H =
√
ε2 + ∆2(c†1c1 + c†2c2 − 1) (4.146)

(c) What is the ground-state energy of this Hamiltonian?
(d) Write out the ground-state wavefunction in terms of the original operators c1

† and c2
† and their

corresponding vacuum |0〉, (c1,2|0〉 = 0).

3. Consider a system of fermions or bosons, created by the field ψ†(r) interacting under the potential

V(r) =
{
U, (r < R),
0, (r > R), (4.147)

(a) Write the interaction in second quantized form.
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(b) Switch to the momentum basis, where ψ(r) =
∫

d3k
(2π)3 ckeik·r. Verify that [ck, c†k′ ]± = (2π)3δ(3)(k−

k′) and write the interaction in this new basis. Please sketch the form of the interaction in mo-
mentum space.

4. (a) Show that for a general system of conserved particles at chemical potential, the total particle
number in thermal equilibrium can be written as

N = −∂F/∂µ (4.148)

where

F = −kBT lnZ
Z = Tr[e−β(Ĥ−µN)]. (4.149)

(b) Apply this to a single bosonic energy level, where

H − µN = (ε − µ)a†a (4.150)

and â† creates either a Fermion, or a boson, to show that

〈n̂〉 =
1

eβ(ε−µ) − 1
(4.151)

Why does µ have to be negative positive for bosons?

5. (Equivalence of the microcanonical and Gibb’s ensembles for large systems.)
In a microcanonical ensemble, the density matrix can be given by

ρ̂M =
1
W
δ(E − Ĥ)δ(N − N̂)

where E and N are the energy and particle number respectively, while

W ≡ W(E,N) = Tr
[
δ(E − Ĥ)δ(N − N̂)

]

is the “density of states” at energy E, particle number N. This normalizing quantity plays a role similar
to the partition function in the Gibb’s ensemble.

(a) By rewriting the delta functions inside the above trace W as an inverse Laplace transforms, such
as

δ(x − Ĥ) =
∫ β0+i∞

β0−i∞

dβ
2πi

e−β(x−Ĥ),

and evaluating the resulting integrals at the saddle point of the integrand, show that for a large
system W is related to the entropy by Boltzmann’s relation

S (E,N) = kB lnW(E,N).

(b) Using your results, show that in a large system, the expectation value of an operator is the same
for corresponding Gibb’s and microcanonical ensembles, namely

〈A〉 = Tr[ρMÂ] = Tr[ρBÂ]

where ρ̂B = Z−1e−β(H−µN̂)|β=β0,µ=µ0 is the Boltzmann density matrix evaluated at the saddle point
values of β0 and µ0,

β0 =
∂ lnW
∂E
, µ0 = β

−1
0
∂ lnW
∂N

.
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Chapter 5

Simple Examples of Second-quantization

In this section, we give three examples of the application of second quantization, mainly to non-
interacting systems.

5.1 Jordan Wigner Transformation

A “non-interacting” gas of Fermions is still highly correlated: the exclusion principle introduces a
“hard-core” interaction between fermions in the same quantum state. This feature is exploited in
the Jordan -Wigner representation of spins. A classical spin is represented by a vector pointing in a
specific direction. Such a representation is fine for quantum spins with extremely large spin S, but
once the spin S becomes small, spins behave as very new kinds of object. Now their spin becomes
a quantum variable, subject to its own zero-point motions. Furthermore, the spectrum of excitations
becomes discrete or grainy.

Quantum spins are notoriously difficult objects to deal with in many-body physics, because they
do not behave as canonical fermions or bosons. In one dimension however, it turns out that spins
with S = 1/2 actually behave like fermions. We shall show this by writing the quantum spin-1/2
Heisenberg chain as an interacting one dimensional gas of fermions, and we shall actually solve the
limiting case of the one-dimensional spin-1/2 x-y model.

Jordan and Wigner observed[1] that the down and up state of a single spin can be thought of as
an empty or singly occupied fermion state, (Fig. 5.1.) enabling them to make the mapping

| ↑〉 ≡ f †|0〉, | ↓〉 ≡ |0〉. (5.1)

.
An explicit representation of the spin raising and lowering operators is then

S + = f † =
[
0 1
0 0

]

S − = f ≡
[
0 0
1 0

]
(5.2)
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f

µBB

S=1/2

f

n  = 1

n  = 0

Figure 5.1: Showing how the “up” and “down” states of a spin-1/2 can be treated as a one particle
state which is either full, or empty.

The z component of the spin operator can be written

S z =
1
2

[
| ↑〉〈↑ | − | ↓〉〈↓ |

]
≡ f † f −

1
2

(5.3)

We can also reconstruct the transverse spin operators,

S x =
1
2

(S + + S −) =
1
2

( f † + f ),

S y =
1
2i

(S + − S −) =
1
2i

( f † − f ), (5.4)

The explicit matrix representation of these operators makes it clear that they satisfy the same algebra

[S a, S b] = iεabcS c. (5.5)

Curiously, due to a hidden supersymmetry, they also satisfy an anti-commuting algebra

{S a, S b} =
1
4
{σa, σb} =

1
2
δab, (5.6)

and in this way, the Pauli spin operators provided Jordan and Wigner with an elementary model of
a fermion.

Unfortunately the represeentation needs to be modified if there is more than one spin, for in-
dependent spin operators commute, but independent fermions anticommute! Jordan and Wigner
discovered a way to fix up this difficulty in one dimension by attaching a phase factor called a
“string” to the fermions[1]. For a chain of spins in one dimension, the Jordan Wigner representation
of the spin operator at site j is defined as

S +j = f j†eiφ j (5.7)
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where the phase operator φ j contains the sum over all fermion occupancies at sites to the left of j,

φ j = π
∑

l< j
n j (5.8)

The operator eiφ̂ j is known as a “string operator”.
The complete transformation is then

S zj = f † j f j − 1
2 ,

S +j = f † jeiπ
∑
l< j nl ,

S −j = f je−iπ
∑
l< j nl




Jordan Wigner transformation (5.9)

(Notice eiπn j = e−iπn j is a Hermitian operator so that overall sign of the phase factors can be reversed
without changing the spin operator.) In words:

Spin = Fermion × string.

The important property of the string, is that it anticommutes with any fermion operator to the
left of its free end. To see this, note first that is that the operator eiπn j anticommutes with the fermion
operator f j. This follows because f j reduces n j from unity to zero, so that f j eiπn j = − f j whereas
eiπn j f j = f j. from which it follows that

{eiπn j , f j} = eiπn j f j + f eiπn j = f j − f j = 0 (5.10)

and similarly, from the conjugate of this expression {eiπn j , f † j} = 0. Now the phase factor eiπnl at
any other site l ! j commutes with f j and f †j , so that the string operator eiφ̂ j anticommutes with all
fermions at all sites to the “left” of j l < j:

{eiφ j , f (†)
l } = 0, (l < k)

whilst commuting with fermions at all other sites l ≥ j,

[eiφ j , f (†)
l ] = 0, (l ≥ k).

We now can verify that the transverse spin operators satisfy the correct commutation algebra.
Suppose j < k, then eiφ j commutes with fermions at site j and k so that

[S (±)
j , S

(±)
k ] = [ f (†)

j eiφ j , f (†)
k eiφk ] = eiφ j[ f (†)

j , f
(†)
k eiφk ]

But f (†)
j antcommutes with both f (†)

k and eiπφk so it commutes with their product f (†)
k eiφk ], and hence

[S (±)
j , S

(±)
k ] ∝ [ f (†)

j , f
(†)
k eiφk ] = 0. (5.11)

So in this way, we see that by multiplying a fermion by the string operator, it is transformed into a
kind of boson.
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As an example of the application of this method, we shall now discuss the one-dimensional
Heisenberg model

H = −J
∑

[S xjS
x
j+1 + S

y
jS

y
j+1] − Jz

∑

j
S zjS

z
j+1 (5.12)

In real magnetic systems, local moments can interact via ferromagnetic, or antiferromagnetic in-
teractions. Ferromagnetic interactions generally arise as a result of “direct exchange” in which the
Coulomb repulsion energy is lowered when electrons are in a triplet state, because the wavefunc-
tion is then spatially antisymmetric. Antiferromagnetic interactions are generally produced by the
mechanism of “double exchange”, in which electrons on neighbouring sites that form singlets (“an-
tiparallel spin”) lower their energy through virtual virtual quantum fluctuations into high energy
states in which they occupy the same orbital. Here we have written the model as if the interactions
are ferromagnetic.

For convenience, the model can be rewritten as

H = −
J
2

∑
[S +j+1S

−
j + H.c] − Jz

∑

j
S zjS

z
j+1 (5.13)

To fermionize the first term, we note that all terms in the strings cancel, except for a eiπn j which has
no effect,

J
2

∑

j
S +j+1S

−
j =

J
2

∑

j
f j+1

†eiπn j f j =
J
2

∑

j
f j+1

† f j (5.14)

so that the transverse component of the interaction induces a “hopping” term in the fermionized
Hamiltonian. Notice that the string terms would enter if the spin interaction involved next-nearest
neighbors. The z-component of the Hamiltonian becomes

−Jz
∑

j
S zj+1S

z
j = −Jz

∑

j
(n j+1 −

1
2

)(n j −
1
2

) (5.15)

Notice how the Ferromagnetic interaction means that spin-fermions attract one-another. The trans-
formed Hamiltonian is then

H = −
J
2

∑

j
( f † j+1 f j + f † j f j+1) + Jz

∑

j
n j − Jz

∑

j
n jn j+1. (5.16)

Interestingly enough, the pure x-y model has no interaction term in it, so this this case can be
mapped onto a non-interacting fermion problem, a discovery made by Lieb, Schulz and Mattis in
1961[2].

To write out the fermionized Hamiltonian in its most compact form, let us transform to momen-
tum space, writing

f j =
1
√
N

∑

k
skeikR j (5.17)
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where s†k creates a spin excitation in momentum space, with momentum k. In this case, the one-
particle terms become

Jz
∑

j
n j = Jz

∑

k
s†k sk.

−
J
2

∑

j
( f † j+1 f j + H.c) = −

J
2N

∑

k
(e−ika + eika)s†k sk′

Nδkk′︷!!!!!!!!!!︸︸!!!!!!!!!!︷∑

j
e−i(k−k

′)Rj

= −J
∑

k
cos(ka)s†k sk. (5.18)

The anisotropic Heisenberg Hamiltonian can thus be written

H =
∑

k
ωk s†k sk − Jz

∑

j
n jn j+1 (5.19)

where

ωk = (Jz − J cos ka) (5.20)

defines a magnon excitation energy, and the second interaction term is still written in the position
basis. We can easily cast the second-term in momentum space, by noticing that the interaction is
a function of i − j which is −Jz/2 for i − j = ±1 but zero otherwise.The Fourier transform of this
short-range interaction is V(q) = −Jz cos qa, so that Fourier transforming the interaction term gives

H =
∑

k
ωk s†k sk −

Jz
Ns

∑

k,k′,q
cos(qa) s†k−qs†k′+qsk′ sk. (5.21)

This transformation holds for both the ferromagnet and antiferromagnet. In the former case, the
fermionic spin excitations correspond to the magnons of the ferromagnet. In the latter case, the
fermionic spin excitations are often called “spinons”.

To see what this Hamiltonian means, let us first neglect the interactions. This is a reasonable
thing to do in the limiting cases of (i) the Heisenberg Ferromagnet, Jz = J and (ii) the x-y model
Jz = 0 .

• Heisenberg Ferromagnet. Jz = J
In this case, the spectrum

ωk = 2J sin2(ka/2) (5.22)

is always positive, so that there are no magnons present in the ground-state. The ground-state
thus contains no magnons, and can be written

|0〉 = | ↓↓↓ . . .〉 (5.23)

corresponding to a state with a spontaneous magnetization M = −Ns/2.
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Heisenberg Ferromagnet

0 k

k

mode
Goldstone

−π/a π/a

2J

ωk

Figure 5.2: Excitation spectrum of the one dimensional Heisenberg Ferromagnet.

Curiously, since ωk=0 = 0, it costs no energy to add a magnon of arbitrarily long wavelength.
This is an example of a Goldstone mode, and the reason it arises, is because the spontaneous
magnetization could actually point in any direction. Suppose we want to rotate the magneti-
zation through an infinitesimal angle δθ about the x axis, then the new state is given by

|ψ〉′ = eiδθS x | ↓↓ . . .〉
= | ↓↓ . . .〉 + i

δθ

2

∑

j
S +j | ↓↓ . . .〉 + O(δθ2) (5.24)

The change in the wavefunction is proportional to the state

S +TOT | ↓↓ . . . 〉 ≡
∑

j
f j†eiφ j |0〉

=
∑

j
f j†|0〉 =

√
Nss†k=0|0〉 (5.25)

In otherwords, the action of adding a single magnon at q = 0, rotates the magnetization
infinitesimally upwards. Rotating the magnetization should cost no energy, and this is the
reason why the k = 0 magnon is a zero energy excitation.

• x-y Ferromagnet. As Jz is reduced from J, the spectrum develops a negative part, and magnon
states with negative energy will become occupied. For the pure x − y model, where Jz = 0,
the interaction identically vanishes, and the excitation spectrum of the magnons is given by
ωk = −J cos ka as sketched in Fig. 5.3. All the negative energy fermion states with |k| < π/2a
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x−y Ferromagnet

particles

states
Occupied

holes

J

−π/a π/a0
−J

ωk

0

k

π/2a −π/2a

Figure 5.3: Excitation spectrum of the one dimensional x-y Ferromagnet, showing how the negative
energy states are filled, the negative energy dispersion curve is “folded over” to describe the positive
hole excitation energy.

are occupied, so the ground-state is given by

|Ψg〉 =
∏

|k|<π/2a
s†k|0〉 (5.26)

The band of magnon states is thus precisely half-filled, so that

〈S z〉 = 〈n f −
1
2
〉 = 0 (5.27)

so that remarkably, there is no ground-state magnetization. We may interpret this loss of
ground-state magnetization as a consequence of the growth of quantum spin fluctuations in
going from the Heisenberg, to the x-y ferromagnet.

Excitations of the ground-state can be made, either by adding a magnon at wavevectors
|k| > π/2a, or by annihilating a magnon at wavevectors |k| < π/2a, to form a “hole”. The
energy to form a hole is −ωk. To represent the hole excitations, we make a “particle-hole”
transformation for the occupied states, writing

s̃k =
{

sk, (|k| > π/2a),
s†−k, (|k| < π/2a) (5.28)

These are the “physical” excitation operators. Since s†k sk = 1− sks†k, the Hamiltonian of the
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pure x-y ferromagnet can be written

Hxy =
∑

k
J| cos ka|(s̃†k s̃k −

1
2

) (5.29)

Notice that unlike the pure Ferromagnet, the magnon excitation spectrum is now linear. The
ground-state energy is evidently

Eg = −
1
2

∑

k
J| cos ka|

= −
a
2

∫ π/2a

−π/2a

dk
2π
J cos(ka) = −

J
π
. (5.30)

But if there is no magnetization, why are there zero-energy magnon modes at q = ±π/a?
Although there is no true long-range order, it turns out that the spin-correlations in the x-y
model display power-law correlations with an infinite spin correlation length, generated by
the gapless magnons in the vicinity of q = ±π/a.

5.2 The Hubbard Model

In real electronic systems, such as a metallic crystal at first sight it might appear to be a task of
hopeless complexity to model the behavior of the electron fluid. Fortunately, even in complex
systems, at low energies only a certain subset of the electronic degrees of freedom are excited. This
philosophy is closely tied up with the idea of renormalization- the idea that the high energy degrees
of freedom in a system can be successively eliminated or “integrated out” to reveal an effective
Hamiltonian that describes the important low energy physics. One such model, which has enjoyed
great success, is the Hubbard model, first introduced in the early sixties by Hubbard, Gutzwiller and
Kanamori[3, 4? ].

Suppose we have a lattice of atoms where electrons are almost localized in atomic orbitals at
each site. In this case, we can use a basis of atomic orbitals. The operator which creates a particle
at site j is

c† jσ =
∫

d3xΦ(x − R j)ψ†(x)σ (5.31)

where Φ(x) is the wavefunction of a particle in the localized atomic orbital. In this basis, the Hamil-
tonian governing the motion, and interactions between the particles can be written quite generally
as

H =
∑

i, j
〈i|Ho| j〉c†iσc jσ +

1
2

∑

lmnp
〈lm|V |pn〉c†lσc†mσ′cnσ′cpσ (5.32)

where 〈i|Ho| j〉 is the one-particle matrix element between states i and j, and 〈lm|V |pn〉 is the inter-
action matrix element between two-particle states |lm〉 and |pn〉.

92



bk.pdf June 28, 2011 47

c©2011 Piers Coleman Chapter 5.

E

U

U

U 2E + Uψ(  )

t

r
V(r)

E

r

Figure 5.4: Illustrating the Hubbard Model. When two electrons of opposite spin occupy a single
atom, this gives rise to a Coulomb repulsion energy U. The amplitude to hop from site to site in the
crystal is t.

Let us suppose that the energy of an electron in this state is ε. If this orbital is highly localized,
then the amplitude for it to tunnel or “hop” between sites will decay exponentially with distance
between sites, and to a good approximation, we can eliminate all but the nearest neighbor hopping.
In this case, the one-particle matrix elements which govern the motion of electrons between sites
are then

〈 j|H(o)|i〉 =




ε j = i
−t i, j nearest neighbors
0 otherwise

(5.33)

The hopping matrix element between neigboring states will generally be given by an overlap integral
of the wavefunctions with the negative crystalline potential, and for this reason, it is taken to be be
negative. Now the matrix element of the interaction between electrons at different sites will be given
by

〈lm|V |pn〉 =
∫

x,x′
Φ∗l (x)Φp(x)Φ

∗
m(x′)Φ∗n(x′)V(x − x′), (5.34)

but in practice, if the states are well localized, this will be dominated by the onsite interaction
between two electrons in a single orbital, so that we may approximate

〈lm|V |pn〉 =
{
U l = p = m = n
0 otherwise (5.35)
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In this situation, the interaction term in (5.32) simplifies to

U
2

∑

j,σσ′
c† jσc† jσ′c jσ′c jσ = U

∑

j
n j↑n j↓, (5.36)

where the exclusion principle (c2
jσ = 0) means that the interaction term vanishes unless σ σ′ are

opposite spins. The Hubbard model can be thus be written

H = −t
∑

j,â,σ
[c† j+âσc jσ + H.c] + ε

∑

jσ
c† jσc jσ + U

∑

j
n j↑n j↓, (5.37)

where n jσ = c† jσc jσ represents the number of electrons of spin σ at site j. For completeness, let us
rewrite this in momentum space, putting

c jσ =
1
√
Ns

∑

k
ckσeik·R j (5.38)

whereupon

H =
∑

kσ
εkc†kσckσ +

U
Ns

∑

q,k,k′
c†k−q↑c†k′+q↓ck′↓ck↑ (5.39)

Hubbard model

where

εk =
∑

i
〈 j + Ri|Ho| j〉eik·Ri

= −2t(cos kx + cos ky + cos kz) + ε (5.40)

is recognized as the kinetic energy of the electron excitations which results from their coherent
hopping motion from site to site. We see that the Hubbard model describes a band of electrons with
kinetic energy εk, and a momentum independent “point” interaction of strength U between particles
of opposite spin.
Remark

• This model has played a central part in the theory of magnetism, metal-insulator transitions,
and most recently, in the description of electron motion in high temperature superconductors.
With the exception of one dimensional physics, we do not, as yet have a complete under-
standing of the physics that this model can give rise to. One prediction of the Hubbard model
which is established, is that under certain circumstance, if interactions become too large the
electrons become localized to form what is called “Mott insulator”. This typically occurs
when the interactions are large and the number of electrons per site is close to one. What is
very unclear at the present time, is what happens to the Mott insulator when it is doped, and
there are many who believe that a complete understanding of the doped Mott insulator will
enable us to understand high temperature superconductivity.
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5.3 Non-interacting particles in thermal equilibrium
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Figure 5.5: Contrasting the ground-states of non-interacting Fermions and non-interacting Bosons.
Fermions form a degenerate Fermi gas, with all one-particle states below the Fermi energy individ-
ually occupied. Bosons form a Bose Einstein condensate, with a macroscopic number of bosons in
the zero momentum state.

Before we start to consider the physics of the interacting problem, let us go back and look at the
ground-state properties of free particles. What is not commonly recognized, is that the ground-state
of non-interacting, but identical particles is in fact, a highly correlated many body state. For this
reason, the non-interacting ground-state has a robustness that does not exist in its classical counter-
part. In the next chapter, we shall embody some of these thoughts in by considering the action of
turning on the interactions adiabatically. For the moment however, we shall content ourselves with
looking at a few of the ground-state properties of non-interacting gases of identical particles.

In practice, quantum effects will influence a fluid of identical particles at the point where their
characteristic wavelength is comparable with the separation between particles. At a temperature
T the rms momentum of particles is given by p2

RMS = 3mkBT , so that characteristic de Broglie
wavelength is given by

λT =
h

√
p2
RMS

=
h

√
3mkBT

(5.41)
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so that when λT ∼ ρ−1/3, the characteristic temperature is of order

kBT ∗ ∼
!2ρ2/3

2m
(5.42)

Below this temperature, identical particles start to interfere with one-another, and a quantum-
mechanical treatment of the fluid becomes necessary. In a Fermi fluid, exclusion statistics tends
to keep particles apart, enhancing the pressure, whereas for a Bose fluid, the correlated motion of
particles in the condensate tends to lower the pressure, ultimately causing it to vanish at the Bose
Einstein condensation temperature. In electron fluids inside materials, this characteristic tempera-
ture is two orders of magnitude larger than room temperature, which makes the electricity one of
the most dramatic examples of quantum physics in everyday phenomena!

5.3.1 Fluid of non-interacting Fermions

The thermodynamics of a fluid of fermions leads to the concept of a “degenerate Fermi liquid”, and
it is important in a wide range of physical situations, such as

• The ground-state and excitations of metals.

• The low energy physics of liquid Helium 3.

• The degenerate Fermi gas of neutrons, electrons and protons that lies within a neutron star.

The basic physics of each of these cases, can to a first approximation be described by a fluid of
non-interacting Fermions, with Hamiltonian

H = HS − µN =
∑

σ

(Ek − µ)c†kσckσ (5.43)

Following the general discussion of the last section, the Free energy of such a fluid of fermions is is
described by a single Free energy functional

F = −kBT
∑

kσ
ln[1 + e−β(Ek−µ)]

= −2kBTV
∫

k
ln[1 + e−β(Ek−µ)] (5.44)

where we have taken the thermodnamic limit, replacing
∑

kσ → 2V
∫

k. By differentiating F with
respect to volume, temperature and chemical potential, we can immediately derive the pressure,
entropy and particle density of this fluid. Let us however, begin with a more physical discussion.

In thermal equilibrium the number of fermions in a state with momentum p = !k is

nk = f (Ek − µ) (5.45)

where

f (x) =
1

eβx + 1
(5.46)
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is the Fermi-Dirac function. At low temperatures, this function resembles a step, with a jump in
occupancy spread over an energy range of order kBT around the chemical potential. At absolute
zero f (x)→ θ(−x), so that the occupancy of each state is given by

nk = θ(µ − Ek) (5.47)

is a step function with an abrupt change in occupation when ε = µ, corresponding to the fact
that states with Ek < µ, are completely occupied, and states above this energy are empty. The
zero-temperature value of the chemical potential is often called the “Fermi energy”. In momentum
space, the occupied states form a sphere, whose radius in momentum space, kF is often refered to
as the Fermi momentum.

The ground-state corresponds to a state where all fermion states with momentum k < kF are
occupied:

|ψg〉 =
∏

kσ
c†kσ|0〉 (5.48)

Excitations above this ground-state are produced by the addition of particles at energies above the
Fermi wavevector, or the creation of holes beneath the Fermi wavevector. To describe these excita-
tions, we make the following particle-hole transformation

a†kσ =
{

c†kσ (k > kF) particle
σc−k−σ (k > kF) hole (5.49)

Beneath the Fermi surface, we must replace c†kσckσ → 1−a†kσakσ, so that in terms of particle and
hole excitations, the Hamiltonian can be re-written

H − µN =
∑

kσ
|(Ek − µ)|a†kσakσ + Fg (5.50)

where respectively,

Fg =
∑

|k|<kF ,σ
(Ek − µ) = 2V

∫

|k|<kF
(Ek − µ), (5.51)

is the ground-state Free energy, and Eg and N are the ground-state energy and particle number
Notice that

• To create a hole with momentum k and spin σ, we must destroy a fermion with momentum
−k and spin −σ. (The additional multiplying factor of σ in the hole definition is a technical
feature, required so that the particle and holes have the same spin operators.)

• The excitation energy of a particle or hole is given by ε∗k = |Ek−µ|, corresponding to “reflect-
ing” the excitation spectrum of the negative energy fermions about the Fermi energy.
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The ground-state density of a Fermi gas is given by the volume of the Fermi surface, as follows

〈ρ̂〉 =
1
V

∑

kσ
〈c†kσckσ〉 = 2

∫

k<kF

d3k
2π
=

2
(2π)3VFS (5.52)

where

VFS =
4π
3
k3
F =

(
4π
3

) (
2mεF
!2

)3/2
(5.53)

is the volume of the Fermi surface. The relationship between the density of particles, the Fermi
wavevector and the Fermi energy is thus

〈
N̂
V

〉
=

1
3π2 k

3
F =

1
3π2

(
2mεF
!2

)3/2
(5.54)

In an electron gas, where the characteristic density is N/V ∼ 1029m−3 the characteristic Fermi
energy is of order 1eV ∼ 10, 000K. In other words, the characteristic energy of an electron is
two orders of magnitude larger than would be expected classically. This is a stark and dramatic
consequence of the exchange interference between identical particles, and it is one of the great early
triumphs of quantum mechanics to have understood this basic piece of physics.

Let us briefly look at finite temperatures. Here, by differentiating the Free energy with respect
to volume and chemical potential, we obtain

P = −
∂F
∂V
=
−F
V
= 2kBT

∫

k
ln[1 + e−β(Ek−µ)]

N = −
∂F
∂µ
= 2

∫

k
f (Ek − µ) (5.55)

The second equation defines the chemical potential in terms of the particle density at a given temper-
ature. The first equation shows that, apart from a minus sign, the pressure is simply the Free energy
density. These two equations can be solved parametrically as a function of chemical potential. At
high temperatures the pressure reverts to the ideal gas law PV = NkBT , but at low temperatures, the
pressure is determined by the Fermi energy

P = 2
∫

|k|<kF
(µ − Ek)| =

2N
5V
εF (5.56)

The final result is obtained by noting that the first term in this expression is µ(N/V). The first term
contains an integral over d3k ∼ k2 → k3

F/3, whereas the second term contains an integral over
Ekd3k ∼ k4 → k5

F/5, so the second term is 3/5 of the first term. Not surprisingly, this quantity is
basically the density of fermions times the Fermi energy- a pressure that is hundreds of times larger
than the classical pressure in a room temperature electron gas.
Remarks
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• At first sight, it might seem very doubtful as to whether the remarkable features of the de-
generate Fermi gas would survive once interactions are present. In particular, one would be
tempted to wonder whether the Fermi surface would be blurred out by particle-particle inter-
actions. Remarkably, for modest repulsive interactions, the Fermi surface is believed to be
stable in dimensions bigger than one. This is because electrons at the Fermi surface have no
phase space for scattering. This is the basis of Landau’s Fermi liquid Theory of interacting
Fermions.

• In a remarkable result, due to Luttinger and Ward, the jump in the occupancy at the Fermi
wavevector ZkF remains finite, although reduced from unity (ZkF < 1) , in interacting Fermi
liquids.

5.3.2 Fluid of Bosons: Bose Einstein Condensation

(b)(a) (c)

Figure 5.6: Illustrating evaporative cooling in an atom trap. (a) Atoms are held within a magnetic
potential. (b) As the height of the potential well is dropped, the most energetic atoms “evaporate”
from the well, progressively reducing the temperature. (c) A Bose Einstein condensate, with a
finite fraction of the gas in a single momentum state, forms when the temperature drops blow the
condensation temperature.

Bose Einstein condensation was predicted in 1924- the outcome of Einstein extending Bose’s
new calculations on the statistics of a gas of identical bosons. However, it was not until seventy years
later- in 1995, that the groups of Cornell and Wieman[5] and independently that of Ketterle[6], suc-
ceeded in cooling a low density gas of atoms - initially rubidium and sodium atoms - through the
Bose Einstein transition temperature. The closely related phenomenon of superfluidity was first
observed in the late 30’s by Kapitza. Superfluidity results from a kind of Bose-Einstein condensa-
tion, in a dense quantum fluid, where interactions between the particles become important. In the
modern context, ultra cold, ultra-dilute gases of alkali atoms are contained inside a magnetic atom
trap, in which the Zeeman energy of the atoms, spin-aligned with the magnetic field, confines them
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to the region of highest field[7]. Lasers are used to precool a small quantity of atoms inside a mag-
netic trap using a method known as “Doppler cooling”, in which the tiny “blue shift” of the laser
light seen by atoms moving towards a laser causes them to selectively absorb photons, which are
then re-emitted in a random direction, a process which gradually slows them down, reducing their
average temperature. Doppler pre-cooling cools the atoms to about 10-100µK. The second stage in-
volves “Evaporative cooling”, a process in which the most energetic atoms are allowed to evaporate
out of the well while systematically lowering the height of the well. As the well-height drops, the
temperature of the gas plumits down to the nano-Kelvin range required to produce Bose-Einstein
condensation (or Fermi liquid formation) in these gases.

To understand the phenomenon of BEC, conside the density of gas of bosons, which at a finite
temperature takes almost precisely the same form as for fermions

ρ =

∫

k

1
eβ(Ek−µ) − 1

(5.57)

where we have written the expression for spinless bosons, as would be the case for a gas of liquid
Helium-4, or ultra-dilute Potassium atoms, for instance. But there is a whole world of physics in the
innocent minus sign in the denominator! Whereas for fermions, the chemical potential is positive,
the chemical potential for bosons is negative. For a gas at fixed volume , the above expression (5.57)
thus defines the chemical potential µ(T ). By changing variables, writing

x = βEk = β
!2k2

2m
,

(
m
β!2

)
dx = kdk

d3k
(2π)3 →

4πk2dk
(2π)3 =

1
√

2π2

(
m
β!2

)3/2 √
xdx (5.58)

we can rewrite the Boson density in the form

ρ =
2
√
πλ̃3

T

∫ ∞

0
dx
√
x

1
ex−βµ − 1

(5.59)

where

λ̃T =

(
2π!2

mkBT

)1/2

(5.60)

is a convenient definition of the thermal de Broglie wavelength In order to maintain a fixed density,
as one lowers the temperature, the chemical potential µ(T ) must rise. At a certain temperature, the
chemical potential becomes zero, ρ(T, µ = 0) = N/V At this temperature,

(
λ̃T
a

)3
=

2
√
π

∫ ∞

0
dx
√
x

1
ex − 1

= ζ(
3
2

) = 2.61 (5.61)

where a = ρ−1/3 is the interparticle spacing. The corresponding temperature

kBTo = 3.31
(
!2

ma2

)
(5.62)
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is the Bose-Einstein condensation temperature.
Below this temperature, the number of Bosons in the k = 0 state becomes macroscopic, i.e.

nε=0 =
1

e−βµ − 1
= No(T ) (5.63)

becomes a finite fraction of the total particle number. Since No(T ) is macroscopic, it follows that

µ

kBT
= −

1
No(T )

(5.64)

is infinitesimally close to zero. For this reason, we must be careful to split off the k = 0 contribution
to the particle density, writing

N = No(T ) +
∑

k!0
nk (5.65)

and then taking the thermodynamic limit of the second term. For the density, this gives

ρ =
N
V
= ρ0(T ) +

∫

k

1
eβ(Ek) − 1

(5.66)

The the second term is proportional to λ̃T−3 ∝ T 3/2. Since the first term vanishes at T = To,
it follows that below the Bose Einstein condensation temperature, the density of bosons in the
condensate is thus given by

ρo(T ) = ρ

1 −

(
T
To

)3/2 (5.67)

Remarks

• The Bose Einstein Condensation is an elementary example of a second-order phase transition.

• Bose Einstein condensation is an example of a broken symmetry phase transition. It turns out
that the same phenomenon survives in a more robust form, if repulsive interactions between
the Bosons are present. In the interacting Bose Einstein Condensate, the field operator ψ(x)
for the bosons actually acquires a macroscopic expectation value

〈ψ(x)〉 = √ρoeiφ(x) (5.68)

In a non-interacting Bose condensate, the phase φ(x) lacks rigidity, and does not have a well-
defined meaning. In an interacting condensate, the phase φ(x) is uniform, and gradients of
the phase result in a superflow of particles- a flow of atoms which is completely free from
viscosity.
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Example 5.1: In a laser-cooled atom trap, atoms are localized in a region of space through
the Zeeman energy of interaction between the atomic spin and the external field. As the field
changes direction, the “up” and “down” spin atoms adiabatically evolve their orientations to
remain parallel with the magnetic field, and the trapping potential of the “up” spin atoms is
determined by the magnitude of the Zeeman energy V(x) = gµBJB(x), which has a parabolic
form

V(x) =
m
2

[
ω2
xx2 + ω2

yy2 + ω2
z z2

]

Show that the fraction of bosons condensed in the atom trap is now given by

N0(T )
N
= 1 −

(
T
TBE

)3

.

Solution: In the atom trap, one particle states of the atoms are Harmonic oscillator states with
energy Elmn = !(lωx + mωy + nωz) (where the constant has been omitted). In this case, the
number of particles in the trap is given by

N =
∑

l,m,n

1
eβElmn − 1

The summation over the single-particle quantum numbers can be converted to an integral over
energy, provided the condensate fraction is split off the sum, so that

∑

lmn

1
eβElmn − 1

= N0(T ) +
∫

dEρ(E)
1

eβE − 1
,

where N0 is the number of atoms in the condensate and

ρ(E) =
∑

lmn, (Elmn!0)
δ(E − Elmn)

is the density of states. By converting this sum to an integral we obtain

ρ(E) =

∫
dldmdnδ(E − Elmn)

=

∫ dExdEydEz
!ωx!ωy!ωz

δ(Ex + Ey + Ez − E)

=
1

(!ω̃)3

∫ E

0
dEx

∫ Ex

0
dEy =

E2

2(!ω̃)3 . (ω̃ = (ωxωyωz)1/3)

The quadratic dependence of this function on energy replaces the square-root dependence of
the corresponding quantity for free Bosons. The number of particles outside the condensate is
proportional to T 3,

∫
dEρ(E)

1
eβE − 1

=
T 3

2(!ω̃)3

2ζ3︷!!!!!!!!!︸︸!!!!!!!!!︷∫
dx

x2

ex − 1
= N

(
T
TBE

)3

where kBTBE = !ω̃(N/ζ3)1/3, so that the condensate fraction is now given by

N0(T )
N
= 1 −

(
T
TBE

)3

.
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Figure 5.7: Pressure dependence in a Fermi or Bose gas, where temperature is measured in units of
kBT0 = !

2/ma2 Showing P/nkB

Example 5.2: Using the results of the previous section, show that the ideal gas law is modified
by the interference between identical particles, so that

P = nkBTF ±(µ/kBT ) (5.69)

where n is the number density of particles, F ±(z) = g±(z)/h±(z) and

g±(z) = ±
∫ ∞

0
dx
√
xln[1 ± e−(x−z)]

h±(z) =

∫ ∞

0
dx
√
x

1
e(x−z) ± 1

(5.70)

where the upper sign refers to fermions, the bottom to bosons. Sketch the dependence of pres-
sure on temperature for a gas of identical bosons and a gas of identical fermions with the same
density.
Solution: Let us begin by deriving an explicit expression for the Free energy of a free gas of
fermions, or bosons. We start with

F = ∓(2S + 1)kBTV
∫

k
ln[1 ± e−β(Ek−µ)] (5.71)
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where S is the spin of the particle. Making the change of variables,

x = βEk = β
!2k2

2m
,

d3k
(2π)3 →

2
λ̃3
T
√
π

√
xdx (5.72)

where λ̃T =
√

2π!2/(mkBT ) is the rescaled Thermal de Broglie wavelength, we obtain

F = ∓(2S + 1)kBT
V
λ̃3
T

2
√
π

∫
dx
√
xln[1 ± e−(x+µβ)] (5.73)

Taking the derivative with respect to volume, and chemical potential, we obtain the following
results for the Pressure and the particle density.

P = −
∂F
∂V
= ±(2S + 1)

kBT
λ̃3
T

2
√
π

∫
dx
√
xln[1 ± e−(x−µβ)]

n = −
∂F
V∂µ

=
(2S + 1)
λ̃3
T

2
√
π

∫
dx
√
x

1
e(x−µβ) ± 1

(5.74)

Dividing the pressure by the density, we obtain the quoted result for the ideal gas.
To plot these results, it is convenient to rewrite the temperature and pressure in the form

T = To[h±(µβ)]−2/3

P
nkBT0

=
g±(µβ)

[h±(µβ)]5/3 , (5.75)

where kBTo = !2

ma2 , permitting both the pressure and the temperature to be plotted parametrically
as a function of µβ. Fig 5.7 shows the results of such a plot.

5.4 Exercises
1. (a) Use the Jordan Wigner transformation to show that the one dimensional anisotropic XY model

H = −
∑

j
[J1S x( j)S x( j + 1) + J2S y( j)S y( j + 1)] (5.76)

can be written as

H = −
∑

j
[t(d† j+1d j + H.c) + ∆(d† j+1d† j + H.c)] (5.77)

where t = 1
4 (J1 + J2) and ∆ = 1

4 (J2 − J1).
(b) Calculate the excitation spectrum for this model and sketch your results. Comment specifically

on the two cases J1 = J2 and J2 = 0.
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Figure 5.8: Phase diagram of transverse field Ising model. See problem 5.3

2. The 1D transverse field Ising model provides the simplest example of a “quantum phase transition”: a
phase transition induced by quantum zero point motion (Fig.5.8). This model is written

H = −J
∑

j
S z( j)S z( j + 1) − h

∑

j
S x( j),

where S z is the z-component of a spin 1/2, while the the magnetic field h acts in the transverse (x)
direction. ( For convenience, one can assume periodic boundary conditions, with Ns sites, so that
j = Ns + 1 ≡ j = 0.) At h = 0, the model describes a 1D Ising model, with long-range ferromagnetic
order associated with a two fold degenerate ferromagnetic ground state,

|Ψ↑〉 = |

or
|Ψ↓〉 = | ↓1〉| ↓2〉 . . . | ↓Ns〉.

A finite transverse field mixes “up” and “down” states, and for infinitely large h, the system has a
single ground-state, with the spins all pointing in the x direction,

|Ψ→〉 =
∏

j=1,Ns

(
| ↑ j〉 + | ↓ j〉
√

2

)
.

In other words, there is thus a quantum phase transition- a phase transition driven by quantum fluc-
tuations, between these the doubly degenerate ferromagnet at small h and a singly degenerate state
polarized in the x direction at large h.
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(a) By rotating the above model so that the magnetic field acts in the +x direction and the Ising
interaction acts on the spins in the x direction, the transverse field Ising model can be re-written
as

H = −J
∑

j
S x( j)S x( j + 1) − h

∑

j
S z( j),

(b) Use the Jordan Wigner transformation to show that the fermionized version of this Hamiltonian
can be written

H =
J
4

∑

j
( f j − f † j)( f j+1 + f † j+1) − h

∑

j
f † j f j. (5.78)

(c) Writing f j = 1√
Ns

∑
k dkeikRj , where Rj = a j, show that H can be rewritten in momentum space

as
H =

∑

k∈[0,π/a]

[
εk(d†kdk − d−kd†k) + i(∆d†kd†−k − d−kdk)

]
(5.79)

where the sum over k = 2π
Nsa (1, 2 . . .Ns/2) ∈ [0, πa ] is restricted to half the Brillouin zone, while

εk = − J
2 cos ka − h and ∆k = J

2 sin ka.
(d) Using the results of Ex 4.2, show that the spectrum of the excitations are described by “Dirac

fermions” with a dispersion

Ek =
√
ε2k + ∆

2
k =

√
2Jh sin2(ka) + (h − J/2)2

so that gap in the excitation spectrum closes at h = hc = 2J. What is the significance of this
field?

3. Consider the non-interacting Hubbard model for next nearest neighbor hopping on a two dimensional
lattice

H − µN = −t
∑

j,â=x̂,ŷ,σ
[c† j+âσc jσ + H.c] − µ

∑

jσ
c† jσc jσ

where n jσ = c† jσc jσ represents the number of electrons of spin component σ = ±1/2 at site j.

(a) Show that the dispersion of the electrons in the absence of interactions is given by

ε(%k) = −2t(cos kxa + cos kya) − µ

where a is the distance between sites, and %k = (kx, ky) is the wavevector.
(b) Derive the relation between the number of electrons per site ne and the area of the Fermi surface.
(c) Sketch the Fermi surface when

i. ne < 1.
ii. “half filling” where ne = 1

(d) The corresponding interacting Hubbard model, with an interaction term Un↑n↓ at each site de-
scribes a class of material called “Mott insulators”, which includes the mother compounds for
high temperature superconductors. What feature of the Fermi surface at half-filling makes the
non-interacting ground-state unstable to spin density wave formation and the development of a
gap around the Fermi surface ?
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(e) Derive the dispersion for the case when, in the one-particle Hamiltonian there is an additional
next-nearest neighbor hopping matrix element of strength across the diagonal, −t′. (Hint: use
the Fourier transform of t(R), given by t(%k) =

∑
%R t(%R)e−i%k·%R). How does this affect the dispersion

at half filling?

Figure 5.9: Honeycomb structure of graphene. See Problem 5.3

4. Electrons on graphene move on a Honeycomb lattice as shown in Fig. (5.9). The vertices of each unit
cell form a triangular lattice of side length a, located at positions ri = ma+nb, where a = a

( √
3

2 î + 1
2 ĵ

)

and b = a
( √

3
2 î − 1

2 ĵ
)

are the lattice vectors. There are two atoms per unit cell, labelled “A” and “B”.
In a simplified model of graphene, electrons can occupy π orbitals at either the A or the B sites, with a
tight-binding hopping matrix element −t between neighboring sites.

(a) Construct a tight-binding model for graphene. For simplicity, ignore the spin of the electron.
Suppose the creation operator for an electron in the A or B orbital in the “i”th cell is ψ†A(ri),
where Show that the tight-binding Hamiltonian can be written in the form

H = −t
∑

j

{[
ψ†B(ri) + ψ†B(ri + a) + ψ†B(ri + b)

]
ψA(ri) + H.c

}
− µ

∑

i
(nA(i) + nB(i))

(b) By transforming to momentum space, writing c†kλ =
1√
Ns

∑
j ψ
†
λ(i)eik·r j , where λ = A, B and Ns

is the number of unit cells in the crystal, show that the Hamiltonian can be written

H =
∑

k

(
c†kA, c†kB

) [ −µ ∆(k)
∆∗(k) −µ

] (
ckA
ckB

)

where
∆(k) = −t(1 + eik·a + eik·b)

with energy eigenstates
E(k) = ±|∆(k)| − µ.
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(c) Show that E(k) = 0 at two points in the Brillouin zone where k · a = −k · b = ± 2π
3 , given by

k = ±K

where K = 4π
3
√

3a
î.

(d) By expanding around k = ±K + p, showing that when p is small, ∆p±K = c̃(px ± ipy), where
c̃ =

√
3

2 at is a “renormalized” speed of light. By defining a spinor for the two cones

ψp+ =

(
cp+KA
cp+KB

)
, ψp− =

(
cp−KB
cp−KA

)
,

show that the Hamiltonian can be written as a Dirac equation

H =
∑

pλ=±
ψ†pλ

(
%σ · p − µ1)ψpλ

where %σ is a Pauli pseudo-spin matrix acting in the two-component sublattice space, so that
when µ = 0, the excitation spectrum is defined by two Dirac cones with E(p) = ±c̃p.
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Chapter 6

Green’s Functions

Ultimately, we are interested in more than just free systems. We should like to understand what
happens to our system as we dial up the interaction strength from zero, to its full value. We also
want to know response of our complex system to external perturbations, such as an electromagnetic
field. We have to recognize that we can not, in general expect to diagonalize the problem of interest.
We do not even need interactions to make the problem complex: a case in interest is a disordered
metal, where we our interest in averaging over typically disordered configurations introduces effects
reminiscent of interactions, and can even lead to new kinds of physics, such as electron localization.
We need some general way of examinining the change of the system in response to these effects
even though we can’t diagonalize the Hamiltonian.

In general then, we will be considering problems where we introduce new terms to a non-
interaction Hamiltonian, represented by V . The additional term might be due to

• External electromagnetic fields, which modify the Kinetic energy in the Hamiltonian as fol-
lows

−
!2

2m
∇2 → −

!2

2m

(
∇ − i

e
!

A
)2

(6.1)

• Interactions between particles.

V̂ =
1
2

∫
d1d2ψ†(1)ψ†(2)ψ(2)ψ(1) (6.2)

• A random potential

V̂ =
∫

d1V(1)ρ(1) (6.3)

where V(x) is a random function of position.

One of the things we would like to do, is to examine what happens when the change in the Hamil-
tonian to small enough to be considered a perturbation. Even if the term of interest is not small, we
can still try to make it small by writing

H = Ho + λV̂ (6.4)
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Figure 6.1: “Dialing up the interaction”. Motivating the need to be able to treat perturbations to a
non-interacting Hamiltonian by dialing up the strength of the perturbation.

This is a useful excercise, for it enables us to consider the effect of adiabatically dialing up the
strength of the additional term in the Hamiltonian from zero, to its full value, as illustrated in
fig6.1. This is a dangerous procedure, but sometimes it really works. Life is interesting, because in
macroscopic systems the perturbation of interest often leads to an instability. This can sometimes
occur for arbitrarily small λ. Othertimes, when the instability occurs when the strength of the new
term reaches some critical value λc. When this happens, the ground-state can change. If the change
is a continuous one, then the point where the instability develops is a Quantum Critical Point, a
point of great interest. Beyond this point, for λ > λc, if we are lucky, we can find some new starting
H′o = Ho + ∆H, V̂ ′ = V̂ − ∆H. If H′o is a good description of the ground-state, then we can once
again apply this adiabatic procedure, writing,

H = H′o + λ′V̂ ′ (6.5)

If a phase transition occurs, then H′o will in all probability have display a spontaneous broken sym-
metry. The region of Hamiltonian space where H ∼ H′o describes a new phase of the system, and
H′o is closely associated with the notion of a “fixed point” Hamiltonian.

All of this discussion motivates us developing a general perturbative approach to many body
systems, and this rapidly leads us into the realm of Green’s functions and Feynman diagrams. A
Green’s function describes the elementary correlations and responses of a system. Feynman dia-
grams are a way of graphically displaying the scattering processes that result from a perturbation.
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6.1 Interaction representation

Up until the present, we have known two representations of quantum theory- the Schrödinger repre-
sentation, where it is the wavefunction that evolves, and the Heisenberg, were the operators evolve
and the states are stationary. We are interested in observable quantities more than wavefunctions,
and so we aspire to the Heisenberg representation. In practice however, we always want to know
what happens if we change the Hamiltonian a little. If we change Ho to Ho + V , but we stick to the
Heisenberg representation for Ho, then we are now using the “interaction” representation.

Table. 5.1. Representations .

Representation States Operators

Schrödinger Change rapidly Os- operators constant

i ∂∂t |ψS (t)〉 = H|ψS (t)〉

Heisenberg Constant Evolve

−i∂OH(t)
∂t = [H,OH(t)]

Interaction States change slowly Evolve according to Ho

H = Ho + V i ∂∂t |ψI(t)〉 = VI(t)|ψI(t)〉 −i∂OI (t)
∂t = [Ho,OI(t)]

Let us now examine the interaction representation in greater detail. In the discussion that fol-
lows, we simplify the notation by taking taking ! = 1. We begin by writing the Hamiltonian as two
parts H = Ho + V . States and operators in this representation are defined as

|ψI(t)〉 = eiHot|ψS (t)〉,

OI(t) = eiHotOS e−iHot




Removes rapid state evolution due to Ho (6.6)

The evolution of the wavefunction is thus

|ψI(t)〉 = U(t)|ψI(0)〉,

U(t) = eiHote−iHt


 (6.7)

or more generally,

|ψI(t)〉 = S (t, t′)|ψI(t′)〉,
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S (t) = U(t)U†(t′) (6.8)

The time evolution of U(t) can be derived as follows

i
∂U
∂t

= i
(
∂eiHot

∂t

)
e−iHt + ieiHot

(
∂e−iHt

∂t

)

= eiHot(−Ho + H)e−iHt

= [eiHotVe−iHot]U(t)

= VI(t)U(t) (6.9)

so that

i
∂S (t2, t1)
∂t1

= V(t2)S (t2, t1) (6.10)

where from now on, all operators are implicitly assumed to be in the interaction representation.
Now we should like to exponentiate this time-evolution equation, but unfortunately, the operator

V(t) is not constant, and furthermore, V(t) at one time, does not commute with V(t′) at another time.
To overcome this difficulty, Schwinger invented a device called the “time-ordering operator”.

Time ordering operator Suppose {O1(t1),O2(t2) . . .ON(tN)} is a set of operators at different
times {t1, t2 . . . tN}. If P is the permutation that orders the times, so that tP1 > tP2 . . . tPN , then if
the operators are entirely bosonic, containing an even number of fermionic operators,the time
ordering operator is defined as

T
[
O1(t1)O2(t2) . . .ON(tN)

]
= OP1 (tP1 )OP2 (tP2 ) . . .OPN (tPN ) (6.11)

For later use, we note that if the operator set contains fermionic operators, composed of an odd
number of fermionic operators, then

T
[
F1(t1)F2(t2) . . . FN(tN)

]
= (−1)PFP1 (tP1 )FP2 (tP2 ) . . . FPN (tPN ) (6.12)

where P is the number of pairwise permutations of fermions involved in the time ordering
process.

Suppose we divide the time interval [t1, t2], where t2 > t1 into N identical segments of period
∆t = (t2 − t1)/N, where the time at the midpoint of the nth segment is τn = t1 + (n − 1

2 )∆t. The
S-matrix can be written as a product of S-matrices over each intermediate time segment, as follows:

S (t2, t1) = S (t2, τN − ∆t2 )S (τN−1 +
∆t
2 , τN−1 − ∆t2 ) . . . S (τ1 + ∆t2 , t1) (6.13)

Provided N is large, then over the short time interval ∆t, we can approximate

S (τ + ∆t2 , τ −
∆t
2 ) = e−iV(τ)∆t + O(1/N2) (6.14)
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Figure 6.2: Each contribution to the time-ordered exponential corresponds to the amplitude to follow
a particular path in state space. The S-matrix is given by the limit of the process where the number
of time segments is sent to infinity.

so that we can write

S (t2, t1) = e−iV(τN )∆te−iV(τN−1)∆t . . . e−iV(τ1)∆t + O(1/N) (6.15)

Using the time-ordering operator, this can be written

S (t2, t1) = T
[ N∏

j=1
e−iV(τ j)∆t] + O(1/N) (6.16)

The beauty of the time-ordering operator, is that even though A(t1) and A(t′) don’t commute, we can
treat them as commuting operators so long as we always time-order them. This means that we can
write

T [eA(t1)eA(t2)] = T [eA(t1)+A(t2)] (6.17)

because in each time-ordered term in the Taylor expansion, we never have to commute operators,
so the algebra is the same as for regular complex numbers. With this trick, we can write,

S (t2, t1) = LimN→∞T
[
e−i

∑
j V(τ j)∆t] (6.18)
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The limiting value of this time-ordered exponential is written as

S (t2, t1) = T
[
exp

{
−i

∫ t2

t1
V(t)dt

}]
, Time-ordered exponential (6.19)

This is the famous time-ordered exponential of the interaction representation.
Remarks

• The time-ordered exponential is intimately related to Feynman’s notion of the path integral.
The time-evolution operator S (τ j + ∆τ/2, τ j − ∆τ/2) = S f r(τ j) across each segment of time
is a matrix that takes one from state r to state f . The total time evolution operator is just a
matrix product over each intermediate time segment. Thus the amplitude to go from state i at
time t1 to state f at time t2 is given by

S f i(t2, t2) =
∑

path={p1,...pN1 }

S f ,pN−1 (τN) . . . S p2p1 (τ2)S p1i(τ1) (6.20)

Each term in this sum is the amplitude to go along the path of states

path i → f : i→ p1 → p2 → . . . pN−1 → f . (6.21)

The limit where the number of segments goes to infinity is a path integral.

• One can formally expand the time-ordered exponential as a power series, writing,

S (t2, t1) =
∑

n=0,∞

(−i)n

n!

∫ t2

t1
dτ1 . . . dτnT [V(τ1) . . .V(τn)] (6.22)

The nth term in this expansion can be simply interpreted as the amplitude to go from the
initial, to the final state, scattering n times off the perturbation V . This form of the S-matrix is
very useful in making a perturbation expansion. By explicitly time-ordering the n − th term,
one obtains n! identical terms, so that

S (t2, t1) =
∑

n=0,∞
(−i)n

∫ t2

t1, {τn>τn−1···>τ1}
dτ1 . . . dτnV(τn) . . .V(τ1) (6.23)

This form for the S-matrix is obtained by iterating the equation of motion,

S (t2, t1) = 1 − i
∫ t2

t1
dτV(τ)S (τ, t1) (6.24)

which provides an alternative derivation of the time-ordered exponential.
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6.1.1 Driven Harmonic Oscillator

To illustrate the concept of the time-ordered exponential, we shall show how it is possible to evaluate
the S-matrix for a driven harmonic oscillator, where H = Ho + V(t),

Ho = ω(b†b +
1
2

)
V(t) = z̄(t)b + b†z(t)




(6.25)

Here the forcing terms are written in their most general form. z(t) and z̄(t) are forces which “create”
and “annihilate” quanta respectively. A conventional force in the Hamiltonian, H = Ho − f (t)x̂
gives rise to a particular case, where z̄(t) = z(t) = (1/2mω) 1

2 f (t). We shall show that if the forcing
terms are zero in the distant past and distant future and the system is initially in the ground-state,
the amplitude to stay in this state is

〈0|Te−i
∫ ∞
−∞ dt[z̄(t)b(t)+b†(t)z(t)]|0〉 = exp

[
−i

∫ ∞

−∞
dtdt′z̄(t)G(t − t′)z(t′)

]
. (6.26)

where G(t − t′) = −iθ(t − t′)e−iω(t−t′) is our first example of a one particle “Green’s function”. The
importance of this result, is that we have a precise algebraic result for the response of the ground-
state to an arbitrary force term. Once we know the response to an arbitrary force, we can, as we
shall see, deduce the n-th ordered moments, or correlation functions of the Bose fields.

Remarks:

• The time-ordered exponential is an example of a “functional”: a quantity which is a function
of a function (in this case, z(t) and z̄(t)). With this result we can examine how the ground-state
responds to an arbitrary external force. The quantity G(t − t′) which determines the response
of the ground-state to the forces, z(t) and z̄(t), is called the “one particle Green’s function”,
defined by the relation

G(t − t′) = −i〈0|Tb(t)b†(t′)|0〉. (6.27)

We may confirm this relation by expanding both sides of (6.26) to first order in z̄ and z. The
left hand side gives

1 + (−i)2
∫

dtdt′z̄(t)〈0|Tb(t)b†(t′)|0〉.z(t′) + O(z̄2, z2) (6.28)

whereas the right-hand side gives

1 − i
∫

dtdt′z̄(t)G(t − t′)z(t′) + O(z̄2, z2) (6.29)

By comparing the coefficients, we are able to confirm the above relation.
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• By expanding the time-ordered exponential as a power-series in z and z̄, we find that the n-th
order term is

(−i)n

n!

∫ ∞

−∞

∏

r=1,n
dtrdt′rz̄(tr)z(t′r) × coeff (6.30)

where

coeff = G(1, . . . n; 1′ . . . n′) = (−i)n〈0|Tb(1) . . . b(n)b†(n′) . . . b†(1′)|0〉 (6.31)

is called the n-particle Green’s function. Here we have used the conventient notation r ≡ tr,
r′ ≡ t′r. By expanding the right-hand-side, we find that the corresponding coefficient of z and
z̄ is given by the sum over all possible ways of connecting initial times {r′} with final times
{r} by a single-particle Green’s function,

G(1, . . . n; 1′ . . . n′) =
∑

P

∏

r
G(r − P′r), (6.32)

a result known as Wick’s theorem. It is a remarkable property of non-interacting systems, that
the n-particle Green’s functions are determined entirely in terms of the one-particle Green
functions. In (6.32) each destruction event at time tr ≡ r is paired up with a corresponding
creation event at time t′Pr ≡ P′r. The connection between these two events is often called a
“contraction”, denoted as follows

= G(r − P′r) × (−i)n−1〈0|T . . . |0〉 (6.33)

Notice that since particles are conserved, we can only contract a creation operator with a
destruction operator. According to Wick’s theorem, the expansion of the n-particle Green
function in (6.31) is carried out as a sum over all possible contractions, denoted as follows

G(1 . . . n′) =
∑

P
G(1 − P′1)G(2 − P′2) . . .G(r − P′r) . . .

=
∑

P

... ... ...
(6.34)

Physically, this result follows from the identical nature of the bosonic quanta or particles.
When we take the n particles out at times t1 . . . tn, there is no way to know in which order
we are taking them out. The net amplitude is the sum of all possible ways of taking out the
particles- This is the meaning of the sum over permutations P.
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• This result can be generalized to an arbitrary number of oscillators by replacing (z, z̄) →
(zr, z̄r), whereupon

〈 0|T exp
[
−i

∫ ∞

−∞
dt[z̄r(t)br(t) + br†(t)zr(t)]

]
|0〉

= exp
[
−i

∫ ∞

−∞
dtdt′z̄r(t)Grs(t − t′)zs(t′)

]
(6.35)

where now, Grs(t − t′) = −i〈0|Tbr(t)b†s(t′)|0〉 = −iδrsθ(t − t′)e−iωr(t−t
′), and summation over

repeated indices is implied. This provides the general basis for Wick’s theorem.

• The concept of a generating functional can also be generalized to Fermions, with the proviso
that now we must use replace (z, z̄) by anticommuting numbers (η, η̄).

Proof: To demonstrate this result, we need to evaluate the time ordered exponential

〈 0 |T exp
[
−i

∫ t2

−t1
dt[z̄(t)b(t) + b†(t)z(t)]

]
|0〉 (6.36)

where b(t) = beiωt and b†(t) = b†eiωt. To evaluate this integral, we divide up the interval t ∈ (t1, t2)
into N segments, t ∈ (τ j − ∆τ/2, τ j + ∆τ j) of width ∆τ = (t2 − t1)/N and write down the discretized
time-ordered exponential as

S N = eAN−A
†
N × . . . eAr−A

†
r × . . . eA1−A†1 (6.37)

where we have used the short-hand notation,

Ar = −iz̄(τr)b(τr)∆τ,
A†r = ib†(τr)z(τr)∆τ (6.38)

To evaluate the ground-state expectation of this exponential, we need to “normal” order the exponen-
tial, bringing the terms involving annihilation operators eAr to the right-hand side of the expression.
To do this , we use the result

eα+β = eβeαe[α,β]/2 (6.39)

to separate eAr−A†r → e−A†r eAre−[Ar ,A†r]/2, and the related result

eαeβ = eβeαe[α,β] (6.40)

to commute the eAr to the right, past terms of the form e−A† s , eAre−A† s = e−A† seAre−[Ar ,A† s]. These
expressions hold if [α, β] commutes with α and β 1 . We observe that in our case,

[Ar, A†s] = ∆τ2z̄(τr)z(τs)e−iω(τr−τs) (6.41)
1To prove this result consider f̂ (x) = exα̂eβ̂e−xα̂. First, d f /dx = exα̂[α̂, eβ̂]e−xα̂. By expanding eβ̂ as a power series,

one can confirm that [α̂, eβ̂] = [α̂, β̂]eβ̂, provided [α̂, β̂] commutes with β̂. It follows that d f /dx = exα̂[α̂, β̂]eβ̂e−xα̂. Now
provided [α̂, β̂] also commutes with α̂, then exα̂[α̂, β̂] = [α̂, β̂]exα̂, so it follows that d f /dx = [α̂, β̂] f (x). Since [α̂, β̂]
commutes with with f [x], the solution to this equation is simply f [x] = ex[α̂,β̂] f [0] = ex[α̂,β̂]eβ̂. Setting x = 1, it follows
that f (1) = eα̂eβ̂e−α̂ = e[α̂,β̂]eβ̂, from which eαeβ = eβeαe[α,β].
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is a c-number, so we can use the above theorem. We first normal order each term in the product,
writing eAr−A†r = e−A†r eAre−[Ar ,A†r]/2 so that

S N = e−A
†
N eAN . . . e−A

†
1eA1e−

∑
r[Ar ,A†r]/2 (6.42)

Now we move the general term eAr to the right-hand side, picking up the residual commutators
along the way to obtain

S N =

:S N :︷!!!!!!!!!!︸︸!!!!!!!!!!︷
e−

∑
r A†r e

∑
r Ar exp

[
−

∑

r≥s
[Ar, A†s](1 −

1
2
δrs)

]
, (6.43)

where the δrs term is present because by Eq. (6.42), we get half a commutator when r = s. The
vacuum expectation value of the first term is unity, so that

S (t2, t1) = lim
∆τ→0

exp
[
−

∑

s≤r
∆τ2z̄(τr)z(τs)e−iω(τr−τs)(1 −

1
2
δrs)

]

= exp
[
−

∫ t2

t1
dτdτ′z̄(τ)θ(τ − τ′)e−iω(τ−τ′)z(τ′)

]
, (6.44)

where the δrs term contributes a term of order ∆τ
∫ t2
t1
dτ|z(τ)|2 O(∆τ) to the exponent that vanishes

in the limit ∆τ→ 0. So placing G(t − t′) = −iθ(τ − τ′)e−iω(τ−τ′),

S (t2, t1) = exp
[
−i

∫ t2

t1
dτdτ′z̄(τ)G(t − t′)z(τ′)

]
(6.45)

Finally, taking the limits of the integral to infinity, we obtain the quoted result.

Figure 6.3: Probability p(T ) for an oscillator to remain in its ground-state after exposure to an
electric field for time T , illustrated for the case V/!ω = 1.
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Example 6.1: A charged particle of charge q, mass m is in the ground-state of a harmonic
potential of characteristic frequency ω. Show that after exposure to an electric field E for a time
T , the probability it remains in the ground-state is given by

p = exp
[
−4g2 sin2(ωT/2)] (6.46)

where the coupling constant

g2 =
Vspring
!ω

(6.47)

is the ratio between the potential energy Vspring = q2E2/(2mω2) stored in a classical spring
stretched by a force qE and the quantum of energy !ω.
Solution: The probability p = |S (T, 0)|2, to remain in the ground-state is the square of the
amplitude

S (T, 0) = 〈φ|Te−
i
!

∫ T
0 V(t)dt |φ〉. (6.48)

Notice, that since we explicitly re-introduced ! ! 1, we must now use
V(t)
!

= −
qE(t)
!

x(t) (6.49)

in the time-ordered exponential, where E(t) is the electric field. Writing x =
√

!

2mω (b + b†), we
can recast V in terms of boson creation and annihilation operators as V(t)/! = z̄(t)b(t)+b†(t)z(t),
where,

z(t) = z̄(t) = −
1
!

√
!

2mω
qE(t) = −

√
Vω
!
θ(t). (6.50)

Here V = q2E2

2mω2 is the potential energy of the spring in a constant field E Using the relationship
derived in (6.45), we deduce that

S (T, 0) = e−iA

where the phase term

A =
∫ T

0
dt1dt2z̄(t1)G(t1 − t2)z(t2)

and G(t) = −ie−iωtθ(t) is the Green function. Carrying out the integral, we obtain

A = −i
Vω
!

∫ T

0
dt

∫ t

0
dt′e−iω(t−t′) = −

VT
!
+

2V
!ω

e−iωT/2 sin
ωT
2

= −
VT
!

[
1 −

sin(ωT )
ωT

]
− i

2V
!ω

sin2
(ωT

2

)
. (6.51)

The real part of A contains a term that grows linearly in time, ReA ∼ −VT/! giving rise to
uniform growth in the phase of S (T ) ∼ eiVT/!|S (T, 0)| that we recognize as a consequence of
the shift in the ground-state energy of the oscillator Eg → !ω

2 − V in the applied field. The
imaginary part determines the probability to remain in the ground-state, which is given by

p = |S (T, 0)|2 = e2Im[A] = exp
(
−

4V
!ω

sin2 ωT
2

)
.

demonstrating the oscillatory amplitude to remain in the ground-state (Fig. 6.3).
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6.2 Green’s Functions
Green’s functions are the elementary response functions of a many body system. The one particle
Green’s function is defined as

Gλλ′(t − t′) = −i〈φ|Tψλ(t)ψ†λ′(t′)|φ〉 (6.52)

where |φ〉 is the many body ground-state, ψλ(t) is the field in the Heisenberg representation and

Tψλ(t)ψ†λ′(t′) =




ψλ(t)ψ†λ′(t′) (t > t′)

±ψ†λ′(t′)ψλ(t) (t < t′) ±
{

Bosons
Fermions

(6.53)

defines the time-ordering for fermions and bosons. Diagramatically, this quantity is represented as
follows

Gλλ′(t − t′) =
λ,t ’λ, t’

(6.54)

Quite often, we shall be dealing with translationally invariant systems, where λ denotes the mo-
mentum and spin of the particle λ ≡ pσ. If spin is a good quantum number, (no magnetic field, no
spin-orbit interactions), then

Gkσ,k′σ′(t − t′) = δσσ′δkk′G(k, t − t′) (6.55)

is diagonal, ( where in the continuum limit, δkk′ → (2π)Dδ(D)(k − k′)). In this case, we denote

G(k, t − t′) = −i〈φ|Tψkσ(t)ψ†kσ(t′)|φ〉 = t’ t
k (6.56)

We can also define Green’s function in co-ordinate space,

G(x − x′, t) = −i〈φ|Tψσ(x, t)ψ†σ(x′, t′)|φ〉 (6.57)

which we denote diagramatically, by

G(x − x′, t) = (x,t) (x’,t’) (6.58)

By writing ψσ(x, t) =
∫

k ψkσei(k·x), we see that the co-ordinate-space Green’s function is just the
Fourier transform of the momentum-space Green’s function:

G(x − x′, t) =
∫

k,k′
ei(k·x−k′·x′)

δkk′G(k,t−t′)︷!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!︷
−i〈φ|Tψkσ(t)ψ†k′σ(0)|φ〉

=

∫
d3k

(2π)3G(k, t)eik·(x−x′) (6.59)

It is also often convenient to Fourier transform in time, so that

G(k, t) =
∫ ∞

−∞

dω
2π
G(k, ω)e−iωt (6.60)
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The quantity

G(k, ω) =
∫ ∞

−∞
dtG(k, t)eiωt

=
k,ω (6.61)

is known as the propagator. We can then relate the Green’s function in co-ordinate space to its
propagator, as follows

−i〈φ|Tψσ(x, t)ψ†σ(x′, t′)|φ〉 =
∫

d3kdω
(2π)4 G(k, ω)ei[(k·(x−x′)−ω(t−t′)] (6.62)

6.2.1 Green’s function for free Fermions

As a first example, let us calculate the Green’s function of a degenerate Fermi liquid of non-
interacting Fermions in its ground-state. We shall take the heat-bath into account, using a Heisen-
berg representation where the heat-bath contribution to the energy is subtracted away, so that

H = Ĥo − µN =
∑

σ

εkc†kσckσ. (6.63)

is the Hamiltonian used in the Heisenberg representation and εk = !
2k2

2m − µ. The ground-state for a
fluid of fermions is given by

|φ〉 =
∏

σ|k|<k f

c†kσ|0〉 (6.64)

In the Heisenberg representation, c†kσ(t) = eiεktc†kσ, ckσ(t) = e−iεktckσ. For forward time propaga-
tion, it is only possible to add a fermion above the Fermi energy, and

〈φ|ckσ(t)c†k′σ′(t′)|φ〉 = δσσ′δkk′e−iεk(t−t′)〈φ|ckσc†kσ|φ〉
= δσσ′δkk′(1 − nk)e−iεk(t−t′) (6.65)

where nk = θ(|kF | − |k|). For backward time propagators, it is only possible to destroy a fermion,
creating a hole, below the Fermi energy

〈φ|c†k′σ′(t′)ckσ(t)|φ〉 = δσσ′δkk′nke−iεk(t−t′) (6.66)

so that
G(k, t) = −i[(1 − nk)θ(t) − nkθ(−t)]e−iεkt (6.67)

can be expanded as

G(k, t) =




−iθ|k|−|kF |e−iεkt (t > 0) “electrons”

iθ|kF |−|k|e−iεkt (t < 0) “holes” : electrons moving backwards in time
(6.68)
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This unification of hole and electron excitations in a single function is one of the great utilities of
the time-ordered Green’s function. 2

Next, let us calculate the Fourier transform of the Green’s function. This is given by

G(k, ω) = −i
∫ ∞

−∞
dtei(ω−εk)t

cnvgnce factor
︷︸︸︷
e−|t|δ

[
θk−kFθ(t) − θkF−kθ(−t)

]

= −i
[ θk−kF
δ − i(ω − εk)

−
θkF−k

δ + i(ω − εk)

]
=

1
ω − εk + iδk

(6.69)

where δk = sign(k − kF). The free fermion propagator is then

G(k, ω) =
1

ω − εk + iδk
=

k,ω (6.70)

The Green’s function contains both static, and dynamic information about the motion of particles in
the many-body system. For example, we can use it to calculate the density of particles in a Fermi
gas

〈ρ̂(x)〉 =
∑

σ

〈ψ†σψσ〉 = −
∑

σ

〈φ|Tψσ(x, 0−)ψ†σ(x, 0)|φ〉

= −i(2S + 1)G(x, 0−)|x=0 (6.71)

where S is the spin of the fermion. We can also use it to calculate the Kinetic energy density, which
is given as follows

〈T̂ (x)〉 = −
!2

2m

∑

σ

〈ψ†σ(x)∇2
xψσ(x)〉 =

!2∇2
x

2m

∑

σ

〈φ|Tψσ(x, 0−)ψ†σ(%x′, 0)|φ〉

∣∣∣∣∣∣∣x−x′=0

= i(2S + 1)
!2∇2

2m
G(x, 0−)

∣∣∣∣∣∣x=0
(6.72)

2According to an aprocryphal story, the relativistic counterpart of this notion, that positrons are electrons travelling
backwards in time, was invented by Richard Feynman while a graduate student of John Wheeler at Princeton. Wheeler
was strict, allowing his graduate students precisely half an hour of discussion a week, employing a chess clock as a timer
at the meeting. Wheeler treated Feynman no differently and when the alloted time was up, he stopped the clock and
announced that the session was over. At their second meeting, Feynman apparently arrived with his own clock, and at the
end of the half hour, Feynman stopped his own clock to announce that his advisor, Wheeler’s time was up. During this
meeting they discussed the physics of positrons and Feynman came up with the idea that that a positron was an electron
travelling backwards in time and that there might only be one electron in the whole universe, threading backwards and
forwards in time. To mark the discovery, at the third meeting Dick Feynman arrived with a modified clock which he had
fixed to start at 30 minutes and run backwards to zero!

124



bk.pdf June 28, 2011 63

c©2011 Piers Coleman Chapter 6.

Example 6.2: By relating the particle density and kinetic energy density to one-particle Green’s
function to the particle density, calculate the particle and kinetic energy density of particles in a
degenerate Fermi liquid.
Solution: We begin by writing 〈ρ̂(x)〉 = −i(2S + 1)G(%0, 0−). Writing this out explicitly we
obtain

〈ρ(x)〉 = (2S + 1)
∫

d3k
(2π)3

[∫
dω
2πi

eiωδ
1

ω − εk + iδk

]
(6.73)

where the convergence factor appears because we are evaluating the Green’s function at a small
negative time −δ. We have explicitly separated out the frequency and momentum integrals.
The poles of the propagator are at ω = εk − iδ if k > kF , but at ω = εk + iδ if k < kF , as
illustrated in Fig. 6.4. The convergence factor means that we can calculate the complex integral
using Cauchy’s theorem by completing the contour in the upper half complex plane, where
the integrand dies away exponentially. The pole in the integral will only pick up those poles
associated with states below the Fermi energy, so that

∫
dω
2πi

eiωδ
1

ω − εk + iδk
= θkF−|k| (6.74)

and hence

ρ = (2S + 1)
∫

k<kF

d3k
(2π)3 = (2S + 1)

VF
(2π)3 (6.75)

In a similar way, the kinetic energy density is written

〈T (x)〉 = (2S + 1)
∫

d3k
(2π)3

!2k2

2m

[∫
dω
2πi

eiωδ
1

ω − εk + iδk

]

= (2S + 1)
∫

k<kF

d3k
(2π)3

!2k2

2m
=

3
5
εFρ (6.76)

6.2.2 Green’s function for free Bosons

As a second example, let us examine the Green’s function of a gas of non-interacting bosons, de-
scribed by

H =
∑

q
ωq[b†qbq +

1
2

] (6.77)

where physical field operator is related to a sum of creation and annihilation operators:

φ(x) =
∫

q
φqeiq·x

φq =

√
!

2mωq
[bq + b†−q] (6.78)
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F(k< k   )

F(k> k   )

k

εkz =     - i δ

z=      i ε  +  δ

Figure 6.4: Showing how the path of integration in (6.74) picks up the pole contributions from the
occupied states beneath the Fermi surface.

Since there are no bosons present in the ground-state, boson destruction operators annihilate the
ground-state |φ〉. The only terms contributing to the Green function are then

−i〈φ|Tbq(t)b†q(0)|φ〉 = −iθ(t)e−iωqt,
−i〈φ|Tb†−q(t)b−q(0)|φ〉 = −iθ(−t)eiωqt, (6.79)

so that

D(q, t) = −i〈φ|φ(q, t)φ(−q, t)|φ〉 = −i !
2mωq

[
θ(t)e−iωqt + θ(−t)eiωqt] (6.80)

If we Fourier transform this quantity, we obtain the boson propgator,

D(q, ν) =
∫ ∞

−∞
dte−δ|t|+iνtD(q, t)

= −i
!

2mωq

[
1

δ − i(ν − ωq)
+

1
δ + i(ν − ωq)

]
(6.81)

or
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D(q, ν) = !

2mωq

[ 2ωq

ν2 − (ωq − iδ)2

]
, Bose propagator (6.82)

Remarks:

• Note that the bose propagator has two poles at ν = ±(ω − iδ). You can think of the bose
propagator as a sum of two terms, one involving a boson emission, that propagates forwards
in time from the emitter, a second involving boson absorption that propagates backwards in
time from the absorber,

D(q, ν) = !

2mωq




emission︷!!!!!!!!!!︸︸!!!!!!!!!!︷
1

ν − (ωq − iδ)
+

absorption
︷!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!︷

1
−ν − (ωq − iδ)




(6.83)

• We shall shortly see that amplitude to absorb and emit bosons by propagating fermions is
directly related to the Boson propagator. For example, when there is an interaction of the
form

Hint = g
∫

d3xφ(x)ρ(x) (6.84)

The exchange of virtual bosons between particles gives rise to retarded interactions,

V(q, t − t′) = g2

!
D(q, t − t′), (6.85)

whereby a passing fermion produces a the potential change in the environment which lasts a
characteristic time ∆τ ∼ 1/ωo where ωo is the characteristic value of ωq. From the Fourier
transform of this expression, you can see that the time average of this interaction, proportional
to D(q, ν = 0) = − !

mω2
q

is negative: i.e. the virtual exchange of a spinless boson mediates an
attractive interaction.

6.3 Adiabatic concept

The adiabatic concept is one of the most valuable concepts in many body theory. What does it mean
to understand a many body problem when we can never, except in the most special cases, expect to
solve the problem exactly? The adiabatic concept provides an answer to this question.

Suppose we are interested in a many body problem with Hamiltonian H, with ground-state |Ψg〉
which we can not solve exactly. Instead we can often solve a simplified version of the many body
Hamiltonian Ho where the ground-state |Ψ̃g〉 has the same symmetry as |Ψg〉. Suppose we start in
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Figure 6.5: Illustrating the evolution of the Hilbert space as the Hamiltonian is adiabatically evolved.
In the first case, the ground-state can be adiabatically evolved all the way to λ = 1. In the second
case, a phase transition occurs at λ = λc, where a previously excited state, with a different symmetry
to the ground-state crosses below the ground-state.

the ground-state |Ψ̃g〉, and now slowly evolve the Hamiltonian from Ho to H, i.e, if V̂ = H −Ho, we
imagine that the state time-evolves according to the Hamiltonian

H(t) = Ho + λ(t)V
λ(t) = e−|t|δ (6.86)

where δ is arbitrarily small.
As we adiabatically evolve the system, the ground-state, and excited states will evolve, as shown

in Fig. 6.5. In such an evolution process, the energy levels will typically show “energy level
repulsion”. If any two levels get too close together, matrix elements between the two states will
cause them to repel one-another. However, it is possible for states of different symmetry to cross,
because selection rules prevent them from mixing. Sometimes, such an adiabatic evolution will lead
to “level crossing”, whereby at λ = λc when some excited state ψr with different symmetry to the
ground-state, crosses to a lower energy than the ground-state. Such a situation leads to “spontaneous
symmetry breaking”. A simple example is when a Ferromagnetic ground-state becomes stabilized
by interactions.

In general however, if there is no symmetry changing phase transition as the interaction V is
turned on, the procedure of adiabatic evolution, can be used to turn on “interactions”, and to evolve
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the ground-state from Ψ̃g to Ψg.
These ideas play a central role in the development of perturbation theory and Feynman diagrams.

They are however also of immense qualitative importance, for the physics of adiabatically related
ground-states is equivalent. Adiabatic evolution defines an equivalence class of ground-states with
the same qualitative physics. The adiabatic principle was first employed with great success in the
fifties. Gell Mann and Low used it to prove their famous relation linking non-interacting, and in-
teracting Green’s functions[1]. Later in the fifties, Landau[2, 3, 4] used the adiabatic idea in a
brilliantly qualitative fashion, to formulate his theory of interacting Fermi liquids, which we exam-
ine in detail in the next chapter.

6.3.1 Gell-Man Low Theorem

Suppose we gradually turn on, and later, gradually turn- off an interaction V so that

V(t) = e−ε|t|V(0) (6.87)

acquires its full magnetitude at t=0 and vanishes in the distant past and in the far-future. The
quantity τA = ε−1 sets the characteristic “switch-on time” for the process. Adiabaticity requires
that we ultimately let ε → 0, sending the switch-on time to infinity τA → ∞. When we start out
at t = −∞, the ground-state is | − ∞〉, and the interaction and Heisenberg representations coincide.
If we now evolve to the present in the Heisenberg representation, the states do not evolve, so the
ground-state is unchanged

|φ〉H ≡ | − ∞〉, (6.88)

and all the interesting physics of the interaction V is encoded in the the operators. We would like to
calculate the correlation or Green’s functions of a set of observables in the fully interacting system.
The Gell-Mann Low theorem enables us to relate the Green’s function of the interacting system to
the Green’s functions of the non-interacting system at t = −∞. The key result is

〈φ|TA(t1)B(t2) . . .R(tr)|φ〉H = 〈+∞|TS [∞,−∞]A(t1)B(t2) . . .R(tr)| − ∞〉I
S [∞,−∞] = T exp

[
−i

∫ ∞

−∞
V(t′)dt′

]
(6.89)

where the subscript H and I indicate that the operators, and states are to be evaluated in the Heisen-
berg and interaction representations, respectively. The state | +∞〉 = S (∞,−∞)| − ∞〉 corresponds
to the ground-state, in the interaction representation in the distant future. If adiabaticity holds, then
the process of slowly turning on, and then turning off the interaction, will return the system to its
original state, up to a phase, so that | +∞〉 = e2iδ| − ∞〉. We can then write e2iδ = 〈−∞|∞〉, so that
so that

〈+∞| = e−2iδ〈−∞| =
〈−∞|

〈−∞| +∞〉
(6.90)
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and the Gell-Mann Low formula becomes

〈φ|TA(t1)B(t2) . . .R(tr)|φ〉H =
〈−∞|TS [∞,−∞]A(t1)B(t2) . . .R(tr)| − ∞〉I

〈−∞|S [∞,−∞]| − ∞〉
(6.91)

Remarks:

• With the Gell-Mann Low relation, we relate the Green’s function of a set of complex operators
in an interacting system, to a Green’s function of a set of simple operators multiplied by the
S-matrix.

• The Gell-Mann Low relation is the starting point for the Feynman diagram expansion of
Green’s functions. When we expand the S-matrix as a power-series in V , each term in the
expansion can be written as an integral over Green’s functions of the non-interacting problem.
Each of these terms corresponds to a particular Feynman diagram.

• When we expand the vacuum expectation value of the S-matrix, we will see that this leads to
“Linked Cluster” diagrams.

Proof: To prove this result, let U(t) = S (t,−∞) be the time-evolution operator for the interaction
representation. Since the interaction, and Heisenberg states coincide at t = −∞, and |ψH〉 does not
evolve with time,

|ψI(t)〉 = U(t)|ψH〉 (6.92)

Since U(t)AH(t)|ψH〉 = AI(t)|ψI(t)〉 = AI(t)U(t)|ψH〉, the relation between operators in the two
representations must be

AH(t) = U†(t)AI(t)U(t) (6.93)

Suppose t1 > t2 > t3 . . . tr, then using this relation we may write

〈φ|A(t1) . . .R(tr)|φ〉H = 〈−∞|U†(t1)AI(t1)

S (t1,t2)︷!!!!!!!!︸︸!!!!!!!!︷
U(t1)U†(t2) . . .

S (tr−1,tr)︷!!!!!!!!!!︸︸!!!!!!!!!!︷
U(tr−1)U†(tr)RI(tr)U(tr)| − ∞〉

where we have identified |φ〉H ≡ |−∞〉. Now S (t1, t2) = U(t1)U†(t2) is the operator that time evolves
the states of the interaction representation, so we may rewrite the above result as

〈0|A(t1) . . .R(tr)|0〉H = 〈−∞|

S †(t1,−∞)︷!︸︸!︷
U†(t1) AI(t1)S (t1, t2) . . . S (tr−1, tr)RI(tr)

S (tr ,−∞)︷︸︸︷
U(tr) | − ∞〉

where we have replaced U(t) → S (t,−∞). Now S (∞, t1)S (t1,−∞)| − ∞〉 = |∞〉 and since S is a
unitary matrix, S †(∞, t1)S (∞, t1) = 1, so multiplying both sides by S †(∞, t1), S (t1,−∞)| − ∞〉 =
S †(∞, t1)|∞〉 and by taking its complex conjugate,

〈−∞|S †(t1,−∞) = 〈∞|S (∞, t1) (6.94)
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Inserting this into the above expression gives,

〈0|A(t1) . . .R(tr)|0〉H = 〈+∞|S (∞, t1)AI(t1)S (t1, t2) . . . S (tr−1, tr)RI(tr)S (tr,−∞)| − ∞〉

Finally, since we assumed t1 > t2 > . . . tr, we can write,

〈φ|T
[
A(t1) . . .R(tr)

]
|φ〉H = 〈+∞|T

[
S (∞,−∞)AI(t1)BI(t2) . . .RI(tr)

]
| − ∞〉 (6.95)

Although we proved this expression for a particular time-ordering, it is clear that if we permute the
operators the time-ordering will always act to time-order both sides, and thus this expression holds
for an arbitary time-ordering of operators.

6.3.2 Generating Function for Free fermions

The generating function derived for the harmonic oscillator can be generalized to free fermions by
the use of “anticommuting” or Grassman numbers η and η. The simplest model is

H = εc†c
V(t) = η̄(t)c(t) + c†(t)η(t)

}
(6.96)

The corresponding Generating functional is given by

S [η̄, η] = 〈φ|T exp
(
−i

∫
dt

[
η̄(t)c(t) + c†(t)η(t)

])
|φ〉 = exp

[
−i

∫
d1d2η̄(1)G(1 − 2)η(2)

]

G(1 − 2) = −i〈φ|Tc(1)c†(2)|φ〉 (6.97)

where |φ〉 is the ground-state for the non-interacting Hamiltonian. To prove this result, we use the
same method as used for the harmonic oscillator. As before we split up the S matrix into N discrete
time-slices, writing

S N = eAN−A
†
N × . . . eAr−A

†
r × . . . eA1−A†1 (6.98)

where

Ar = η̄(tr)(−ice−iεtr )∆t,
A†r = η(tr)(ic†eiεtr )∆t. (6.99)

The next step requires a little care, for when ε < 0, |φ〉 = c†|0〉 is the vacuum for holes h = c†, rather
than particles, so that in this case we need to “anti-normal order” the S matrix. Carrying out the
ordering process, we obtain

S N =




e−
∑
r A†r e

∑
r Ar exp

[
−

∑
r≥s[Ar, A†s](1 − 1

2δrs)
]

(ε > 0)

e
∑
r Are−

∑
r A†r exp

[∑
r≤s[Ar, A†s](1 − 1

2δrs)
]

(ε < 0)
(6.100)

131

Chapter 6. c©Piers Coleman 2011

When we take the expectation value 〈φ|S N |φ〉, the first term in these expressions gives unity. Calcu-
lating the commutators, in the exponent, we obtain

[Ar, A†s] = ∆t2[η̄(tr)c, c†η(ts)]e−iε(tr−ts)
= ∆t2η̄(tr){c, c†}η(ts)e−iε(tr−ts)
= ∆t2η̄(tr)η(ts)]e−iε(tr−ts). (6.101)

( Notice how the anticommuting property of the Grassman variables η̄(tr)η(ts) = −η(ts)η̄(tr) means
that we can convert a commutator of [Ar, As] into an anticommutator {c, c†}.) Next, that taking the
limit N → ∞, we obtain

S [η̄, η] =




exp
[
−

∫ ∞

−∞
dtdt′η̄(t)θ(t − t′)η(t′)e−iε(t−t

′)
]

(ε > 0)

exp
[∫ ∞

−∞
dτdτ′η̄(τ)θ(t′ − t)η(τ′)e−iε(t−t

′)
]

(ε < 0)

(6.102)

By introducing the Green function,

G(t) = −i
[
(1 − f (ε))θ(t) − f (ε))θ(−t)

]
e−iεt

we can compactly combine these two results into the final form

S (t2, t1) = exp
[
−i

∫ ∞

−∞
dtdt′η̄(t)G(t − t′)η(t′)

]
. (6.103)

A more heuristic derivation however, is to recognize that derivatives of the generating functional
bring down Fermi operators inside the time-ordered exponential,

i
δ

δη(t)
〈φ|TŜ . . . |φ〉 = 〈φ|TŜ c†(t) . . . |φ〉

i
δ

δη̄(t)
〈φ|TŜ . . . |φ〉 = 〈φ|TŜ c(t) . . . |φ〉 (6.104)

where Ŝ = T exp
[
−i

∫
dt′

(
η̄(t′)c(t′) + c†(t′)η(t′)

)]
so that inside the expectation value,

i
δ

δη(t)
≡ c†(t)

i
δ

δη̄(t)
≡ c(t), (6.105)

and
i
δ ln S
δη(1)

=
〈φ|Tc†(1)Ŝ |φ〉
〈φ|Ŝ |φ〉

≡ 〈c†(1)〉, (6.106)

where Ŝ = T exp
[
−i

∫
V(t′)dt′

]
. Here, we have used the Gell-Mann Low theorem to identify the

quotient above as the expectation value for c†(1) in the presence of the source terms. Differentiating
one more time,

(i)2 δ
2 ln S [η̄, η]
δη̄(2)δη(1)

=
〈φ|Tc(2)c†(1)Ŝ |φ〉

〈φ|Ŝ |φ〉
−
〈φ|Tc(2)Ŝ |φ〉
〈φ|Ŝ |φ〉

〈φ|Tc†(1)Ŝ |φ〉
〈φ|Ŝ |φ〉
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= 〈Tc(2)c†(1)〉 − 〈c(2)〉〈c†(1)〉
= 〈Tδc(2)δc†(1)〉. (6.107)

This quantity describes the variance in the fluctuations δc(†)(2) ≡ c(†)(2) − 〈c(†)(2)〉 of the fermion
field about their average value. When the source terms η and η̄ are introduced, they induce a finite
(Grassman) expectation value of the fields 〈c(1)〉 and 〈c†(1)〉 but the absence of interactions between
the modes mean they won’t change the amplitude of fluctuations about the mean, so that

(i)2 δ
2 ln S [η̄, η]
δη̄(2)δη(1)

= 〈Tc(1)c†(2)〉
∣∣∣
η, η̄=0 = iG(1 − 2),

and we can then deduce that

ln S [η̄, η] = −i
∫

d1d2η̄(2)G(2 − 1)η(1). (6.108)

There is no constant term, because S = 1 when the source terms are removed, and we arrive back
at (6.97).

The generalization of the generating functional to a gas of Fermions with many one-particle
states is just a question of including an appropriate sum over one-particle states, i.e

H =
∑
λ ελc†λcλ

V(t) =
∑
λ η̄λ(t)cλ(t) + cλ†(t)ηλ(t)

}
(6.109)

The corresponding Generating functional is given by

S [η̄, η] = 〈φ|T exp

−i

∫
d1

∑

λ

η̄λ(1)cλ(1) + cλ†(1)ηλ(1)

 |φ〉

= exp

−i

∑

λ

∫
d1d2η̄λ(1)Gλ(1 − 2)ηλ(2)




Gλ(1 − 2) = −i〈φ|Tcλ(1)c†λ(2)|φ〉 (6.110)

Example 6.3: Show using the generating function, that in the presence of a source term,

〈cλ(1)〉 =
∫

d2Gλ(1 − 2)ηλ(2). (6.111)

Solution: Taking the (functional) derivative of (6.110) with respect to ηλ, from the left-hand
side of (6.110), we obtain

δS [η̄, η]
δη̄λ(1)

= −i〈φ|Tcλ(1) exp
[
−i

∫
dtV(t)

]
|φ〉 (6.112)
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so that

i
δ ln S [η̄, η]
δη̄λ(1)

=
i

S [η̄, η]
δS [η̄, η]
δη̄λ(1)

=
〈φ|Tcλ(1) exp

[
−i

∫
dtV(t)

]
|φ〉

〈φ|T exp
[
−i

∫
dtV(t)

]
|φ〉

= 〈cλ(1)〉. (6.113)

Now taking the logarithm of the right-hand side of (6.110), we obtain

i ln S [η̄, η] =
∑

λ

∫
d1d2η̄λ(1)Gλ(1 − 2)ηλ(2) (6.114)

so that
i
δ ln S [η̄, η]
δη̄λ(τ)

=

∫
d2Gλ(1 − 2)ηλ(2) (6.115)

Combining (6.113) with (6.115) we obtain the final result

〈cλ(1)〉 =
∫

d2Gλ(1 − 2)ηλ(2) (6.116)

6.3.3 The Spectral Representation

In the non-interacting Fermi liquid, we saw that the propagator contained a single pole, at ω = εk.
What happens to the propagator when we turn on the interactions? Remarkably it retains its same
general analytic structure, excepting that now, the single pole divides into a plethora of poles, each
one corresponding to an excitation energy for adding, or removing a particle from the ground-state.
The general result, is that

G(k, ω) =
∑

λ

|Mλ(k)|2

ω − ελ + iδλ
(6.117)

where δλ = δsign(ελ) and the total pole strength
∑

λ

|Mλ(k)|2 = 1 (6.118)

is unchanged. Notice how the positive energy poles of the Green function are below the real axis at
ελ − iδ, while the negative energy poles are below the real axis, preserving the pole structure of the
non-interacting Green’s function.

If the ground-state is an N particle state, then the state |λ〉 is either an N + 1, or N − 1 particle
state. The poles of the Green function are given by related to the excitation energies Eλ − Eg > 0
according to

ελ =

{
Eλ − Eg > 0 (|λ〉 ∈ |N + 1〉)
−1 × (Eλ − Eg) < 0 (|λ〉 ∈ |N − 1〉) , (6.119)
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and the corresponding matrix elements are

Mλ(k) =




〈λ|c†kσ|φ〉, (|λ〉 ∈ |N + 1〉),

〈λ|ckσ|φ〉, (|λ〉 ∈ |N − 1〉).
(6.120)

Notice that the excitation energies Eλ − Eg > 0 are always positive, so ελ > 0 measures the energy
to add and electron, while ελ < 0 measures −1× the energy to create a hole state.

In practice, the poles in the interacting Green function blur into a continuum of excitation ener-
gies, with an infinitesimal separation. To deal with this situation, we define a quantity known as the
spectral function, given by the imaginary part of the Green’s function,

A(k, ω) =
1
π

ImG(k, ω − iδ), Spectral Function (6.121)

By shifting the frequency ω by a small imaginary part which is taken to zero at the end of the
calculation, overriding the δλ in (6.117), all the poles of G(k, ω − iδ) are moved above the real axis.
Using Cauchy’s principle part equation, 1/(x− iδ) = P(1/x)+ iπδ(x), where P denotes the principal
part, we can use the spectral representation (6.117) to write

A(k, ω) =
∑

λ

|Mλ(k)|2δ(ω − ελ)

=
∑

λ

[
|〈λ|c†kσ|φ〉|2θ(ω) + 〈λ|ckσ|φ〉|2θ(−ω)

]
δ(|ω| − (Eλ − Eg)) (6.122)

where now, the normalization of the pole-strengths means that
∫ ∞

−∞
A(k, ω)dω =

∑

λ

|Mλ(k)|2 = 1 (6.123)

Since the excitation energies are positive, Eλ − Eg > 0 from (6.119) it follows that ελ is positive for
electron states and negative for hole states, so

A(k, ω) = θ(ω)ρe(k, ω) + θ(−ω)ρh(k,−ω) (6.124)

where
ρe(ω) =

∑

λ

|〈λ|c†kσ|φ〉|2δ(ω − (Eλ − Eg)) (ω > 0) (6.125)

and
ρh(ω) =

∑

λ

|〈λ|ckσ|φ〉|2δ(ω − (Eg − Eλ)) (ω > 0) (6.126)

are the spectral functions for adding or holes of energy ω to the system respectively. To a good
approximation, in high energy spectroscopy, ρe,h(k, ω) is directly proportional to the cross-section
for adding, or removing an electron of energy |ω| to the material. Photoemission and inverse photoe-
mission experiments can, in this way, be used to directly measure the spectral function of electronic
systems.
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To derive this spectral decomposition, we suppose that we know the complete Hilbert space of
energy eigenstates {|λ〉}. By injecting the completeness relation

∑
|λ〉〈λ| = 1 between the creation

and annihilation operators in the Green’s function, we can expand it as follows

G(k, t) = −i
[
〈φ|ckσ(t)c†kσ(0)|φ〉θ(t) − 〈φ|c†kσ(0)ckσ(t)|φ〉θ(−t)

]

= −i
∑

λ

[
〈φ|ckσ(t)

=1︷︸︸︷
|λ〉〈λ| c†kσ(0)|φ〉θ(t) − 〈φ|c†kσ(0)

=1︷︸︸︷
|λ〉〈λ| ckσ(t)|φ〉θ(−t)

]

By using energy eigenstates, we are able to write

〈φ|ckσ(t)|λ〉 = 〈φ|eiHtckσe−iHt |λ〉 = 〈φ|ckσ|λ〉ei(Eg−Eλ)t
〈λ|ckσ(t)|φ〉 = 〈λ|eiHtckσe−iHt|φ〉 = 〈λ|ckσ|φ〉ei(Eλ−Eg)t (6.127)

Notice that the first term involves adding a particle of momentum k, spin σ, so that the state |λ〉 =
|N + 1; kσ〉 is an energy eigenstate with N + 1 particles, momentum k and spin σ. Similarly, in
the second matrix element, a particle of momentum k, spin σ has been subtracted, so that |λ〉 =
|N − 1;−k − σ〉. We can thus write the Green’s function in the form:

G(k, t) = −i
∑

λ

[
|〈λ|c†kσ|φ〉|2e−i(Eλ−Eg)tθ(t) − |〈λ|ckσ|φ〉|2e−i(Eg−Eλ)tθ(−t)

]
,

where we have simplified the expression by writing 〈φ|ckσ|λ〉 = 〈λ|c†kσ|φ〉∗ and 〈λ|ckσ|φ〉 = 〈φ|c†kσ|λ〉∗.
This has precisely the same structure as a non-interacting Green’s function, except that εk → Eλ−Eg
in the first term, and εk → Eg − Eλ in the second term. We can use this observation to carry out the
Fourier transform, whereapon

G(k, ω) =
∑

λ

[
|〈λ|c†kσ|φ〉|2

ω − (Eλ − Eg) + iδ
+

|〈λ|ckσ|φ〉|2

ω − (Eg − Eλ) − iδ

]

which is the formal expansion of (6.117).
To show that the total pole-strength is unchanged by interactions, we expand the sum over pole

strengths, and then use completeness again, as follows
∑

λ

|Mλ(k)|2 =
∑

λ

|〈λ|c†kσ|φ〉|2 + |〈λ|ckσ|φ〉|2

=
∑

λ

〈φ|ckσ

=1︷︸︸︷
|λ〉〈λ| c†kσ|φ〉 + 〈φ|c†kσ

=1︷︸︸︷
|λ〉〈λ| ckσ|φ〉

= 〈φ|

=1︷!!!!!!︸︸!!!!!!︷
{ckσ, c†kσ} |φ〉 = 1 (6.128)
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Example 6.4: Using the spectral decomposition, show that the momentum distribution function
in the ground-state of a translationally invariant system of fermions is given the integral over
the “filled” states ∑

σ

〈c†kσckσ〉 = (2S + 1)
∫ 0

−∞
dωA(k, ω)

Solution: Let us first write the occupancy in terms of the one-particle Green’s function evaluated
at time t = 0−

〈nkσ〉 = 〈φ|nkσ|φ〉 = −i × −i〈φ|Tckσ(0−)c†kσ(0)|φ〉 = −iG(k, 0−),

Now using the spectral representation, (6.128),

〈nkσ〉 = −iG(k, 0−) =
∑

λ

|〈λ|ckσ|φ〉|2 =
∑

λ

|Mλ(k)|2θ(−ελ)

since |Mλ(k)|2 = |〈λ|ckσ|φ〉|2 for ελ < 0. This is just the sum over the negative energy part of the
spectral function. Now since A(k, ω) =

∑
λ |Mλ(k)|2δ(ω − ελ), it follows that at absolute zero,

∫ 0

−∞
dω(k, ω) =

∑

λ

|Mλ(k)|2

θ(−ελ)︷!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!︷∫ 0

−∞
dωδ(ω − ελ) =

∑

λ

|Mλ(k)|2θ(−ελ).

so that ∑

σ

〈nkσ〉 = (2S + 1)
∫ 0

−∞

dω
π
A(k, ω).

Example 6.5: Show that the zero temperature Green’s function can be written in terms of the
Spectral function as follows:

G(k, ω) =
∫

dε
1

ω − ε(1 − iδ)
A(k, ε).

Solution: Introduce the relationship 1 =
∫
dεδ(ε − (Eλ − Eg)) and 1 =

∫
dεδ(ε + (Eλ − Eg)) into

(6.128) to obtain

G(k, ω) =

∫
dε

1
ω − ε + iδ

∑

λ

|〈λ|c†kσ|φ〉|2δ(ε − (Eλ − Eg))

+

∫
dε

1
ω − ε − iδ

∑

λ

|〈λ|ckσ|φ〉|2δ(ε + (Eλ − Eg)). (6.129)

Now in the first term, ε > 0, while in the second term, ε < 0nn, enabling us to rewrite this
expression as

G(k, ω) =
∫

dε
1

ω − ε(1 − iδ)

A(k,ε)︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷∑

λ

[
|〈λ|c†kσ|φ〉|2θ(ε) + |〈λ|ckσ|φ〉|2θ(−ε)

]
δ(|ε| − (Eλ − Eg)) .

giving the quoted result.
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6.4 Many particle Green’s functions

The n-particle Green’s function determines the amplitude for n-particles to go from one starting
configuration to another:

initial particle positions
︷!!!!!!!!!︸︸!!!!!!!!!︷
{1′, 2′ . . . n′} G

−→

final particle positions
︷!!!!!︸︸!!!!!︷
{1, 2 . . . n} (6.130)

where 1′ ≡ (x′, t′), etc. and 1 ≡ (x, t), etc.. The n-particle Green’s function is defined as

G(1, 2, . . . n; 1′, 2′, . . . n′) = (−i)n〈φ|Tψ(1)ψ(2) . . . ψ(n)ψ†(n′) . . . ψ†(1′)|φ〉

and represented diagramatically as

G(1, 2, . . . n; 1′, 2′, . . . n′) = 2

1 1’

n n’

2’
G

(6.131)

In systems without interactions, the n-body Green’s function can always be decomposed in terms
of the one-body Green’s function, a result known as “Wick’s theorem”. This is because particles
propagate without scattering off one-another. Suppose a particle which ends up at r comes from
location P′r, where Pr is the r-th element of a permutation P of (1, 2, . . . n). The amplitude for this
process is

G(r − P′r) (6.132)

and the overall amplitude for all n-particles to go from locations P′r to positions r is then

ζ pG(1 − P′1)G(2 − P′2) . . .G(n − P′n) (6.133)

where ζ = ± for bosons (+) and fermions (-) and p is the number of pairwise permutations required
to make the permutation P. This prefactor arises because for fermions, every time we exchange two
of them, we pick up a minus sign in the amplitude. Wick’s theorem states the physically reasonable
result that the n-body Green’s function of a non-interacting system is given by the sum of all such
amplitudes:

G(1, 2, . . .n; 1′, 2′, . . .n′) =
∑
ζP

∏

r=1,n
G(r − P′r) (6.134)

138



bk.pdf June 28, 2011 70

c©2011 Piers Coleman Chapter 6.

For example, the two-body Green’s function is given by

G(1, 21′, 2′) = G(1, 1′)G(2, 2′) ±G(1, 2′)G(2, 1′)

1

2

1’

2’

G =

2 2’

1’1
±

1 1’

2 2’

The process of identifying pairs of initial, and final states in the n-particle Green’s function is often
referred to as a “contraction”. When we contraction two field operators inside a Green’s function,
we associate an amplitude with the contraction as follows

〈0|T [. . . ψ(1) . . . ψ†(2) . . .]|0〉 −→ 〈0|T [ψ(1)ψ†(2)]|0〉 = iG(1 − 2)

〈0|T [. . . ψ†(2) . . . ψ(1) . . .]|0〉 −→ 〈0|T [ψ†(2)ψ(1)]|0〉 = ±iG(1 − 2)

Each product of Green’s functions in the Wick-expansion of the propagator is a particular “contrac-
tion” of the n-body Green’s function, thus

= ζPG(1 − P′1)G(2 − P′2) . . .G(n − P′n) (6.135)

where now P is just the number of times the contraction lines cross-one another. Wick’s theorem
then states that the n-body Green’s function is given by the sum over all possible contractions

(−i)n〈φ| T ψ(1)ψ(2) . . . ψ†(n′)|φ〉 =

∑

All contractions
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Example 6.6: Show how the expansion of the generating functional in the absence of interac-
tions can be used to derive Wick’s theorem.

6.5 Exercises
1. A particle with S = 1/2 is placed in a large magnetic field %B = (B1 cos(ωt), B1 sin(ωt), Bo), where

Bo >> B1.
(a) Treating the oscillating part of the Hamiltonian as the interaction, write down the Schrödinger
equation in the interaction representation.

(b) Find U(t) = T exp
[
−iHint(t′)dt′

]
by whatever method proves most convenient.

(c) If the particle starts out at time t = 0 in the state S z = − 1
2 , what is the probability it is in this state

at time t ?

2. (Optional derivation of bosonic generating functional.) Consider the forced Harmonic oscillator

H(t) = ωb†b + z̄(t)b + b†z(t) (6.136)

where z(t) and z̄(t) are arbitrary, independent functions of time. Consider the S-matrix

S [z, z̄] = 〈0|TŜ (∞,−∞)|0〉 = 〈0|T exp
(
−i

∫ ∞

−∞
dt[z̄(t)b(t) + b̄(t)†z(t)]

)
|0〉, (6.137)

where b̂(t) denotes b̂ in the interaction representation. Consider changing the function z̄(t) by an
infinitesimal amount

z̄(t)→ z̄(t) + ∆z̄(to)δ(t − to), (6.138)

The quantity
lim
∆z̄(to)→0

∆S [z, z̄]
∆z̄(to)

=
δS [z, z̄]
δz̄(to)

is called the “functional derivative” of S with respect to z̄. Using the Gell-Man Lowe formula 〈ψ(t)|b|ψ(t)〉 =
〈0|TŜ (∞,−∞)b(t)|0〉
〈0|TŜ (∞,−∞)|0〉 prove the following identity

iδlnS [z, z̄]/δz̄(t) ≡ b̃(t) = 〈b̂(t)〉 = 〈ψ(t)|b̂|ψ(t)〉. (6.139)

(ii) Use the equation of motion to show that

∂

∂t
b̃(t) = i〈[H(t), b̂(t)]〉 = −i[εb̃(t) + z(t)].

(iii) Solve the above differential equation to show that

b̃(t) =
∫ ∞

−∞
G(t − t′)z(t′) (6.140)
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where G(t − t′) = −i〈0|T [b(t)b†(t′)]|0〉 is the free Green’s function for the harmonic oscillator.
(iv) Use (iii) and (i) together to obtain the fundamental result

S [z, z̄] = exp
[
−i

∫ ∞

−∞
dtdt′z̄(t)G(t − t′)z(t′)

]
(6.141)

3. (Harder problem for extra credit).
Consider a harmonic oscillator with charge e, so that an applied field changes the Hamiltonian H →
Ho − eE(t)x̂, where x is the displacement and E(t) the field. Let the system initially be in its ground-
state, and suppose a constant electric field E is applied for a time T .
(i) Rewrite the Hamiltonian in the form of a forced Harmonic oscillator

H(t) = ωb†b + z̄(t)b + b†z(t) (6.142)

and show that

z(t) = z̄(t) =
{
ωα (T > t > 0)

0 (otherwise) , (6.143)

deriving an explicit expression for α in terms of the field E, mass m, and frequency ω of the oscillator.
(ii) Use the explicit form of S (z̄, z)

S [z, z̄] = exp
[
−i

∫ ∞

−∞
dtdt′z̄(t)G(t − t′)z(t′)

]
(6.144)

where G(t − t′) = −i〈0|T [b(t)b†(t′)]|0〉 is the free bosonic Green-function, to calculate the probability
p(T ) that the system is still in the ground-state after time T . Please express your result in terms of α,
ω and T . Sketch the form of p(T ) and comment on your result.
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Chapter 7

Landau Fermi Liquid Theory

7.1 Introduction
One of the remarkable features of a Fermi fluid, is its robustness against perturbation. In a typi-
cal electron fluid inside metals, the Coulomb energy is comparable with the electron kinetic energy,
constituting a major perturbation to the electron motions. Yet remarkably, the non-interacting model
of the Fermi gas reproduces many qualitative features of metallic behavior, such as a well-defined
Fermi surface, a linear specific heat capacity, and a temperature-independent paramagnetic suscep-
tibility. Such “Landau Fermi liquid behavior” appears in many contexts - in metals at low temper-
atures, in the core of neutron stars, in liquid Helium-3 and most recently, it has become possible to
create Fermi liquids with tunable interactions in atom traps. As we shall see, our understanding of
Landau Fermi liquids is intimately linked with the idea of adiabaticity introduced in the last chapter.

In the 1950’s, physicists on both sides of the Iron curtain pondered the curious robustness of
Fermi liquid physics against interactions. In Princeton New Jersey, David Bohm and David Pines,
carried out the first quantization of the interacting electron fluid, proposing that the effects of long-
range interactions are absorbed by a canonical transformation that separates the excitations into a
high frequency plasmon and a low frequency fluid of renormalized electrons[? ]. On the other
side of the world, Lev Landau at the Kapitza Low Temperature Institute in Moscow, came to the
conclusion that the robustness of the Fermi liquid is linked with the idea of adiabaticity and the
Fermi exclusion principle[? ].

At first sight, the possibility that an almost free Fermi fluid might survive the effect of interac-
tions seems hopeless. With interactions, a moving fermion decays by emitting arbitrary numbers
of low-energy particle-hole pairs, so how can it ever form a stable particle-like excitation? Landau
realized that a fermion outside the Fermi surface can not scatter into an occupied momentum state
below the Fermi surface, so the closer it is to the Fermi surface, the smaller the phase space available
for decay. We will see that as a consequence, the inelastic scattering rate grows quadratically with
excitation energy ε and temperature

τ−1(ε) ∝ (ε2 + π2T 2).

In this way, particles at the Fermi energy develop an infinite lifetime. Landau named these long-
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lived excitations “quasi-particles”. “Landau Fermi liquid theory”[? ? ? ? ] describes the collective
physics of a fluid of these quasiparticles.

It was a set of experiments on liquid Helium-3 (3He), half a world away from Moscow, that
helped to crystallize Landau’s ideas. In the aftermath of the Second World War, the availability
of isotopically pure 3He as a byproduct of the Manhattan project, made it possible, for the first
time, to experimentally study this model Fermi liquid. The first measurements were carried at
Duke University in North Carolina, by Fairbank, Ard and Walters. [? ]. While Helium-4 atoms
are bosons, atoms of the much rarer isotope, He − 3 are spin-1/2 fermions. These atoms contain
a neutron and two protons in the nucleus, neutralized by two orbital electrons in a singlet state,
forming a composite, neutral fermion. 3He is a much much simpler quantum fluid than the electron
fluid of metals:

• without a crystal lattice, liquid 3He is isotropic and enjoys the full translational and Gallilean
symmetries of the vacuum.

• 3He atoms are neutral, interacting via short-range interactions, avoiding the complications of
a long-range Coulomb interaction in metals.

Prior to Landau’s theory, the only available theory of a degenerate Fermi liquid was Sommer-
feld’s model for non-interacting Fermions. A key property of the non-interacting Fermi-liquid, is
the presence of a large, finite density of single-particle excitations at the Fermi energy, given by 1

N(0) = 2
(4π)p2

(2π!)3
dp
dεp

∣∣∣∣∣∣p=pF
=
mpF
π2!3 . (7.1)

The argument of N(ε) is the energy ε = E − µ measured relative to the chemical potential, µ. The
density of states per unit volume, per spin is N(0)/2. A magnetic field splits the “up” and “down”
Fermi surfaces, shifting their energy by an amount −σµFB, where σ = ±1 and µF =

g
2
e!
2m is half the

product of the Bohr magneton for the fermion and the g-factor associated with its spin. The number
of “up” and “down fermions is thereby changed by an amount δN↑ = −δN↓ = 1

2N(0)(µFB), inducing
a net magnetization M = χB where,

χ = µF(N↑ − N↓)/B = µ2
FN(0) (7.2)

is the “Pauli paramagnetic susceptibility”. For electrons, g ≈ 2 and µF ≡ µB = e!
2m is the Bohr

magneton, so the Pauli susceptibility of a free electron gas is µ2
BN(0).

In a degenerate Fermi liquid, the energy is given by

E(T ) = E(T ) − µN =
∑

kσ=±1/2
εk

1
eβεk + 1

(7.3)

Here, we use the notation E = E − µN to denote the energy measured in the grand-canonical
ensemble. The variation of this quantity at low temperatures (where to order T 2, the chemical

1Note: In the discussion that follows, we shall normalize all extensive properties per unit volume, thus the density of
states, N(ε) the specific heat CV , or the magnetization M, will all refer to those quantities, per unit volume.
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potential is constant ) depends only on the free-particle density of states at the Fermi energy, N(0).
The low temperature specific heat

CV =
dE
dT
= N(0)

∫ ∞

−∞
dεε

d
dT

(
1

eβε + 1

)

= N(0)k2
BT

π2/3︷!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!︷∫ ∞

−∞
dx

x2

(ex + 1)(e−x + 1)
=

=γ︷!!!!!!︸︸!!!!!!︷
π2

3
N(0)k2

B T (7.4)

is linear in temperature. Since both the specific heat, and the magnetic susceptibility are proportional
to the density of states, the ratio of these two quantities W = χ/γ, often called the Wilson ratio or
“Stoner enhancement factor”, is set purely by the size of the magnetic moment:

W =
χ

γ
= 3

(
µF
πkB

)2
(7.5)

Fairbank, Ard and Walters’ experiment confirmed the Pauli paramagnetism of liquid in Helium-
3, but the measured Wilson ratio is about ten times larger than predicted by Sommerfeld theory.
Landau’s explanation of these results is based on the idea that one can track the evolution of the
properties of the Fermi liquid by adiabatically switching on the interactions. He considered a hypo-
thetical gas of non-interacting Helium atoms with no forces of repulsion between for which Som-
merfeld’s model would certainly hold. Suppose the interactions are now turned on slowly. Landau
argued that since the fermions near the Fermi surface had nowhere to scatter to, the low-lying exci-
tations of the Fermi liquid would evolve adiabatically, in the sense discussed in the last chapter, so
that that each quantum state of the fully-interacting liquid Helium-3, would be in precise one-to-one
correspondence with the states of the idealized “non-interacting” Fermi-liquid.[? ]

7.2 The Quasiparticle Concept

The “quasiparticle” concept is a triumph of Landau’s Fermi liquid theory, for it enables us to con-
tinue using the idea of an independent particle, even in the presence of strong interactions; it also
provides a framework for understanding the robustness of the Fermi surface while accounting for
the effects of interactions.

A quasiparticle is the adiabatic evolution of the non-interacting fermion into an interacting en-
vironment. The conserved quantum numbers of this excitation: its spin and its “charge” and its
momentum are unchanged but Landau reasoned that that its dynamical properties, the effective
magnetic moment and mass of the quasiparticle would be “ renormalized” to new values g∗ and
m∗ respectively. Subsequent measurements on 3He[? ? ] revealed that the quasiparticle mass and
enhanced magnetic moment g∗ are approximately

m∗ = (2.8)m(He3),

(g∗)2 = 3.3(g2)(He3). (7.6)
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These “renormalizations” of the quasiparticle mass and magnetic moment are elegantly accounted
for in Landau Fermi liquid theory in terms of a small set of “Landau parameters” which characterize
the interaction, as we now shall see.

Figure 7.1: In the non-interacting Fermi liquid (a), a stable particle can be created anywhere outside
the Fermi surface, a stable hole excitation anywhere inside the Fermi surface. (b) When the inter-
actions are turned on adiabatically, particle excitations near the Fermi surface adiabatically evolve
into “quasiparticles”, with the same charge, spin and momentum. Quasiparticles and quasi-holes
are only well defined near the Fermi surface of the Landau Fermi Liquid.

Let us label the momentum of each particle in the original non-interacting Fermi liquid by p̃
and spin component σ = ±1/2. The number of fermions momentum %p, spin component σ, npσ, is
either one, or zero. The complete quantum state of the non-interacting system is labeled by these
occupancies. We write

Ψ = |np1σ1 , np2σ2 , . . . 〉 (7.7)

In the ground-state, Ψo all states with momentum p less than the Fermi momentum are occupied,
all states above the Fermi surface are empty

Ground − state Ψo : npσ =

{
1 (p < pF)
0 (otherwise p > pF) (7.8)
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Landau argued, that if one turned on the interactions infinitely slowly, then this state would evolve
smoothly into the ground-state of the interacting Fermi liquid. This is an example of the adiabatic
evolution encountered in the previous chapter. For the adiabatic evolution to work, the Fermi liquid
ground-state has to remain stable. This is a condition that certainly fails when the system undergoes
a phase transition into another ground-state, a situation that may occur at a certain critical interaction
strength. However, up to this critical value, the adiabatic evolution of the ground-state can take
place. The energy of the final ground-state is unknown, but we can call it E0.

Suppose we now add a fermion above the Fermi surface of the original state. We can repeat
the the adiabatic switch-on of the interactions, but it is a delicate procedure for an excited state,
because away from the Fermi surface, an electron can decay by emitting low-energy particle-hole
pairs which disipates its energy in an irreversible fashion. To avoid this irreversibility, the lifetime
of the particle τe must be longer than the adiabatic “switch-on” time τA = ε−1 encountered in (6.87),
and since this time becomes infinite, strict adiabaticity is only possible for excitations that lie on the
Fermi surface, where τe is infinite. A practical Landau Fermi liquid theory requires that we consider
excitations that are a finite distance away from the Fermi surface, and when we do this, we tacitly
ignore the finite lifetime of the quasiparticles. By doing so, we introduce an error of order τ−1

e /εp.
This error can be made arbitrarily small, provided we restrict our attention to small perturbations to
the ground-state.

Adiabatic evolution conserves the momentum of the quasiparticle state, which will then evolve
smoothly into a final state that we can label as:

Quasi − particle : Ψpoσo npσ =

{
1 (p < pF and p = po, σ = σo)
0 (otherwise) (7.9)

This state has total momentum po where |po| > pF and an energy E(po) > Eo larger than the
ground-state. It is called a “quasiparticle-state” because it behaves in almost every respect like a
single particle. Notice in particular, that the the Fermi surface momentum pF is preserved by the
adiabatic introduction of interactions. Unlike free particles however, the Landau quasiparticle is
only a well-defined concept close to the Fermi surface. Far from the Fermi surface, quasiparticles
develop a lifetime, and once the lifetime is comparable with the quasiparticle excitation energy, the
quasiparticle concept loses its meaning.

The energy required to create a single quasiparticle, is

E(0)
po = E(po) − Eo (7.10)

where the superscript (0) denotes a single excitation in the absence of any other quasiparticles. We
shall mainly work in the Grand canonical ensemble, using E = E − µN in place of the absolute
energy, where µ is the chemical potential, enabling us to explore the variation of the energy at
constant particle number N. The corresponding quasiparticle excitation energy is then

ε(0)
po = E

(0)
po − µ = E(po) − Eo. (7.11)

Notice, that since |p0| > pF , this energy is positive.
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In a similar way, we can also define a “quasi-hole” state, in which a quasiparticle is removed the
Fermi sea,

Quasi − hole : Ψpoσo npσ =

{
1 (p < pF except when p = po, σ = σo)
0 (otherwise) , (7.12)

where the bar is used to denote the hole and now, |po| < pF is beneath the Fermi surface. The energy
of this state is E(po) = Eo − Ep0 , since we have removed a particle. Now the change in particle
number is ∆N = −1, so the the excitation energy of a single quasi-hole, measured in the Grand
Canonical ensemble, is then

ε(0)
po = −E

(0)
po + µ = −ε

(0)
po , (7.13)

i.e the energy to create a quasihole is the negative of the corresponding quasiparticle energy εpo . Of
course, when |po| < pF , εpo < 0 so that the quasihole excitation energy ε(0)po is always positive, as
required for a stable ground-state. In this way, the energy to create a quasihole, or quasiparticle is
always given by |εpo |, independently of whether po is above, or below the Fermi surface.

The quasiparticle concept would be of limited value if it was limited to individual excitations.
At a finite temperature, a dilute gas of these particles is excited around the Fermi surface and these
particles interact. How can the particle concept survive once one has a finite density of excitations?
Landau’s appreciation of a very subtle point enabled him to answer this question. He realized
that the amount of momentum that two particles can exchange in a collision while satisfying the
exclusion principle goes to zero for particles that are on the Fermi surface:

(p1,p2)→ (p1 − q,p2 + q) (q = 0 on Fermi surface.) (7.14)

On the Fermi surface, particles only scatter in the forward direction, so in the low-energy limit, the
number of particles at a given momentum is becomes a constant of the motion. In this way, the
Landau Fermi liquid is characterized by an infinite set of conserved quantities npσ, so that on the
Fermi surface,

[H, nkσ] = 0. (p ∈ FS) (7.15)

The challenge is to develop a theory that describes the Free energy F[{npσ} and the slow long
distance hydrodynamics of these conserved quantities.

Example 7.1: Suppose |Ψ0〉 =
∏
|p|<pF ,σ c

†
pσ|0〉 is the ground-state of a non-interacting Fermi

liquid, where c†pσ creates a “bare” fermion. By considering the process of adiabatically turning
on the interaction, time-evolving the one-particle state c†p0σ|FS 〉 from the distant past to the
present (t = 0) in the interaction representation, write down an expression for the ground-state
wavefunction |ψ〉 and the quasiparticle creation operator of the fully interacting system.
Solution: The time-evolution operator from the distant past in the interaction representation is

U = T exp
[
−i

∫ 0

−∞
V̂I(t)dt

]
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where V̂I(t) is the interaction operator, written in the interaction representation. If we add a
particle to the filled Fermi sea, and adiabatically time evolve from the distant past to the present,
we obtain

c†pσ|Ψ0〉 −→ Uc†pσ|Ψ0〉 =

QPa†pσ︷!!!!!!!︸︸!!!!!!!︷
(Uc†pσU†)

|φ〉︷︸︸︷
U |Ψ0〉 .

If the adiabatic evolution avoids a quantum phase transition, then

|φ〉 = U |FS 〉

is the ground-state of the fully interacting system. In this case, we may interpret

a†pσ = (Uc†pσU†)

as the “quasiparticle creation operator”. Note that if we try to rewrite this object in terms of
the original creation operator, c†pσ, it involves combinations of one fermion with particle-hole
pairs. See section 7.8 for a more detailed discussion.

7.3 The Neutral Fermi liquid
These physical considerations led Landau to conclude that the energy of a gas of quasiparticles
could be expressed as a functional of the quasiparticles occupancies npσ. Following Landau, we
shall develop the Fermi liquid concept using an idealized “neutral” Landau Fermi liquid, like He−3,
in which the quasiparticles move in free space, interacting isotropically via a short range interaction,
forming a neutral fluid.

If the density of quasiparticles is low, it is sufficient to expand the energy in the small deviations
in particle number δnpσ = npσ − n(o)

pσ from equilibrium. This leads to the Landau energy functional
E({npσ}) = E({npσ}) − µN, where

E = E0 +
∑

pσ
(E(0)

pσ − µ)δnpσ +
1
2

∑

p,p′,σ,σ′
fpσ,p′σ′δnpσδnp′σ′ + . . . . (7.16)

The first order coefficient

ε(0)
pσ ≡ E

(0)
pσ − µ =

δE
δnpσ

(7.17)

describes the excitation energy of an isolated quasiparticle. Provided we can ignore spin-orbit in-
teractions, then the total magnetic moment is a conserved quantity, so the magnetic moments of
the quasiparticles are preserved by interactions. In this case, ε(0)

pσ = ε
(0)
p − σµFB, where µF is the

un-renormalized magnetic moment of an isolated fermion.
The quasiparticle energy can be expanded linearly in momentum near the Fermi surface

E(0)
p = vF(p − pF) + µ(0), (7.18)
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where vF is the Fermi velocity at the Fermi energy µ(0), where µ0 is the chemical potential in the
ground-state. The quasiparticle effective mass m∗ is then defined in terms of vF as

vF =
dε(0)

p

dp

∣∣∣∣∣∣∣p=pF
=
pF
m∗
. (7.19)

We can use this mass to define a quasiparticle density of states

N∗(ε) = 2
∑

p
δ(ε − ε(0)

p ) = 2
∫

4πp2dp
(2π!)3 δ(ε − ε

(0)
p ) =

p2

π2!3
dp
dε0p
. (7.20)

Using (7.19), it follows that
N∗(0) =

m∗pF
π2!3 . (7.21)

In this way, the effective massm∗ determines the density of states at the Fermi energy: large effective
masses lead to large densities of states.

The second-order coefficients

fpσ,p′σ′ =
δ2E

δnpσδnp′σ′

∣∣∣∣∣∣
δnp′′σ′′ = 0

(7.22)

describe the interactions between quasiparticles at the Fermi surface. These partial derivatives are
evaluated in the presence of an otherwise “frozen” Fermi sea, where all other quasiparticle occu-
pancies are fixed. Landau was able to show that in an isotropic Fermi liquid, the quasiparticle mass
m∗ is related to the dipolar component of these interactions, as we shall shortly demonstrate. The
Landau interaction can be regarded as an interaction operator that acts on a the thin shell of quasi-
particle states near the Fermi surface. If n̂pσ = ψ

†
pσψpσ is the quasiparticle occupancy, where ψ†pσ

is the quasiparticle creation operator, then one is tempted to write

HI ∼
1
2

∑

pσp′σ′
fpσ,p′σ′ n̂pσn̂p′σ′ .

Written this way, we see that the Landau interaction term is a “forward scattering amplitude” be-
tween quasiparticles whose initial and final momenta are unchanged. In practice, one has to allow
for slowly varying quasiparticle densities, npσ(x), writing

HI ∼
1
2

∫
d3x

∑

pσp′σ′
fpσ,p′σ′ n̂pσ(x)n̂p′σ′(x).

where npσ(x) is the local quasiparticle density. Using the Fourier transformed density operator
n̂pσ(q) = ψ†p−q/2σψp+q/2σ =

∫
x e
−iq·xnpσ(x), a more correct formulation of the Landau interaction

is
HI =

1
2

∑

pσp′σ′,|q|<Λ
fpσ,p′σ′(q)n̂pσ(q)n̂p′σ′(−q). (7.23)

152



bk.pdf June 28, 2011 77

c©2011 Piers Coleman Chapter 7.

where Λ is a cutoff that restricts the momentum transfer to values smaller than the thickness of
the shell of quasiparticles. The Landau coefficients for the neutral Fermi liquid are then the zero
momentum limit fpσ,p′σ′ = fpσ,p′σ′(q = 0). The existence of such a limit requires that the interaction
has a finite range, so that the its Fourier transform at q = 0 is well-defined. This requirement is met
in neutral Fermi liquids, however the Coulomb interaction does not meet this requirement. The
extension of Landau’s Fermi liquid concept to charged Fermi liquids requires that we separate out
the long-range part of the Coulomb interaction - a point that will be returned to later.

Interactions mean that quasiparticle energies are sensitive to changes in the quasiparticle occu-
pancies. Suppose the quasiparticle occupancies deviate from the ground-state as follows npσ →
npσ + δnpσ. The corresponding change in the total energy is then

δE
δnpσ

= εpσ ≡ Epσ − µ = ε(0)
pσ +

∑

p′σ′
fpσ,p′,σ′δnp′σ′ . (7.24)

The second-term is change in the quasiparticle energy induced by the polarization of the Fermi sea.
To determine thermodynamic properties of the Landau Fermi liquid we also need to know the

entropy of the fluid. Fortunately, when we turn on interactions adiabatically, the entropy is invariant,
so that it must maintain the dependence on particle occupancies that it has in the non-interacting
system, i.e.

S = −kB
∑

p,σ
[npσlnnpσ + (1 − npσ)ln(1 − npσ)] (7.25)

The full thermodynamics are determined by the the Free energy F = E−TS = E −µN −TS , which
is the sum of (7.16) and (7.25).

F({npσ}) = E0(µ) +
∑

pσ
ε(0)

pσδnpσ +
1
2

∑

p,p′,σ,σ′
fpσ,p′σ′δnpσδnp′σ′

+ kBT
∑

p,σ
[npσlnnpσ + (1 − npσ)ln(1 − npσ)] (7.26)

Free energy of Landau Fermi Liquid.
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Table. 8.1 Key Properties of the Fermi Liquid .

PROPERTY NON-INTERACTING LANDAU FERMI LIQUID

Fermi momentum pF unchanged

Density of particles 2vFS
(2π)3 unchanged

Density of states N(0) = mpF
π2!3 N∗(0) = m∗pF

π2!3

Effective mass m m∗ = m(1 + Fs1)

Specific heat Coefficient
CV = γT γ = π

2

3 k
2
BN(0) γ = π

2

3 k
2
BN
∗(0)

Spin susceptibility χs = µ
2
FN(0) χs = µ

2
F
N∗(0)
1+Fa0

Charge Susceptibility χC = N(0) χC =
N∗(0)
1+Fs0

Sound (ωτ << 1)
Collective modes - Zero sound (ωτ >> 1)

Table 8.1 summarizes the key properties of the Landau Fermi liquid.

7.3.1 Landau Parameters

The power of the Landau Fermi liquid theory lies in its ability to parameterize the interactions in
terms of a small number of multipole parameters called “Landau Parameters”. These parameters
describe how the original non-interacting Fermi liquid theory is renormalized by the feedback effect
of interactions on quasiparticle energies.

In a Landau Fermi liquid in which spin is conserved, the interaction is invariant under spin
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rotations and can in general be written in the form 2

fpσ,p′σ′ = f sp,p′ + f
a
p,p′σσ

′. (7.27)

The spin-dependent part of the interaction is the magnetic component of the quasiparticle interac-
tion.

In practice, we are only interested in quasiparticles with a small excitation energy, so we only
need to know the values of f s,ap,p′ near the Fermi surface, permitting us to set p = pF p̂, p′ = pF p̂′,
where p̂ and p̂′ are the unit vectors on the Fermi surface. In an isotropic Landau Fermi liquid, the
physics is invariant under spatial rotations, so that interactions on the Fermi surface only depend on
the relative angle θ between p̂ and p̂′. We write

f s,ap,p′ = f s,a(cos θ), (cos θ = p̂ · p̂′). (7.28)

We convert the interaction to a dimensionless function by multiplying it with the quasiparticle den-
sity of states N∗(0):

Fs,a(cos θ) = N∗(0) f s,a(cos θ) (7.29)

These functions can now be expanded as a multipole expansion in terms of Legendre polynomials

Fs,a(cos θ) =
∞∑

l=0
(2l + 1)Fs,al Pl(cos θ). (7.30)

The coefficients Fsl and Fal are the Landau parameters. The spin-symmetric components Fsl parame-
terize the non-magnetic part of the interaction while the spin-antisymmetric Fal define the magnetic
component of the interaction. These parameters determine how distortions of the the Fermi surface
are fed-back to modify quasiparticle energies.

We can invert (7.30 ) using the orthogonality relation 1
2
∫ 1
−1 dc Pl(c)Pl′(c) = (2l + 1)−1δl,l′ ,

Fs,al =
1
2

∫ 1

−1
dc Fs,a(c)Pl(c) ≡ 〈Fs,a(Ω̂)Pl(Ω̂)〉Ω̂, (7.31)

where 〈. . . 〉Ω̂ denotes an average over solid angle. It is useful to rewrite this angular average as
an average over the Fermi surface. To do this we note that since 2

∑
k δ(εk) = N∗(0), the function

2
N∗(0)δ(εk) behaves as a normalized “projector” onto the Fermi surface, so that

Fs,al = 〈F
s,a(Ω̂)Pl(Ω̂)〉FS =

2
N∗(0)

∑

p′
Fs,ap,p′Pl(cos θp,p′)δ(εp′), (7.32)

2To see that this result follows from spin rotation invariance, we need to recognize that the quasiparticle occupancies
npσ we have considered are actually the diagonal elements of a quasiparticle density matrix npαβ. With this modification,
the interaction becomes a matrix fpαβ;p′γη whose most general rotationally invariant form is

fpαβ;p′γη = f s(p,p′)δαβδγη + f a(p,p′)%σαβ · %σγη.

The diagonal components of this interaction recover the results of (7.27)
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and since Fs,ap,p′ = N
∗(0) f s,ap,p′ ,

Fs,al = 2
∑

p′
f s,ap,p′Pl(cos θp,p′)δ(εp′). (7.33)

This form is very convenient for later calculations.

−V (p − p′)δσσ′

pσ

q = 0

pσ

+

V (q = 0)

p′σ′
pσ

q = p − p′

p′σ′
pσ

p′σ′

p′σ′

fpσ,p′σ′ = V (q = 0) − V (p − p′)δσσ′

Figure 7.2: Feynman diagrams for leading order contributions to the Landau parameter for an
interaction V(q). Wavy line represents the interaction between quasiparticles.

Example 7.2: Use first order perturbation theory to calculate the Landau interaction parameters
for a fluid of fermions with a weak interaction described by

H =
∑

pσ
Epnpσ +

λ

2

∑

pσ,p′σ′,q
V(q)c†p−qσc†p′+qσ′cp′σ′cpσ

where Ep is the energy of the non-interacting Fermi gas, V(q) =
∫ d3q

(2π)3 e−iq·rV(r) is the Fourier
transform of the interaction potential V(r) and λ << 1 is a very small coupling constant. Hint:
use first order perturbation theory in λ to compute the energy of a state

Ψ = |np1σ1 , np2σ2 , . . . 〉

to leading order in the interaction strength λ, and then read off the terms quadratic in npσ.
Solution:
To leading order in λ, the total energy is given by E = 〈Ψ|H|Ψ〉, or

E =
∑

pσ
Epnpσ +

λ

2

∑

pσ,p′σ′,q
V(q)〈Ψ|c†p−qσc†p′+qσ′cp′σ′cpσ|Ψ〉. (7.34)

The matrix element 〈Ψ|c†p−qσc†p′+qσ′cp′σ′cpσ|Ψ〉 in the interaction term vanishes unless the two
quasiparticle state annihilated by the two destruction operators has an overlap with the two
particle state created by the two creation operators, i.e.

〈Ψ|c†p−qσc†p′+qσ′cp′σ′cpσ|Ψ〉 = 〈p − q, σ; p′ + q, σ′|p, σ; p′σ′〉npσnpσ′
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=

(
δq=0 − δp−q,p′δσ,σ′

)
npσnpσ′ (7.35)

where the second term occurs when the outgoing state is the “exchange” of the incoming two-
quasiparticle state.
Inserting (7.35) into (7.34), we obtain

∑

pσ
Epnpσ +

λ

2

∑

pσ,p′σ′
[V(0) − V(p − p′)δσσ′]np′σ′npσ

enabling us to read off the Landau interaction as

fpσ,p′σ′ = λ
[
V(q = 0) − V(p − p′)δσσ′

]
+ O(λ2).

It follows that the symmetric and antisymmetric parts of the interaction parameters are

f sp,p′ = λ
[
V(q = 0) −

1
2
V(p − p′)] + O(λ2)

f ap,p′ = −
λ

2
V(p − p′) + O(λ2). (7.36)

Note that

• The Landau interaction is only well-defined if V(q = 0) is finite, which implies that the
interaction is short-ranged.

• The second term in the interaction corresponds to the “exchange” of identical particles.
For a repulsive interaction, this gives rise to an attractive f a. We can represent the inter-
action term by the Feynman diagrams shown in (***).

7.3.2 Equilibrium distribution of quasiparticles

Remarkably, despite interactions, the Landau Fermi liquid preserves the equilibrium Fermi-Dirac
momentum distribution. The key idea here is that in thermal equilibrium, the free energy (7.26) is
stationary with respect to small changes δnpσ in quasiparticle occupancies, so that

δF =
∑

pσ
δnpσ

[
εpσ + kBT ln

( npσ

1 − npσ

)]
+ O(δnpσ

2) = 0. (7.37)

Stationarity of the Free energy, δF = 0 enforces the thermodynamic identity δF = δE − TδS = 0,
or dE = TdS . This requires that the linear coefficient of δnpσ in (7.37) is zero, which implies that
the quasiparticle occupancy

npσ =
1

eβεpσ + 1
= f (εpσ) (7.38)
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is determined by Fermi-Dirac distribution function of its energy. There is a subtlety here however,
for the quantity εpσ contains the feedback effect of interactions, as given in (7.24)

εpσ = ε
(0)
pσ +

∑

p′σ′
fpσ,p′,σ′δnp′σ′ . (7.39)

Let us first consider the low temperature behavior in the absence of a field. In this case, as the
temperature is lowered, the density of thermally excited quasiparticles will go to zero, and in this
limit, the quasiparticle distribution function is asymptotically given by

npσ = f (ε(0)
p ).

In the ground-state this becomes a step function npσ|T=0 = θ(−ε(0)
p ) = θ(µ − E(0)

p ), as expected.
To obtain the specific heat, we must calculate CVdT = dE =

∑
p ε

(0)
pσδnpσ. At low temperatures,

δnpσ =
∂ f (ε(0)

pσ)
∂T dT , so that

CV =
∑

pσ
ε(0)

pσ



∂ f (ε(0)

pσ)
∂T


→ N∗(0)

∫ ∞

−∞
dε ε

(
∂ f (ε)
∂T

)
,

where, as in (7.4) the summation is replaced by an integral over the density of states near the Fermi
surface. Apart from the renormalization of the energies, this is precisely the same result obtained in
(7.4), leading to

CV = γT, γ =
π2k2

B
3

N∗(0) (7.40)

7.4 Feedback effects of interactions

One can visualize the Landau Fermi liquid as a deformable sphere, like a large water droplet in
zero gravity. The Fermi sphere changes shape when the density or magnetization of the fluid is
modified, or if a current flows. These deformations act back on the quasiparticles via the Landau
interactions, to change the quasiparticle energies. These feedback effects are a generalization of
the idea of a Weiss field in magnetism. When the feedback is positive, it can lead to instabilities,
such as the development of magnetism. A Fermi surface can also oscillate collectively about its
equilibrium shape. In a conventional gas, density oscillations can not take place without collisions.
In a Landau Fermi liquid, we will will see that the interactions play a non-trivial role that gives
rise to “collisionless” collective oscillations of the Fermi surface called “zero sound” (literally zero-
collision sound), that are absent in the free Fermi gas[? ].

To examine the feedback effects of interactions, let us suppose an external potential or field is
applied to induce a polarization of the Fermi surface, as illustrated in Fig. 7.3. There are various
kinds of external field we can consider - a simple change in the chemical potential

δε0pσ = −δµ, (7.41)
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which will induce an isotropic enlargement of the Fermi surface, the application of a magnetic field,

δε0pσ = −σµFB. (7.42)

which induces a spin polarization. We can also consider the application of a vector potential which
couples to the quasiparticle current

δε0pσ = −A · ep
m
, (7.43)

in a translationally invariant system. Notice how, in each of these cases, the applied field couples to
a conserved quantity (the particle number, the spin and the current), which is unchanged by interac-
tions. This means that the energy associated with the application of the external field is unchanged
by interactions for any quasiparticle configuration {npσ}, which guarantees that the coupling to the
external field is identical to that of non-interacting particles. This is the reason for the appearance
of the unrenormalized mass in (7.43). For each of these cases, there will of course be a feedback
effect of the interactions that we now calculate.

From (7.24) the change in the quasiparticle energy will now contain two terms - one due to
direct coupling to the external field, the other derived from the induced polarization δnpσ of the
Fermi surface

δεpσ = δε
(0)
pσ +

∑

p′σ′
fpσp′σ′δnp′σ′ . (7.44)

In this case, the equilibrium quasiparticle occupancies become

npσ = f (ε(0)
p + δεpσ) = f (ε(0)

p ) + f ′(ε(0)
p )δεpσ. (7.45)

As the temperature is lowered to zero, the derivative of the Fermi function evolves into a delta
function − f ′(ε) ∼ δ(ε), so that the quasiparticle occupancy is given by

npσ =

n(0)
pσ︷!!︸︸!!︷

θ(−ε(0)
p )+

δnpσ︷!!!!!!!!!!!︸︸!!!!!!!!!!!︷
[−δ(ε(0)

p )δεpσ] . (7.46)

δnpσ = −δ(ε(0)
p )δεpσ represents the polarization of the Fermi surface, which will feed back into the

interaction (7.44) as follows

δnpσ = −δ(ε(0)
p )δεpσ

δεpσ = δε
(0)
pσ +

∑

p′σ′
fpσp′σ′δnp′σ′ .

The resulting shift in the quasiparticle energies must then satisfy the self-consistency relation:

δεpσ = δε
(0)
pσ −

∑

p′σ′
fpσp′σ′δ(ε(0)

p′ )δεp′σ. (7.47)
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This feedback process preserves the symmetry of the external perturbation, but its strength in a
given symmetry channel depends on the corresponding Landau paramater. Thus, isotropic charge
and spin polarizations of the Fermi surface shown in Fig 7.3(a) and Fig 7.3(b) are fed back via the
isotropic charge and magnetic Landau parameters Fs0 and Fa0. When the quasiparticle fluid is set
into motion at velocity %u, this induces a dipolar polarization of the Fermi surface, shown in (Fig
7.3 (c)), which is fed-back via the dipolar Landau parameter Fs1. This process is responsible for the
renormalization of the effective mass.

Figure 7.3: Illustrating the polarization of the Fermi surface by (a) a change in chemical potential to produce
a isotropic charge polarization (b) application of a magnetic field to produce a spin polarization and (c) the
dipolar polarization of the Fermi surface that accompanies a current of quasiparticles. The Landau parameter
governing each polarization is indicated on the right hand side.

Consider a change in the quasiparticle potential that has a particular multipole symmetry, so that
the “bare” change in quasiparticle energy is

δε(0)
pσ = vlYlm(p̂) (7.48)

where Ylm is a spherical harmonic. The renormalized response of the quasiparticle energy given by
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(7.47) must have the same symmetry, but will have a different magnitude tl:

δεpσ = tlYlm(p̂). (7.49)

When this is fed back through the interaction, according to (7.47 ), it produces an additional shift
in the quasiparticle energy of given by

∑
p′σ′ fpσ,p′σ′δnp′σ′ = −Fsl tlYlm(p̂) (see exercise below), so

that the total change in the energy is given by δεpσ = (vl − Fsl tl)Ylm(p̂). Comparing this result with
(7.49), we see that

tl = (vl − Fsl tl). (7.50)

This is the symmetry resolved version of (7.47). Consequently3,

tl =
vl

1 + Fsl
. (7.51)

We may interpret tl as the scattering t-matrix associated with the potential vl. If Fsl > 0 is repul-
sive, negative feedback occurs which causes the response to be suppressed. This is normally the
case in the isotropic channel, where repulsive interactions tend to suppress the polarizability of the
Fermi surface. By contrast, if Fsl < 0, corresponding to an attractive interaction, positive feed-
back enhances the response. Indeed, if Fsl drops down to the critical value Fsl = −1, an instability
will occur and the Landau Fermi surface becomes unstable to a deformation - a process called a
“Pomeranchuk” instbality.

A similar calculation can be carried out for a spin-polarization of the Fermi surface, where the
shift in the quasiparticle energies are

δε(0)
pσ = σval Ylm(p̂), δεpσ = σtal Ylm(p̂)

Now, the spin-dependent polarization of the Fermi surface feeds back via the spin-dependent Landau
parameters so that

tal =
val

1 + Fal
. (7.52)

The isotropic response (l = 0) corresponds to a simple spin polarization of the Fermi surface. If
spin interactions grow to the point where Fa0 = −1, the Fermi surface becomes unstable to the
formation of a spontaneous spin polarization: this is called a “Stoner” instability, and results in
ferromagnetism.

Example 7.3: Calculate the response of the quasiparticle energy to a charge, or spin polariza-
tion with a specific multipole symmetry.

3Note: in Landau’s original formulation[? ], the Landau parameters were defined without the normalizing factor
(2l + 1) in (7.58). With such a normalization the Fl are a factor of 2l + 1 larger and one must replace Fs

l →
1

2l+1F
s
l in

(7.51)
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1. Consider a spin-independent polarization of the Fermi surface of the form

δnpσ = −tlYlm(p̂) × δ(ε(0)
p )

where Ylm(p̂) is a spherical harmonic. Show that the resulting shift in quasiparticle ener-
gies is given by

δεpσ = −tlFs
l Ylm(p̂).

2. Determine the corresponding result for a magnetic polarization of the Fermi surface of
the form

δnpσ = −σtal Ylm(p̂) × δ(ε(0)
p )

Solution:
According to (7.24), the change in quasiparticle energy due to the polarization of the Fermi
surface is given by

δεpσ =
∑

p′σ′
fpσ,p′,σ′δnp′σ′ . (7.53)

Substituting δnpσ = −tlYlm(p̂) × δ(ε(0)
p ), then

δεpσ = −tl
∑

p′σ′
fpσ,p′,σ′Ylm(p̂′) × δ(ε(0)

p′ ). (7.54)

Decomposing the interaction into its magnetic and non-magnetic components fpσ,p′σ′ = f s(p̂ ·
p̂′) + σσ′ f a(p̂ · p̂′), only the non-magnetic survives the spin summation, so that

δεpσ = −tl × 2
∑

p′
f s(p̂ · p̂′)Ylm(p̂′) × δ(ε(0)

p′ ). (7.55)

Replacing the summation over momentum by an angular average over the Fermi surface

2
∑

p′
δ(ε(0)

p′ )→ N∗(0)
∫ dΩp̂′

4π
, (7.56)

we obtain

δεpσ = −tl × N∗(0)
∫ dΩp̂′

4π
f s(p̂ · p̂′)Ylm(p̂′)

= −tl
∫ dΩp̂′

4π
Fs(p̂ · p̂′)Ylm(p̂′) (7.57)

Now we can expand the interaction in terms of Legendre polynomials, which can, in turn be
decomposed into spherical harmonics

Fs(cos θ) =
∑

l
(2l + 1)Fs

l Pl(p̂ · p̂
′) = 4π

∑

l,m
Fs
l Ylm(p̂)Y∗lm(p̂′) (7.58)

When we substitute this into (7.56) we may use the orthogonality of the spherical harmonics to
obtain

δεpσ = −tl
∑

l′m′
Fs
l′Yl′m′ (p)

δl′ lδm′m︷!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!︷∫
dΩp′Y∗l′m′ (p̂

′)Ylm(p′)
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= −tlFs
l Ylm(p̂). (7.59)

For a spin-dependent polarization, δnpσ = −tal σYlm(p̂)δ(ε(0)
p ) it is the magnetic part of the inter-

action that contributes. We can generalize the above result to obtain

δεpσ = σtal × F
a
l Ylm(p̂).

7.4.1 Renormalization of Paramagnetism and Compressibility by interactions

The simplest polarization response functions of a Landau Fermi liquid are its “charge” and spin
susceptibility.

χc =
1
V
∂N
∂µ
, χs =

1
V
∂M
∂B
,

where V is the volume. Here, we use the term “charge” density to refer to the density response
function of the neutral Fermi liquid. These responses involve an isotropic polarization of the Fermi
surface. In a neutral fluid, the bulk modulus κ = −V dP

dV is directly related to the charge suscepti-
bility per unit volume, κ = n2

χc
, where n = N/V is the particle density. Thus a smaller “charge”

susceptibility implies a stiffer fluid. 4

When we change the apply a chemical potential or a magnetic field, the “bare” quasiparticle
energies respond isotropically.

δε(0)
pσ = δE

(0)
pσ − δµ = −σµFB − δµ. (7.60)

Feedback via the interactions renormalizes the response of the full quasiparticle energy

δεpσ = −σλsµFB − λcδµ. (7.61)

Since these are isotropic responses, the feedback is transmitted through the l = 0 Landau parameters

λs =
1

1 + Fa0
λc =

1
1 + Fs0

. (7.62)

When we apply a pure chemical potential shift, the resulting change in quasiparticle number is
δN = λcN∗(0)δµ, so the “charge” susceptibility is given by

χc = λcN∗(0) =
N∗(0)
1 + Fs0

. (7.63)

4In a fluid, where −∂F/∂V = P, the extensive nature of the Free energy guarantees that F = −PV , so that the Gibbs
free energy G = F + PV = 0 vanishes. But dG = −S dT − Ndµ + VdP = 0, so in the ground-state Ndµ = VdP and hence
κ = −V dP

dV

∣∣∣
N = −N

dµ
dV

∣∣∣
N , but µ = µ(N/V) is a function of particle density alone, so that −N dµ

dV

∣∣∣
N =

N2

V
dµ
dN

∣∣∣
V =

n2

χc
where

n = N/V . It follows that κ = n2

χc
.
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Typically, repulsive interactions cause Fs0 > 0, reducing the charge susceptibility, making the fluid
“stiffer”. In 3He, Fs0 = 10.8 at low pressures, which is roughly ten times stiffer than expected, based
on its density of states.

A reverse phenomenon occurs to the spin response of Landau Fermi liquids. In a magnetic field,
the change in the number of up and down quasiparticles is δn↑ = −δn↓ = λ2N

∗(0)µFB. The resulting
change in magnetization is δM = µF(δn↑ − δn↓) = λsµ2

FN
∗(0)B, so the spin susceptibility is

χs = λsµ
2
FN
∗(0) =

µ2
FN
∗(0)

1 + Fa0
. (7.64)

There are a number of interesting points to be made here:

• The “Wilson” ratio, defined as the ratio between χs/γ in the interacting and non-interacting
system, is given by

W =

(
χ
γ

)

(
χ
γ

)
0

=
1

1 + Fa0
.

In the context of ferromagnetism, this quantity is often referred to as the “Stoner enhance-
ment factor” In Landau Fermi liquids with strong ferromagnetic exchange interactions be-
tween fermions, Fa0 is negative, enhancing the Pauli susceptibility. This is the origin of the
enhancement of the Pauli susceptibility in liquid He − 3, where W ∼ 4. In palladium metal
Pd, W = 10 is even more substantially enhanced[? ].

• When a Landau Fermi liquid is tuned to the point where Fa0 → −1, χ → ∞ leading to a
ferromagnetic instability. This instability is called a “Stoner instability”: it is an example of
a ferromagnetic quantum critical point - a point where quantum zero-point fluctuations of the
magnetization develop an infinite range correlations in space and time. At such a point, the
Wilson ratio will diverge.

7.4.2 Mass renormalization

Using this formulation of the interacting Fermi gas, Landau was able to link the renormalization of
quasiparticle mass to the dipole component of the interactions Fs1. As the fermion moves through the
medium, the backflow of the surrounding fluid enhances its effective mass according to the relation

m∗ = m
(
1 + Fs1

)
. (7.65)

Another way to understand quasiparticle mass renormalization, is to consider the current carried by
a quasiparticle. Whether we are dealing with neutral, or physically charged quasiparticles, the total
number of particles is conserved and we can ascribe a particle current current vF = pF/m∗ to each
quasiparticle. We can rewrite this current in the form

vF =
pF
m∗
=

pF
m︸︷︷︸

bare current

−

backflow︷!!!!!!!!!︸︸!!!!!!!!!︷
pF
m

( Fs1
1 + Fs1

)
. (7.66)
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The first term is the bare current associated with the original particle, whereas the second term is
backflow of the surrounding Fermi sea (Fig. 7.4 ).

Backflow

p
m

−p
m




Fs

1
1+Fs

1





Figure 7.4: Backflow in the Landau Fermi liquid. The particle current in the absence of backflow is
p
m . Backflow of the Fermi liquid introduces a reverse current −

(
Fs1

1+Fs1

)
p
m .

“Mass renormalization” increases the density of states from N(0) = mpF
π2 → N∗(0) = m∗pF

π2 , i.e
it has the effect of compressing the the spacing between the fermion energy levels, which increases
the number of quasi-particles that are excited at a given temperature by a factorm∗/m: this enhances
the linear specific heat.

C∗V =
m∗

m
CV (7.67)

where CV is the Sommerfeld value for the specific heat capacity. Experimentally, the specific heat
of Helium-3 is enhanced by a factor of 2.8, from which we know that m∗ ≈ 3m.

Landau’s original derivation depends on the use of Gallilean invariance. Here we use an equiv-
alent derivation, based on the observation that backflow is a feedback response to the dipolar distor-
tion of the Fermi surface which develops in the presence of a current. This enables us to calculate the
mass renormalization in an analogous fashion to the renormalization of the spin susceptibility and
compressibility, carried out in (7.4) and (7.4.1), except that now we must introduce the conjugate
field to current - that is, a vector potential.

To this end, we imagine that each quasiparticle carries a conserved charge q = 1, and that
the flow of quasiparticles is coupled to a “fictitious” vector potential qA ≡ AN . The microscopic
Hamiltonian in the presence of the vector potential is then given by

H[AN] =
∑

σ

∫
d3x

1
2m
ψσ
†(x)

[
(−i!∇ − AN)2

]
ψσ(x) + V̂ (7.68)

where V̂ contains the translationally invariant interactions. Notice that effect of AN is to change
the momentum of each particle by −AN , so that H[AN] is in fact, the Hamiltonian transformed into
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Gallilean reference frame moving at speed u = AN/m. Landau’s original derivation did infact use
the Gallilean equivalence of the Fermi liquid to compute the mass renormalization.

Since the vector potential AN is coupled to a conserved quantity - the momentum, we can treat it
in the same way as a chemical potential or magnetic field. The linear term in AN in the total energy
is δĤ = −AN · P̂

m where P̂ is the conserved total momentum operator. For a non-interaction system
the change in the total energy for a small vector potential at fixed particle occupancies npσ is

δE = 〈δH〉 = −
〈P〉
m
· AN = −

∑

pσ
(

p
m
· AN)npσ. (7.69)

Provided the momentum is conserved, this is also the change in the energy of the interacting Fermi
liquid, at fixed quasiparticle occupancy, i.e. without backflow. In this way, we see that turning on
the vector potential changes

ε(0)
pσ → ε

(0)
pσ + δε

(0)
pσ (7.70)

where
δε(0)

pσ = −
p
m
· AN = −AN

pF
m

cos θ. (7.71)

Here, θ is the angle between the vector potential and the quasiparticle momentum. Thus the vector
potential introduces a dipolar potential around the Fermi surface. Notice how the conservation of
momentum guarantees it is the bare mass m∗ that enters into δε(0)

pσ.
Now when we take account of the feedback effect caused by the redistribution of quasiparticles

in response to this potential, the quasiparticle energy becomes Ep−qA =
(p−AN )2

2m∗ . Here, the replace-
ment of p→ p − qAN = p −AN is guaranteed because the quasiparticle carries the same conserved
charge q = 1 as the original particles. In this way, we see that in the presence of backflow, the
change in quasiparticle energy

δεpσ = −
p
m∗
· AN = −AN

pF
m∗

cos θ. (7.72)

involves the renormalized mass m∗.
Since the vector potential induces a dipolar perturbation to the Fermi surface, using the results

from section (7.4), we conclude that backflow feedback effects involve the spin symmetric l = 1
Landau Parameter, Fs1 (7.51),

δεpσ =

(
1

1 + Fs1

)
δε(0)

pσ (7.73)

Inserting (7.71) and (7.72) into this relation, we obtain

m
m∗
=

1
1 + Fs1

(7.74)

or m∗ = m(1 + Fs1).
Note that:
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• The Landau mass renormalization formula relies on the conservation of particle current when
the interactions are adiabatically turned on. In a crystal lattice, although crystal momentum
is still conserved, particle current is not conserved and at present, there is no known way
of writing down an expression for δε(0)

pσ and δεpσ in terms of crystal momentum, that would
permit derivation of a mass renormalization formula for electrons in a crystal.

• Since Fs1 = N∗(0) f s1 involves the renormalized density of states N∗(0) = m∗pF
π2 , the renor-

malized mass m∗ actually appears on both sides of (7.65). If we use (7.31 ) to rewrite
Fs1 =

m∗
m N(0) f s1 , where N(0) = mpF

π2 is the unrenormalized density of states, then we can
solve for m∗ in terms of m to obtain:

m∗ =
m

1 − N(0) f s1
. (7.75)

This expression predicts that m∗ → ∞ at N(0) f s1 = 1, i.e that the quasiparticle density of
states and hence the specific heat coefficient will diverge if the interactions become too strong.
This possibility was first anticipated by Neville Mott, who predicted that in presence of large
interactions, fermions will localize, a phenomonon now called a “Mott transition”.

There are numerous examples of “heavy electron” systems which lie close to such a localization
transition, in which m∗e/me >> 1. Quasiparticle masses in excess of 1000me have been observed via
specific heat measurements. In practice, the transition where the mass diverges is usually associated
with the development of some other sort of order, such as antiferromagnetism, or solidification.
Since the phase transition occurs at zero temperature, in the absence of thermal fluctuations, it is an
example of a “quantum phase transition”. Such mass divergences have been observed in a variety of
different contexts in charged electron systems, but they have also been observed as a second-order
quantum phase transition, in the solidification of two-dimensional liquid Helium-3 Mott transition.

7.4.3 Quasiparticle scattering amplitudes

In 8.3 we introduced the quasiparticle interactions fpσ,p′σ′ as the variation of the quasiparticle energy
εpσ with respect to changes in the quasiparticle occupancy δnp′σ′ , under the condition that the rest
of the Fermi sea stays in its ground-state

fpσ,p′σ′ =
δεpσ

δnp′σ′

∣∣∣∣∣∣np′′σ′′

=
1

N∗(0)

[
Fs(p̂ · p̂′) + σσ′Fa(p̂ · p̂′)

]
(7.76)

The quantity fpσ,p′σ′ can be regarded as a bare forward scattering amplitude between the quasipar-
ticles. It proves very useful to define the corresponding quantities when Fermi sea is allowed to
respond to the original change in quasiparticle occupancies, as follows:

apσ,p′σ′ =
δεpσ

δnp′σ′
=

1
N∗(0)

[
As(p̂ · p̂′) + σσ′Aa(p̂ · p̂′)

]
(7.77)

Microscopically, the quantities apσp′σ′ correspond to the t-matrix for forward-scattering of the
quasiparticles. These amplitudes can decoupled in precisely the same way as the Landau interaction
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(7.58),

Aα(cos θ) =
∑

l
(2l + 1)Aαl Pl(cos θ)

= 4π
∑

l,m
Aαl Ylm(p̂)Y∗lm(p̂′), (α = (s, a)) (7.78)

These two sets of parameters are also governed by the feedback effects of interactions:

Aαl =
Fαl

1 + Fαl
(α = s, a) (7.79)

The derivation of this relation follows closely the derivation of relations (7.51) and (7.52); we
now repeat the derivation by solving the “Bethe Salpeter” integral equation that links the scattering
amplitudes. The change in the quasiparticle energy is

δεpσ = fpσ,p′σ′δnp′σ′ +
∑

p′′σ′′!(p′,σ′)
fpσ,p′′σ′′δnp′′σ′′ , (7.80)

where the second term is the induced polarization of the Fermi surface (7.46 ), δnp′′σ′ = −δ(ε(0)
p′′ )δεp′′σ′ ,

so that
δεpσ = fpσ,p′σ′δnp′σ′ −

∑

p′′σ′′
fpσ,p′′σ′′δ(ε(0)

p′′ )δεp′′σ′ . (7.81)

Substituting δεpσ = apσp′σ′δnp′σ′ then dividing through by δnp′σ′ , we obtain

apσpσ′ = fpσ,p′σ′ −
∑

p′′σ′′
fpσ,p′′σ′′δ(ε(0)

p′′ )ap′′σ′p′σ′ . (7.82)

This integral equation for the scattering amplitudes is a form of Bethe-Saltpeter equation relating
the bare scattering amplitude f to the t-matrix described by a.

Now near the Fermi surface, we can decompose the scattering amplitudes using (7.76) and
(7.77), while replacing the momentum summation by an angular integral

∑
p′′ → 1

2N
∗(0)

∫
dε′′

∫ dΩp̂′′

4π
so that this equation becomes

Aα(p̂ · p̂′) = Fα(p̂ · p̂′) −
∫ dΩp̂′′

4π
Fα(p̂ · p̂′′)Aα(p̂′′ · p̂′) (7.83)

If we decompose F and T in terms of spherical harmonics using (7.58) and (7.78) in the second
term, we obtain

∫ dΩp̂′′

4π
Fα(p̂ · p̂′′)Aα(p̂′′ · p̂′) =

= (4π)2
∑

lm,l′m′
Fαl A

α
l′Ylm(p̂)

δll′δmm′/(4π)︷!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!︷∫ dΩp̂′′

4π
Y∗lm(p̂′′)Yl′m′(p̂′′) Y∗l′m′(p̂

′)
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1

3

a

P

Figure 7.5: Showing the geometry associated with quasiparticle scattering 1 + 2 → 3 + 4. The
momentum transfered in this process is q = |p4 − p1| = 2pF sin θ/2 cos φ/2. P = p1 + p2 is the
total incoming momentum. Landau parameters determine “forward scattering” processes in which
φ = 0.

= (4π)
∑

lm
Fαl A

α
l Ylm(p̂)Y∗lm(p̂′) =

∑

l
(2l + 1)Fαl A

α
l Pl(p̂ · p̂

′) (7.84)

Extracting coefficients of the Legendre Polynomials in (7.83), then gives Aαl = Fαl − F
α
l A
α
l from

which the result

Aαl =
Fαl

1 + Fαl
(α = s, a) (7.85)

follows. The quasiparticle processes described by these scattering amplitudes involve no momentum
transfer between the quasiparticles. Geometrically, scattering processes in which q = 0 correspond
to a situation where the momenta of incoming and outgoing quasiparticles lie in the same plane.
Scattering processes which involve situations where the plane defined by the outgoing momenta is
tipped through an angle φ with respect to the incoming momenta, as shown in Fig. 7.5 involve a
finite momentum transfer q = 2pF | sin θ/2 sin φ/2|. Provided this momentum transfer is very small
compared with the Fermi momentum, i.e φ << 1 then one can extend the t-matrix equation as
follows

Aαl (q) =
Fαl (q)

1 + Fαl (q)
(q << pF). (7.86)
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It is important to realize however, that Landau Fermi liquid theory is however, only really reliable
for those processes where φ ∼ 0 is small.

7.5 Collective modes

The most common collective mode of a fluid or a gas is “sound”. Conventional sound results from
collisions amongst particles which redistribute momentum within the fluid - as such, sound is a
“low-frequency” phenomenon that operates at frequencies much smaller than the typical quasipar-
ticule scattering rate τ−1, i.e ω << τ−1 or ωτ << 1. One of the startling predictions of Landau
Fermi liquid theory, is the existence of a collionless collective mode that operates at high frequen-
cies ωτ >> 1, “zero sound”. Zero sound is associated with collective oscillations of the Fermi
surface and it does not involve collisions. Whereas conventional sound travels at a speed below
the Fermi velocity, zero-sound is “supersonic” traveling at speeds in excess of the Fermi veloc-
ity. Historically, the observation of zero-sound in liquid He-3 clinched Landau Fermi liquid, firmly
establishing it as a foundation of fermionic many-body physics.

Let us now contrast “zero ” and “first” sound. Conventional sound is associated with oscillations
in the density of a fluid, and hydrodynamics tells us that

u2
1 =
κ

ρ
=
κ

mn

where ρ = mn is the density of the fluid and κ = −V ∂P∂V is the bulk modulus. From our previous
discussion, κ = n2

χc
and χc = N∗(0)/(1 + Fs0), so the velocity of first sound in a Fermi liquid is given

by
u2

1 =
n
mχc

=
n

mN∗(0)
(1 + Fs0)

Replacing n = p2
F

3π2 , N∗(0) = m∗pF
π2 , and m = m∗/(1 + Fs1) we obtain

u2
1 =

v2
F
3

(1 + Fs0)(1 + Fs1) (7.87)

In the non-interacting limit, u1 = vF/
√

3 is smaller than the Fermi velocity.
To understand of zero-sound we need to consider variations in the quasiparticle distribution

function np(x, t). Provided that the characteristic frequency ω and wavevector q of these fluctuations
are much respectively smaller than the Fermi energy ω << εF and the Fermi wave-vector q << kF
respectively, then fluctuations in the quasiparticle occupancy can be treated semi-classically, and
this leads to a Boltzmann equation

Dnpσ

Dt
= I[

{
npσ

}
]

where

Dnpσ

Dt
=
∂npσ

∂t
+ ẋ · ∇xnpσ + ṗ · ∇pnpσ (7.88)
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is the total rate of change of the quasiparticle occupancy npσ(x, t), taking into account the movement
of quasiparticles through phase space. I is the collision rate. In a semi-classical treatment, the rate
of change of momentum and position are determined from Hamilton’s equations ṗ = −∇xεp and
ẋ = ∇pεp, so that

Dnpσ

Dt
=
∂npσ

∂t
+ ∇pεp · ∇xnpσ − ∇xεpσ · ∇pnpσ (7.89)

We now consider small fluctuations of the Fermi surface defined by

np(x, t) = f (ε(0)
p ) + eiq·x−iωtαpσ (7.90)

where αpσ is the amplitude of the fluctuations. Now the terms contributing to the total rate of change
Dnpσ/Dt are of order O(ωδn), whereas the collision term I[n] ∼ O(τ−1δn) is of order the collision
rate τ−1. In the high frequency limit, ωτ >> 1 the collision terms can then be neglected, leading to
the collisionless Boltzmann equation:

∂npσ

∂t
+ ∇pεp · ∇xnpσ − ∇xεpσ · ∇pnpσ = 0. (7.91)

For small periodic oscillations in the Fermi surface, the first two terms in (7.91) can be written

∂npσ

∂t
+ ∇pεp · ∇xnpσ = −i(ω − vF · q)αpσeiq·x−iωt

In the last term of (7.91), the position dependence of the quasiparticle energies derives from inter-
actions

∇xεpσ =
∑

σ′

∫

p′
fpσ,p′σ′∇xnp′,σ′

= iqeiq·x−iωt
∑

σ′

∫

p′
fpσ,p′σ′αp′,σ′ (7.92)

Replacing ∇pnpσ =
∂ f
∂ε vF , the collisionless Boltzmann equation becomes:

(ω − vF · q)αpσ + vF · q
(
−
d f
dε

)∑

σ′

∫

p′
fpσ,p′σ′αp′,σ′ = 0 (7.93)

For a mode propagating at speed u, ω = uq. If we express vF .q = vFq cos θp, and write the mode
velocity as a factor s times the Fermi velocity, u = svF , then this becomes

(s − cos θp)αpσ + cos θp
(
−
d f
dε

)∑

σ′

∫

p′
fpσ,p′σ′αp′,σ′ = 0 (7.94)

We see that the fluctuations in occupancy associated with a zero-sound mode, αpσ = ησ(p̂)
(
− d fdε

)

are proportional to the energy derivative of the Fermi function, and thus confined to within an energy
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scale T of the Fermi surface. The function ησ(p̂) describes the distribution around the Fermi surface,
and this function satisfies the self-consistent relation

ησ(p) =
cos θp

2(s − cos θp)

∑

σ′

∫ dΩp′

4π
Fpσ,p′σ′ησ(p̂′) (7.95)

For spin-independent zero-sound waves, the right-hand side only involves Fs and can be written

η(p) =
cos θp

(s − cos θp)

∫ dΩp′

4π
Fsp,p′η(p̂

′) (7.96)

To illustrate the solution of this equation, consider the case where the interaction is entirely
isotropic and spin-independent, so that the only non-vanishing Landau parameter is Fs0. In this case,
the angular function is spin-independent and given by

η(θ) = A
cos(θ)

s − cos(θ)

where A is a constant. Substituting this form into the integral equation, we obtain the following
formula for s = u/vF ,

A =
∫ 1

−1

dcosθ
2

cosθ
s − cosθ

AFs0 = AF
s
0

[
−1 +

s
2

ln
(
s + 1
s − 1

)]

so that
s
2

ln
(
s + 1
s − 1

)
− 1 =

1
Fs0
. (7.97)

For large s, the function on the l.h.s. behaves vanishes asymptotically as 1/(3s2), and since the r.h.s.
vanishes at large interaction, Fs0, it follows that for large interaction strength the zero-sound velocity
is much greater than vF ,

u = svF = vF

√
Fs0
3
, (Fs0 >> 1). (7.98)

For small interaction strength, s→ 1, and the zero-sound velocity approaches the Fermi velocity.
Experimentally, zero sound has been observed through a variety of methods. Low frequency

zero sound couples directly to vibrations at the wall of the fluid, and can be detected directly as a
propagating density mode. Zero sound can also be probed at higher frequencies using neutron and
X-ray scattering. Neutron scattering experiments find that at high frequencies, the zero sound mode
enters back into the particle-hole continuum, where, as a damped excitation, it acquires a “roton”
minimum similar to collective modes in bosonic 4-He.

7.6 Charged Fermi Liquids: Landau-Silin theory
One of the most useful extensions of the Landau Fermi liquid theory is to charged Fermi liquids,
which underpins our understanding of electrons in metals. Charged Fermi liquids present an addi-
tional challenge, because of the long-range Coulomb interaction. The extension of Landau Fermi
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liquid theory to incorporate the long-range part of the Coulomb interaction was originally made by
Silin[? ? ]. In neutral Fermi liquids, the existence of well-defined Landau interaction parameters
depends on a short-range interaction V(q) with a well-defined zero momentum limit q→ 0 (see also
example 8.2). Yet the long-range Coulomb interaction V(q) = e2

ε0q2 is singular as q → 0. Charged
quasiparticles act as sources for an electric potential which satisfy Gauss’ law

∇2φP =
e
ε0

∑

p
δnpσ(x) Polarization field (7.99)

The field EP = −∇φP that this produces polarizes the surrounding quasiparticle fluid to form a
“polarization cloud” around the quasiparticle which screens its charge, so that the net interaction
between screened quasiparticles has a finite range. Nevertheless, this poses a subtle technical prob-
lem for screening requires a collective quasiparticle response, yet the Fermi liquid interactions are
determined by variation of the quasiparticle energy in response to a change in quasiparticle occu-
pancy against an otherwise frozen (and hence unpolarized) Fermi sea:

fpσ,p′σ′(x, x′) =
δεpσ(x)
δnp′σ′(x′)

∣∣∣∣∣∣
δnp′′σ′′=0

In a frozen Fermi sea, the quasiparticle interaction must then be unscreened at large distances,
forcing it to be singular as q→ 0.

The solution to this problem was proposed by Silin in 1957. Silin proposed splitting the electric
potential φ produced by charged particles into two parts: a long range classical polarization field φP
considered above, and a short-range, fluctuating quantum component

φ(x) = φP(x) + δφQ(x) (7.100)

The quantum component is driven by the virtual creation of electron hole pairs around a charged
particle. These processes involve momentum transfer of order the Fermi momentum pF , are hence
localized to within a short distance of order the quasiparticle de Broglie wavelength λ ∼ h/pF
around the quasiparticle. Silin proposed that these virtual fluctuations in the electric potential intro-
duce a second, short-range component to the quasiparticle interactions. Silin’s theory isolates the
polarization field as a separate term, so that the quasiparticle energy is written

εpσ(x) = ε(0)
p + eφP(x) +

∑

p′σ′
f̃pσ,p′σ′δnp′σ′(x) (7.101)

In momentum space, the change in the quasiparticle energy is given by

δεpσ(q) = eφP(q) +
∑

p′σ′
f̃pσ,p′σ′δnp′σ′(q)

However, Gauss’ law implies that eφ(q) = e2

ε0q2
∑

p′σ′ δnp′σ′(q). Combining these results together,
we see that

δεpσ(q) =
∑

p′σ′

(
e2

ε0q2 + f̃pσ,p′σ′
)
δnp′σ′(q)
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In other words, the effective interaction takes the form (see Fig. 7.6)

fpσ,p′σ′(q) =

Long range interaction
from polarization field

︷︸︸︷
e2

ε0q2 + f̃pσ,p′σ′
︸!!!!︷︷!!!!︸

Short-range residual in-
teraction

(7.102)

x

fpσp′σ′δ3(x − x′) e2

4πε0|x−x′′|

x′

x′′
p′

h/pF

p′

p

p

p′

p

Figure 7.6: Interactions of a charged Fermi liquid. The short-range part of the interaction results
from quantum fluctuations of the polarization field (see exercise 8.??). The long range component
of the interaction derives from the induced polarization field around the quasiparticle.

There are a number of points to emphasize about Silin’s theory:

• When the interaction is decomposed in terms of (q-dependent) Landau parameters, the singu-
lar interaction only enters into the l = 0, spin symmetric component; all the other components
are determined by f̃pσp′σ′ , so that

Fsl (q) =
e2N∗(0)
ε0q2 δl0 + F̃

s
l (7.103)

and Fal = F̃
a
l .

• The Landau-Silin theory can be derived in a Feynman diagram formalism. In such an ap-
proach, the short-range part of the interaction is associated with multiple scattering off the
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Coulomb interaction.

• The short-range interaction f̃pp′ is a quantum phenomenon, distinct from classical “Thomas-
Fermi” screening of the quasiparticle charge, which result from the polarizing effects of the
long-range, 1/q2 component of the interaction.

To illustrate this last point, let us calculate the linear response of the quasiparticle density
δρ(q) = χc(q)δµ(q) to a slowly varying chemical potential δµ(x) = δµ(q)eiq·x, where χc(q) is the
charge susceptibility. In a neutral Fermi liquid, for q << pF , the long-wavelength density response
is determined by χc(q) ≈ χn, where

χn =
N∗(0)
1 + Fs0

as found in eq. (7.63). In the charged Fermi liquid, we replace Fs0 → Fs0(q) = e2N∗(0)
ε0q2 + F̃ s0, which

gives

χc(q) =
N∗(0)

1 + ( e
2N∗(0)
ε0q2 + F̃ s0)

=
χn

1 + κ2q2

=
χn

1 + e2

ε0q2χn

where κ2 = e2

ε0
χn defines a “Thomas Fermi” screening length lTF = κ−1. At large momenta q >> κ

(distances x << lTF), the response is exactly that of the neutral fluid, but at small momenta q << κ,
(distances x >> lTF), the charge density response is heavily suppressed.

Historically, the Landau Silin approach changed the way of thinking about metal physics. In
early many body theory of the electron gas, the singular nature of the Coulomb interaction was a pri-
mary focus, and many body physics in the 1950s was in essence the study of quantum plasmas. With
Landau Silin theory, the long-range Coulomb interaction becomes a secondary interest, because this
component of the interaction is unrenormalized and can be added in later as an afterthought. This is
a major change in philosophy which shifts our interest to the short-range components of the quasi-
particle interactions. In essence, the Landau Silin observation liberates us from the singular aspects
of the Coulomb interaction, and enables us to treat the physics of strongly correlated electrons as a
close companion to other neutral Fermi systems.

Example 7.4: Calculate the scattering t-matrix in Landau-Silin theory to display the screening
effect of the long range interaction.
Solution:
If we introduce a small modulation in the quaisparticle occupancy at momentum p′, while
“freezing” the rest of the Fermi sea, then the change in the quasiparticle energies will pick up a
modulation given by

δε(0)
p (q) = f sp,p′(q)δnp′ (q) (7.104)

where f sp,p′ =
(
e2

ε0q2 + f̃ sp,p′
)

is the spin symmetric part of the interaction. (For convenience we
temporarily drop the spin indices from the subscripts). If we now allow the quasiparticle sea to
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polarize in response to the this change in energy, the change in quasiparticle energies will take
the form

δεp(q) = asp,p′(q)δnp′ (q) (7.105)

where as is the screened quasiparticle interaction to be calculated. At low momenta q in an
isotropic system, both f and a can be expanded in spherical harmonics, as in (7.58), by writing

f sp,p′(q) =
4π

N∗(0)

∑

l
Fs
l (q)Ylm(p̂)Y∗lm(p̂′),

asp,p′ (q) =
4π

N∗(0)

∑

l
Asl (q)Ylm(p̂)Y∗lm(p̂′), (7.106)

For very small q, we can solve for the relationship between T s
l and Fs

l using the methods of
section (7.4.3), which gives

Asl (q) =
Fs
l (q)

1 + Fl(q)
But from (7.103), the q dependence only enters into the l = 0 component of the spin-symmetric
scattering, where F0(q) = e2N∗(0)

ε0q2 + F̃0 so that

As0(q) =
e2N∗(0)
ε0q2 + F̃0

1 + e2N∗(0)
ε0q2 + F̃0

=
κ2/(1 + F̃ s

0)
(κ2 + q2)

+ As(neutral)0

where Aneutral0 =
F̃ s

0
1+F̃ s

0
is the l = 0 scattering t-matrix of the equivalent neutral Fermi liquid. Since

all other components are unchanged by the long-range Coulomb interaction, it follows that the
interaction t-matrix of the charged Fermi liquid is a sum of the original neutral interaction, plus
a screened Coulomb correction:

apσ,p′σ(q) =
1

(1 + F̃ s
0)2

e2

ε0(q2 + κ2)
+ a(neutral)

pσ,p′σ′ . (7.107)

Note how the residual “Coulomb” part of the t-matrix is heavily suppressed when F̃ s
0 becomes

large.

7.7 Inelastic Quasiparticle Scattering

7.7.1 Heuristic derivation.

In this section we show how the Pauli exclusion principle limits the phase for scattering of quasi-
particles in a Landau Fermi liquid, giving rise to a scattering rate with a quadratic dependence on
excitation energy and temperature

1
τ
∝ [ε2 + π2T 2].
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The dominant decay mode of a quasiparticle is into three quasiparticles. There are also higher order
processes that involve a quasiparticle decaying into a quasiparticle, and n particle-hole pairs:

2n+2

1

2
3

5

4

2n2n+1

a
We’ll see that the phase space for these higher order decay processes vanishes with a high power of
the energy (∝ ε2n+1), allowing us to neglect them relative to the leading process at low temperature
and energy. For our discussion, we will denote a hole in the quasiparticle state j as j̄, denoting the
quasihole energy by ε̃ j = −ε j > 0. By the Golden Rule, the rate of decay into n particle-hole pairs
is

Γ2n+1(ε1) ∼
2π
!

∑

2,3...2n+2
ε̃2 ,ε3 ···>0

|a(1; 2̄, 3, . . . , 2n + 2)|2δ[ε1 − (ε̃2 + ε3 + ε̃4 · · · + ε2n+2)] (7.108)

where a(1; 2̄, 3, . . . 2n + 1) is the amplitude for the scattering process, ε̄2, ε̄4, . . . ε̄2n . . . denote the
energies of the outgoing quasiholes and ε3, ε5 . . . ε2n+1, ε2n+2 denote the energies of the outgoing
quasiparticles. The energies of the final state quasi- particles and holes must all be positive, while
also summing up to give the initial energy. When the incoming particle is close to the Fermi energy,
ε and the all final state energies ε1 > εi > 0 must also lie close to the Fermi energy, so so we can
replace |a|2 by an appropriate Fermi surface average

〈|a2n+1|2〉 =
∑

2,3,...2n+2
|a(1; 2̄, 3, . . . 2n + 2)|2δ(ε̃2) . . . δ(ε2n+1).

to obtain 5

Γ2n+1(ε) ∼
2π
!
〈|a2n+1|2〉

∫ ∞

0
dε̃2 . . . dε2n+1δ[ε − (ε̃2 + . . . ε2n+1)] ∝

ε2n

(2n)!
. (7.109)

5Formally this is done by inserting 1 =
∏2n+1

i=1

∫ ∞
−∞ dεiδ(εi) into (7.108),
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In this way6, the phase space for decay into 2n + 1 quasiparticles vanishes as ε2n1 . This means that
near the Fermi surface, quasiparticle decay is dominated by the decay into two quasi-particles and
a quasihole, denoted by 1 −→ 2̄ + 3 + 4 as illustrated in Fig. (7.7).

(a) (b)

ε2

ε3
ε4

ε1

2

3

1

4

a

Figure 7.7: Decay of a quasiparticle into two quasiparticles and a quasihole. (a) Scattering process.
(b) Energies of final states.

The decay rate for this process is given by

Γ(ε) =
2π
!
〈|a3|2〉

ε2

2

On dimensional grounds, we expect the averaged squared matrix element to scale as 〈|a3|2〉 ∼ w2

εF
,

where w is a dimensionless measure of the strength of the scattering, so that Γ ∼ 2π
!

ε2

εF
.

7.7.2 Detailed calculation of three body decay process

We now present a more detailed calculation of quasiparticle decay, deriving a result that was first
obtained by Abrikosov and Khalatnikov in 1957[? ]. The amplitude to produce an outgoing hole in
state 2̄ is equal to the amplitude to absorb an incoming particle in state 2, so we denote

a(1 −→ 2̄ + 3 + 4) = a(1 + 2 −→ 3 + 4) ≡ a(1, 2; 3, 4)

Using Fermi’s golden rule, the net scattering rate into state 1 is given by

I[np] =
2π
!

∑

2,3,4
|a(1, 2; 3, 4)|2

[ 2̄ + 3 + 4→ 1︷!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!︷
(1 − n2)n3n4(1 − n1)−

1→ 2̄ + 3 + 4︷!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!︷
n1n2(1 − n3)(1 − n4)

]

6This last integral can be done by regarding the εr as the differences ε j = s j − s j−1 between an ordered set of co-
ordinates s2n+1 > s2n · · · > s1 where s0 = 0, so that

∫ ∞

0
dε1 . . . dε2n+1︸!!!!!!!!!︷︷!!!!!!!!!︸
=ds1 ...ds2n+1

δ[ε −
s2n+1︷!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!︷

(ε1 + ε2 + . . . ε2n+1)] =
∫ ∞

0
ds2n+1δ(ε − s2n+1)

∫ s2n+1

0
ds2n . . .

∫ s2

0
ds1 =

ε2n

(2n)!
.
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× (2π!)3δ(3)(p1 + p2 − p3 − p4) δ(ε1 + ε2 − ε3 − ε4) (7.110)

where
∑

2
≡

∫ d3p
(2π!)3 denotes a sum over final state momenta, and the delta functions impose the

conservation of momentum and energy, respectively. The terms inside the square brackets determine
the à priori probabilities for the scattering process. For scattering into state 1, the initial states must
be occupied and the final state must be empty, so the à priori probability is (1 − n2)n3n4 × (1 − n1),
where (1−n2) is the probability that the quasihole state 2̄ is occupied and n3n4 is the probability that
3 and 4 are occupied, while (1 − n1) is the probability that the final quasiparticle state 1 is empty.
The second term in the brackets describes the scattering out of state 1, and can be understood in a
similar way.

In thermal equilibrium, the scattering rate vanishes I[n(0)
p ] = 0 and for small deviations from

equilibrium, we may expand the collision integral to linear order in δnp = np − n(0)
p , identifying the

coefficient as the quasiparticle decay rate as follows, I[np] = −Γδn1 + O(δn2
p), where Γ = − δIδn1

, or

Γ =
2π
!

∑

2,3,4
|a(1, 2; 3, 4)|2

[
n2(1 − n3)(1 − n4) + (1 − n2)n3n4

]

× (2π!)3δ(ε1 + ε2 − ε3 − ε4)δ(3)(p1 + p2 − p3 − p4). (7.111)

The occupation factors in the square brackets impose the Fermi statistics. These terms are easiest to
understand at absolute zero, where np = θ(−εp) restricts εp < 0 and 1 − np = θ(εp) restricts εp > 0.
The first term n2(1 − n3)(1 − n4) enforces the constraint that the excitation energies −ε2, ε3, ε4 > 0
are all positive. (Recall that the ε j refer to quasiparticle energies, so −ε2 = ε̄2 is the excitation energy
of the outgoing hole in state 2̄.) At absolute zero, the second term (1 − n2)n3n4 is zero unless the
excitation energies are negative, and vanishes when ε1 > 0. Now the delta function δ(ε1+ε2−ε3−ε4)
enforces energy conservation, ε̄2 + ε3 + ε4 = ε1. Together with the requirement that the scattered
quasiparticle energies are positive, this term forces all three excitation |ε2,3,4| energies to be smaller
than ε. In this way, we see that for small ε, the final quasiparticle states must lie very close to the
Fermi momentum.

With this understanding, at low tempertures, we can replace the integrals over three dimensional
momentum by the product of an energy and an angular integral over the direction of the momenta
on the Fermi surface: ∑

p′
→

N∗(0)
2

∫ dΩp̂′

4π
×

∫
dε′,

This factorization between the energy and momentum degrees of freedom is a hallmark of the
Landau Fermi liquid. Using it, we can factorize (7.111) into two parts

Γ =
2π
!

angular average
︷!!!!︸︸!!!!︷〈
|a3|2

〉
×

energy phase space integral
︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷〈
n2(1 − n3)(1 − n4) + (1 − n2)n3n4

〉

ε2,ε3,ε4
, (7.112)

where
〈
|a3|2

〉
=

(
N∗(0)

2

)3 ∫
dΩ2dΩ3dΩ4

(4π)3 |a(1, 2; 3, 4)|2(2π!)3δ(3)[pF(n̂1 + n̂2 − n̂3 − n̂4)]
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is the angular average and

〈. . . 〉ε2,ε3,ε4 =
∫

dε2dε3dε4δ(ε1 + ε2 − ε3 − ε4)
[
. . .

]

is the energy phase space integral. At absolute zero, the argument of the phase space integral restricts
the final states to have positive excitation energies, giving ε

2
1
2 , as obtained from (7.109) for n = 1. At

finite temperature (see example), thermal broadening leads to an additional quadratic temperature
dependence to the phase space integral7

〈
n2(1 − n3)(1 − n4) + (1 − n2)n3n4

〉

ε2,3,4
=

1
2

(
ε21 + (πkBT )2

)

To calculate the average squared matrix element, it is convenient to first ignore the spin of the
quasiparticle. To evaluate the angular integral, we need to consider the geometry of the scattering
process near the Fermi surface, which is illustrated in Fig. (7.5). At low temperatures, all initial
and final momenta lie on the Fermi surface, |p j| = pF . The total momentum in the particle-particle
channel is P = p1 + p2. Suppose the angle between p1 and p2 is θ, so that each of these momenta
subtends an angle θ/2 with P as shown in Fig. 7.5, then |P| = 2pF sin θ/2. Now since the total
momentum is conserved, p3 + p4 = P also, so that |p3 + p4| = 2pF sin θ/2, which means that p3
and p4 also subtend an angle θ/2 with P. However, in general, the planes defined by p1,2 and p3,4
are not the same, and we denote the angle between them by φ. In general, the scattering amplitude
a(θ, φ) will be a function of the two angles, θ and φ. In this way, we can parameterize the scattering
amplitude by a(θ, φ).

A detailed evaluation of the angular integral 〈|a3|2〉 (see example 8.4), leads to the result

〈|a3|2〉 =
1
2
× π2

(
N∗(0)!

2pF

)3 〈
|a(θ, φ)|2

2 cos θ/2

〉

Ω

(7.113)

where 〈
|a(θ, φ)|2

2 cos θ/2

〉

Ω

≡
∫

d cos θdφ
4π

(
|a(θ, φ)|2

2 cos θ/2

)

denotes a weighted, normalized angular average of the scattering rate over the Fermi surface. For
identical spinless particles, the final states with scattering angle φ and φ+π are are indistinguishable,
and the pre-factor of one half is introduced into (7.113) to take into account the overcounting that
occurs when we integrate from φ = 0 to φ = 2π.

The complete scattering rate for a spinless quasiparticle is then given by

Γ =
2π
!
×

〈 1
2 |a(θ, φ)|2

2 cos θ/2

〉

Ω

π2
(
N∗(0)!

2pF

)3
×

(
ε2 + (πkBT )2

2

)
(7.114)

7The first term in the phase space integral corresponds to the decay 1→ 2̄+ 3+ 4 of a quasiparticle, while the second
term describes the regeneration of quasiparticles via the reverse process 2̄ + 3 + 4 → 1. The classic treatment of the
quasiparticle decay given by Abrikosov and Khaltnikov[? ? ], reproduced in Pines and Noziéres and in Mahan, only
includes the first process, which introduces an additional factor 1/(1 + e−βε1 ) into this expression.
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Let us now consider how this answer changes when we reinstate the spin of the quasiparticles. In
this case, we must sum over the two spin orientations of quasiparticle 2, corresponding the case
where the spin of 1 and 2 are either parallel (A↑↑) or antiparallel (A↑↓). When the spins of the two
quasiparticles are parallel they are indistinguishable and we must keep the factor of 1

2 , but when the
spins are antiparallel, the particles are distinguishable and this factor is omitted. So to take account
of spin, we must replace

1
2
|a(θ, φ)|2 →

1
2
|a↑↑(θ, φ)|2 + |a↑↓(θ, φ)|2

in (7.114). Following the original convention of Abrikosov and Khalatnikov [? ], we denote

2π
!

(
|a↑↓(θ, φ)|2 +

1
2
|a↑↑(θ, φ)|2

)
= 2W(θ, φ).

Applying these substutions to (7.114), and writing N∗(0) = m∗pF/(π2!3), we obtain

Γ =
(m∗)3

8π4!6

〈
W(θ, φ)

2 cos θ/2

〉

Ω

× (ε2 + (πkBT )2) (7.115)

This result was originally obtained by Abrikosov and Khalatnikov in 1957[? ]. An alternative
way to rewrite this expression is identify the normalized scattering amplitudes N∗(0)aαβ(θ, φ) =
Aαβ(θ, φ) ≡ Aαβ(q) with the dimensionless t-matrix introduced in section (7.4.3). From this we see
that the average matrix elements can be written in terms of a dimensionless parameter w2

w2 =

〈 |A↑↓(θ, φ)|2 + 1
2 |A↑↑(θ, φ)|

2

2 cos θ/2

〉

Ω

.

In many strongly interacting systems, w is close to unity. Using this notation, the scattering rate
(7.115) can be written in the form

Γ =
2π
!

〈|a3 |2〉︷!!︸︸!!︷(
w2

16εF

) [
ε2 + (πkBT )2

2

]
(7.116)

Apart from the factor of 16 in the denominator, this is what we guessed on dimensional grounds.
There are two important regimes of behaviour to note:

• |εp| << πkBT : Γ ∝ T 2. Near the Fermi surface, quasiparticles are thermally excited, with a
T 2 scattering rate that is independent of energy.

• |εp| >> πkBT : Γ ∝ ε2p. For higher energy quasiparticles, the scattering rate is quadratically
dependent on energy.
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1

n3

2n

n4

n

Figure 7.8: Co-ordinate system used to calculate the angular average of the scattering amplitude.

Example 7.5: Calculate the angular average of the scattering amplitude

〈
|a3|2

〉
=

(
N∗(0)

2

)3 ∫
dΩ2dΩ3dΩ4

(4π)3 |a(1, 2; 3, 4)|2(2π!)3δ(3)[pF(n̂1 + n̂2 − n̂3 − n̂4)]

in the dominant quasiparticle decay processes.

Solution: We first replace δ(3)[pF(n̂1 + n̂2 − n̂3 − n̂4)]→ 1
p3
F
δ(3)[n̂1 + n̂2 − n̂3 − n̂4], so that

〈
|a3|2

〉
=

(
N∗(0)!

4pF

)3 ∫
dΩ2dΩ3dΩ4δ

(3)[n̂1 + n̂2 − n̂3 − n̂4]|a(1, 2; 3, 4)|2 (7.117)

To carry out the angular integral, we use polar co-ordinates for n̂2 ≡ (θ, φ2), n̂3 ≡ (θ3, φ3) and
n̂4 = (θ4, φ4), (as illustrated in Fig. 7.8), where θ and φ2 are the polar angles of n2 relative to
n1, θ3,4 are the angles between n̂3,4 and the direction of the total momentum P̂, while φ3 is the
azimuthal angle of n3 measured relative to the plane defined by n̂1 and n̂2 and φ4 is azimuthal
angle of n4 measured relative to the common plane of n̂3 and P̂. The delta function in the
integral will force n̂3 and n̂4 to lie in a place, so that ultimately, we only need to know the
dependence of the amplitude a(θ, φ3) on θ and φ3.
Taking the z-axis to lie along P̂ and choosing the y axis to lie along P̂ × n̂3, then in
this co-ordinate system, n̂1 + n̂2 = (0, 0, 2 cos θ/2), n̂3 = (sin θ3, 0, cos θ3) and n̂4 =
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(sin θ4 cos φ4, sin θ4 sin φ4, cos θ4), so that

n̂3 + n̂4 − n̂1 − n̂2
= (sin θ3 + sin θ4 cos φ4, sin θ4 sin φ4, cos θ3 + cos θ4 − 2 cos(θ/2))

Factorizing the three dimensional delta function into its x, y and z components gives

δ(3)[(n̂1 + n̂2 − n̂3 − n̂4)]
= δ[sin θ3 + sin θ4 cos φ4]δ[sin θ4 sin φ4]δ[cos θ3 + cos θ4 − 2 cos(θ/2)]

Integrating over dΩ4 = sinθ4dθ4dφ4 forces φ4 = π and θ4 = θ3 (note that φ4 = 0 satisfies the
second delta function, but this then requires that sin θ3 = − sin θ4 which is not possible when
θ3,4 ∈ [0, π]). Resolving the delta functions around these points, we may write

δ[sin θ3 + sin θ4 cos φ4]δ[sin θ4 sin φ4] =
δ(θ3 − θ4)

cos θ4
δ(φ4 − π)

sin θ4
.

When we carry out the integral over dΩ4 = sin θ4dθ4dφ4, we then obtain
∫

dΩ4δ
(3)[n̂1 + n̂2 − n̂3 − n̂4]|a(θ, φ3)|2 =

1
cos θ3

δ[2 cos θ3 − 2 cos(θ/2)]|a(θ, φ3)|2

Integrating over dΩ3 = dφ3d cos θ3 imposes θ3 = θ/2, so that
∫

dΩ3dΩ4δ
(3)[n̂1 + n̂2 − n̂3 − n̂4]|a(θ, φ3)|2 =

∫
dφ3

2 cos θ/2
|a(θ, φ3)|2

The azimuthal angle φ2 of n̂2 about n1 does not enter into the integral, so we may integrate over
this angle, and write the measure dΩ2 ≡ 2πd cos θ. The complete angular integral is then

∫
dΩ2dΩ3dΩ4δ

(3)[n̂1 + n̂2 − n̂3 − n̂4]|a(θ, φ3)|2 = 2π
∫

dφ3d cos θ
2 cos θ/2

|a(θ, φ3)|2.

Substituting this result into (7.117 ), the complete angular average is then

〈
|a3|2

〉
= π2

(
N∗(0)!

2pF

)3 ∫
d cos θdφ

4π
|a(θ, φ)|2

2 cos θ/2

where we have relabelled φ3 as φ. Notice (i) that the weighted angular average is normalized, so
that if |a(θ, φ)|2 = |a|2 is constant, 〈|a3|2〉 = π2

(N∗(0)!
2pF

)3
|a|2, and that (ii) since the denominator

in the average vanishes for θ = π, the angular average contributing to the quasiparticle decay
is weighted towards large angle scattering events in which the outgoing quasiparticles have
opposite momenta p3 = −p4. This feature is closely connected with the Cooper pair instability
discussed in Chapter 14.
Example 7.6: Compute the energy phase space integral

I(ε,T ) =
∫ ∞

−∞
dε2dε3dε4δ(ε + ε2 − ε3 − ε4)

[
n2(1 − n3)(1 − n4) + (1 − n2)n3n4

]
,

where ni ≡ f (εi) = 1/(eβε + 1) denotes the Fermi function evaluated at energy εi
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Solution: As a first step, we make a change of variable ε2 → −ε2, so that the integral becomes

I(ε,T ) =

∫ ∞

−∞
dε2dε3dε4δ(ε − (ε2 + ε3 + ε4))

[
(1 − n2)(1 − n3)(1 − n4) + n2n3n4

]

=

∫ ∞

−∞
dε2dε3dε4δ(ε − (ε2 + ε3 + ε4))

[
n2n3n4 + {ε ↔ −ε}

]

.

Next, we rewrite the delta function as a Fourier transform, δ(x) =
∫

dα
2π e

iαx, so that I(ε,T ) =
I1(ε,T ) + I1(−ε,T ), where

I1(ε,T ) =
1

2π

∫
dαdε2dε3dε4eiα[ε−(ε2+ε3+ε4)][n2n3n4

]
.

By carrying out a contour integral around the poles of the Fermi function f (z) at z = iπT (2n+1)
in the lower half plane, we may deduce

∫ ∞

−∞
dεe−i(α+iδ)ε f (ε) = 2πiT

∞∑

n=0
e−(α+iδ)πT (2n+1) =

πiT
sinh(α + iδ)πT

,

where a small imaginary part has been added to α to guarantee convergence. This enables us to
carry out the energy integrals in I1(ε,T ), obtaining

I1(ε,T ) =
∫

dα
2π
eiαε

(
πiT

sinh(α + iδ)πT

)3

Now to carry out this integral, we need to distort the contour into the upper half complex plane.
The function 1/ sinh(α + iδ)πT has poles at α = in/T − iδ, so the distorted contour wraps
around the poles with n ≥ 0. The cube of this function, has both triple and simple poles at
these locations. To evaluate the residues of these poles, we expand sinhαπT to third order in
δα = (α − in

T ) about the poles, to obtain

sinhαπT = (−1)nπTδα
(
1 +

(πT )2

3!
δα2

)
+ . . .

So that near the poles,
( iπT
sinhαπT

)3
= −i

(−1)n

δα3

(
1 −

(πT )2

2
δα2

)

= −i(−1)n
(

1
δα3 −

(πT )2

2δα

)

The complete contour integral becomes

I1(ε,T ) =

∞∑

n=1
(−1)n

∮
dα
2πi




1
(α − in

T )3
−

1
2

(πT )2

(α − in
T )


 eiαε

= −
∞∑

n=1
(−1)n

∮
dα
2πi

1
(α − in

T )

[
ε2

2
+

(πT )2

2

]
eiαε
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= −
[
ε2

2
+

(πT )2

2

] ∞∑

n=1
(−1)ne−nε/T =

1
1 + eε/T

[
ε2

2
+

(πT )2

2

]

Finally, adding I1(ε,T ) + I1(−ε,T ) finally gives

I(ε,T ) =
1
2
[
ε2 + (πT )2]

7.7.3 Kadowaki Woods Ratio and “Local Fermi Liquids”

Figure 7.9: Showing the Kadowaki Woods ratio for a wide range of intermetallic “heavy electron”
materials after Tsujii et al (*****).
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Heuristic Discussion

One of the direct symptoms of Landau Fermi liquid behavior in a metal is a T 2 temperature depen-
dence of resistivity at low temperatures:

ρ(T ) = ρ0 + AT 2.

Here ρ0 is the “residual resistivity” due to the scattering of electrons off impurities. The quadratic
temperature dependence in the resistivity is a direct reflection of the quadratic scattering rate Γ ∝ T 2

expected in Landau Fermi liquids. Evidence that this term is directly related to electron-electron
scattering is provided by a remarkable scaling relation between the A coefficient of the resistivity
and the square of the zero temperature linear coefficient of the specific heat γ = CV/T |T→0.

A
γ2 = α ≈ 1 × 10−5µΩcm(K mol/mJ)2

The ratio A/γ2 is called the “Kadowaki Woods” ratio, and the quoted value corresponds to resistivity
measured in units µΩcm and the specific heat coefficient per mole of material is measured in units
mJ/mol/K2. In a large large class of intermetallic metals called “heavy electron metals”, in which
the quasiparticle mass renormalization is particularly large, the Kadowaki Woods ratio is found to
be approximately constant α = 1 × 10−5µΩcm(K mol/mJ)2 (Fig. 7.9).

To understand Kadowaki Woods scaling, we need to keep track of how A and γ depend on the
Fermi energy. In the last section, we found that the electron-electron scattering rate is set by the
Fermi energy, τ−1 ∼ T 2/εF . If we insert this into the Drude scattering formula, for the resistivity
ρ = m∗/(ne2τ), since m∗ ∝ 1/εF , we deduce that ρ ∼ (T 2/ε2F), i.e A ∝ 1/ε2F . By contrast, the specific
heat coefficient γ ∝ m∗ ∝ 1/εF , is inversely proportional to the Fermi energy, so that

A ∝
(

1
εF

)2
, γ ∝

1
εF
⇒

A
γ2 ∼ constant.

In strongly correlated metals, the Fermi energy varies from eV to meV scales, so the A coefficient
can vary over eight orders of magnitude. This strong dependence of A on the Fermi energy of the
Landau Fermi liquid is cancelled by γ2.

Estimate of the Kadowaki Woods Ratio

To obtain an estimate of the coefficient A, it is useful to regard a metal as a stack of 2D layers
of separation a, so that ρ = aρ2D = a/σ2D, where σ2D is the dimensionless conductivity per
layer. If we use the Drude formula for the conductivity in two dimensions σ2D = ne2τ/m, putting
n = 2 × πk2

F/(2π)
2, !/τ = Γ, we obtain

ρ = a

ρ!=12.9kΩ︷︸︸︷(
h

2e2

) (
Γ

2εF

)
.
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In the last section, we found that Γ = 2π(w/4)2(πkBT )2/εF . Putting this together then gives

ρ = (aρ!)π
(w

4

)2 (
πkBT
εF

)2

(The prefactor aρ! is sometimes called the “unitary resistance”, and corresponds to the resistivity of
a metal in which the scattering rate is of order the Fermi energy. If we put a ∼ 1 − 4

◦
A, ρ! ∼ 13kΩ,

we obtain aρ! ∼ 100 − 500µΩcm.) It follows that

A ≈ (aρ!)π3
(w

4

)2
×

(
1
TF

)2
.

where TF = εF/kB is the Fermi temperature.
Now using (7.40) the specific heat coefficient per unit volume is γ = 1

3π
2k2
BN
∗(0) = π2k2

B
2εF n,

where n is the number of electrons per unit volume, thus the specific heat coefficient per electron is
simply γe =

π2k2
B

2εF and the specific heat per mole of electrons is γM = 1
2π

2R 1
TF , where R = kBNAV is

the Gas constant, NAV is Avagadro’s number. So if there are ne electrons per unit cell,

γ2
M ∼
π4R2

4
(ne)2

T 2
F

(7.118)

giving

α =
A
γ2 ∼

(
w2

4π

) (ρ!
R2

)
×

a
(ne)2 . (7.119)

If we take ρ! = 13 × 109µΩ, R = 8.3 × 103mJ/mol/K and w2/(4π) ∼ 1, to obtain

α ∼ 2 × 10−5 ×
(
a[nm]
(ne)2

)
µΩcm(K mol/mJ)2

giving a number of the right order of magnitude. Kadowaki and Woods found that α ≈ 10−5µΩ
cm(K mol/mJ)2 in a wide range of intermetallic heavy fermion compounds. In transition metal
compounds α ≈ 0.4×10−5µΩcm(K mol/J)2 has a smaller value, related to the higher carrier density.

Local Fermi Liquids

A fascinating aspect of this estimate, is that we needed to put w2/(4π) ∼ 1 to get an answer compa-
rable with measurements. The tendency of w ∼ 1 is a feature of a broad class of “strong correlated”
metals. Although Landau Theory does not give us information on the detailed angular dependence
of the scattering amplitude A(θ, φ), we can make a great deal of progress by assuming that the scat-
tering t-matrix is local. This is infact, a reasonable assumption in systems where the important
Coulomb interactions lie within core states of an atom, as in transition metal and rare earth atoms.
In this case,

aσσ′(θ, φ) = as + aaσσ′. (7.120)
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is approximately independent of the quasiparticle momenta and momentum transfer. This is the “lo-
cal” approximation to the Landau Fermi liquid. When “up” quasiparticles scatter, the antisymmetry
of scattering amplitudes under particle exchange guarantees that a↑↑(θ, φ) = −a↑↑(θ, φ + π). But if a
is independent of scattering amplitude, then it follows that a↑↑ = as + aa = 0, so that

aσσ′(θ, φ) = as(1 − σσ′). (7.121)

in a “Local” Landau Fermi liquid.
Now we can relate the aσσ′ = Aσσ′/N∗(0) to the dimensionless scattering amplitudes introduced

in section (7.4.3)). By (7.63), the charge susceptibility is given by

χc = N∗(0) ×
(

1
1 + Fs0

)
= N∗(0) ×

(
1 −

Fs0
1 + Fs0

)
= N∗(0) × (1 − As0)

In strongly interacting electron systems the density of states is highly renormalized, so that N∗(0) >>
N(0), but the charge susceptibility is basically unaffected by interactions, given by χc = N(0) <<
N∗(0). This implies that As0 ≈ 1. so that as = 1/N∗(0), which in turn implies that the dimensionless
ratio w introduced last section is close to w = 1.

7.8 Microscopic basis of Fermi liquid Theory

Although Landau’s Fermi liquid theory is a phenomenological theory, based on physical arguments,
it translates naturally into the language of diagramatic many body theory. The Landau school played
a major role in the adaptation of Feynman diagramatic approaches to many body physics. However,
Feynman diagrams do not appear until the third of Landau’s three papers on Fermi liquid theory[?
]. The classic microscopic treatments of Fermi liquid theory are based on the analysis of many body
perturbation theory to infinite order carried out in the late 1950’s and early 1960’s.

Galitski[? ], in the Soviet Union, gave the first first formulation of Landau’s theory in terms
of diagramatic many body theory. Shortly thereafter Luttinger, Ward and Nozieres developed the
detailed diagramatic many body framework for Landau Fermi liquid theory by analysing the analytic
properties of inifinite order perturbation theory[? ? ]. Here we end with a brief discussion of some
of the key results of these analyses.

From the outset, it was understood that the Landau Fermi liquid is always potentially unstable to
superconductivity. By the late 1960’s it also became that that Landau Fermi liquid theory does not
apply in one-dimensional conductors, where the phase space scattering arguments used to support
the idea of the Landau quasiparticle no longer apply. In one dimension, the Landau quasiparticle be-
comes unstable, breaking up into collective modes that independently carry spin and charge degrees
of freedom. We call such a fluid a “Luttinger liquid”. However, with this exception, few questioned
the robustness of Landau Fermi liquid theory until the 1980s. In 1986, the discovery of high tem-
perature superconductors, led to a resurgence of interest in this topic, for in the normal state, these
materials can not be easily understood in terms of Landau Fermi liquid theory. For example, these
materials display a linear resistivity up to high temperatures that at this time remains an unsolved
mystery. This has led to the speculatation that in two or three dimensions, Landau Fermi liquid
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theory might break down into a higher dimensional analog of the one-dimensional Luttinger liquid.
two or even three dimensional metals. In the wake of this interest, the Landau Fermi liquid theory
was re-examined from the perspective of the “renormalization group” [? ? ] The conclusion of
these analyses is that unlike one dimension, Fermi liquids are not generically unstable in two and
higher dimensions. While this does not rule the possibility of new kinds of metallic behavior, the
Landau Fermi liquid theory continues to provide the bedrock for our understanding of basic metals
in two or three dimensions.

As we discussed in the last chapter, the process of adiabatically “switching on” interactions can
be understood as a unitary transformation of the original states of the non-interacting Fermi sea.
Thus the ground state and the one-quasiparticle state are given by

|φ〉 = U |Ψ0〉,

|k̃σ〉 = U |kσ〉 (7.122)

where |Ψ0〉 is the filled Fermi sea of the non-interacting system, and k is a momentum very close to
the Fermi surface. In fact, using the results of (6.1), we can write U as a time-ordered exponential

U = T
[
exp

{
−i

∫ 0

−∞
V(t)dt

}]
,

where V̂ is the interaction, written in the interaction representation. Now since |kσ〉 = c†kσ|Ψ0〉,
where c†kσ is the particle creation operator for the non-interacting Hamiltonian, it follows that

|k̃σ〉 =

a†kσ︷!!!!!︸︸!!!!!︷
Uc†kσU† |φ〉 (7.123)

so that the “quasiparticle creation operator” is given by

a†kσ = Uc†kσU†. (7.124)

From this line of reasoning, we can see that the operator that creates the one-quasiparticle state
is nothing more than the original creation bare creation operator, unitarily time-evolved from the
distant past to the present in the interaction representation.

While this formal procedure can always be carried out, the existence of the Landau Fermi liquid
requires that in the thermodynamic limit, the resulting state preserves a finite overlap with the state
formed by additing a bare particle to the ground-state, i.e.

Zk = |〈k̃σ0|c†kσ|φ〉|2 > 0 wavefunction renormalization

This overlap is called the “wavefunction renormalization constant”, and so long as this quantity is
finite on the Fermi surface, the Landau Fermi liquid is alive and well.

In general, near the Fermi energy, the electron creation operator will have an expansion as a sum
of states containing one, three, five and any odd-number of quasiparticle and hole states, each with
the same total spin, charge and momentum of the initial bare particle.

c†kσ =
√
Zka†kσ +

∑

k4+k3=k2+k
A(k4σ4,k3σ3; k2σ2,kσ)a†k4σ4a

†
k3σ3ak2σ2 + . . .
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There are three important consequences that follow from this result:

• Sharp Quasiparticle peak in the spectral function.
When a particle is added to the ground-state, it excites a continuum of states |λ〉, with energy
distribution described by the spectral function (7.112),

A(k, ω) =
1
π

ImG(k, ω − iδ) =
∑

λ

|Mλ|2δ(ω − ελ). (7.125)

where the squared amplitude |Mλ|2 = |〈λ|c†kσ|φ〉|2. In a Landau Fermi liquid, the spectral
function retains a sharp “quasiparticle pole” at the Fermi energy. If we split off the λ ≡ kσ
contribution to the summation in (7.125) we then get

A(k, ω) =
1
π

ImG(k, ω − iδ) =

qp peak
︷!!!!!!!!!!︸︸!!!!!!!!!!︷
Zkσδ(ω − εk)+

continuum︷!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!︷∑

λ!kσ
|Mλ|2δ(ω − ελ) . (7.126)

(a) (b)

εk
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Γk ∝ ε2
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εk = 0
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Figure 7.10: (a) In a non-interacting Fermi system, the spectral function is a sharp delta function
at ω = εk. (b) In an interacting Fermi liquid for k ! kF , the quasiparticle forms a broadened peak
of width Γk at ωk. If k = kF , this peak becomes infinitely sharp, corresponding to a long-lived
quasiparticle on the Fermi surface. The weight in the quasiparticle peak is Zk ∼ m/m∗, where m∗ is
the effective mass.

• Sudden jump in the momentum distribution.
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In a non-interacting Fermi liquid, the particle momentum distribution function exhibits a
sharp Fermi distribution function which is preserved by the quasiparticles in a Landau Fermi
liquid theory

〈φ|(n̂kσ)qp|φ〉 = θ(µ − Ek)

where here (n̂kσ)qp = c̃†kσc̃kσ is the quasiparticle occupancy. Remarkably, part of this jump
survives interactions. To see this effect, we write the momentum distribution function of the
particles as

〈n̂kσ〉 = 〈φ|c†kσckσ|φ〉 =
∫ 0

−∞
dωA(k, ω)

where we have used the results of (6.3.3) to relate the particle number to the integral over
the spectral function below the Fermi energy. When we insert (7.126) into this expression,
the contribution from the quasiparticle peak vanishes if εk > 0, but gives a contribution Zk if
εk < 0, so that

〈n̂kσ〉 = Zkθ(−εk) + smooth background.

This is a wonderful illustration of the organizing power of the Pauli exclusion principle. One
might have expected interactions to have the same effect as temperature which smears the
Fermi distribution by an amount of order kBT . Although interactions do smear the momentum
distribution, the jump continues to survive in reduced form so long as the Landau Fermi liquid
is intact.

(a)
1

k

nk

m/ m*

kF

(b)

1
Scale of Interaction Energies

k

nT
k

Δε ∼ 

kF

Figure 7.11: (a) In a non-interacting Fermi liquid, a temperature T that is smaller than the Fermi
energy, slightly “blurs” the Fermi surface; (b) In a Landau Fermi liquid, the exclusion principle
stabilizes the jump in occupancy at the Fermi surface, even though the bare interaction energy is far
greater than than the Fermi energy,

• Luttinger sum rule.
In the Landau Fermi liquid, the Fermi surface volume measures the particle density nF . Since
the Fermi surface of the quasiparticles and the unrenormalized particles coincides, it follows
that the Fermi surface volume must be an adiabatic invariant when the interactions are turned
on.

nF = (2S + 1)
vFS

(2π)3 , (Luttinger sum rule)

The demonstration of this conservation law within infinite order perturbation theory was first
derived by Luttinger in 1962, and is known as the Luttinger sum rule. In interacting fermion
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systems the conservation of particle number leads to a set of identities between different many
body Greens functions called “Ward Identities”. Luttinger showed how these identities can
be used to relate the Fermi surface volume to the particle density.

Today, more than a half century after Landau’s original idea, the Landau Fermi liquid theory
continues to be a main-stay of our understanding of interacting metals. However, increasingly,
physicists are questioning when and how, does the Landau Fermi liquid break-down, and what new
types of fermion fluid may form instead? We know that Landau Fermi liquid does not survive in
one-dimensional conductors, where quasiparticles break up into collective spin and charge excita-
tions. or in high magnetic fields where the formation of widely spaced Landau levels effectively
quenches the kinetic energy of the particles, enhancing the relative importance of interactions. In
both these examples, new kinds of quasiparticle description are required to describe the physics.
Today, experiments strongly suggest indication that the Landau Fermi liquid breaks up into new
kinds of “Non-Fermi liquid” fluid at a zero temperature phase transition, or quantum critical point,
giving rise to new kinds of metallic behavior in electron systems. The quest to understand these new
metals and to characterize their excitation spectrum is one of the great open problems of modern
condensed matter theory.
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Feynman Diagrams: T=0

Chapter 6. discussed adiabaticity, and we learned how Green’s functions of an interacting system,
can be written in terms Green’s functions of the non-interacting system, weighted by the S-matrix,
e.g.

〈φ|Tψ(1)ψ†(2)|φ〉 =
〈φo|TŜψ(1)ψ†(2)|φo〉

〈φo|Ŝ |φo〉

Ŝ = T exp
[
−i

∫ ∞

−∞
V(t′)dt′

]
(8.1)

where |φo〉 is the ground-state of Ho. In chapter 7. we showed how the concept of adiabaticity
was used to establish Landau Fermi liquid theory. Now we move on to will learn how to expand
the fermion Green’s function and other related quantities order by order in the strength of the in-
teraction. The Feynman diagram approach, originally developed by Richard Feynman to describe
the many body physics of quantum electrodynamics[1], and later cast into a rigorous mathematical
framework by Freeman Dyson, [2] provides a succinct visual rendition of this expansion, a kind of
“mathematical impressionism” which is physically intuitive, without losing mathematical detail.

From the Feynman rules, we learn how to evaluate

• The ground-state S− matrix

S = 〈φo|Ŝ |φo〉 =
∑{

Unlinked Feynman Diagrams
}
. (8.2)

• The logarithm of the S− matrix, which is directly related to the shift in the ground-state
energy due to interactions.

E − Eo = lim
τ→∞

∂

∂τ
ln〈φo|S [τ/2,−τ/2]|φo〉 = i

∑{
Linked Feynman Diagrams

}
(8.3)

where each Linked Feynman diagrams describes a different virtual excitation.
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• Green’s functions.

G(1 − 2) =
∑{

Two-legged Feynman Diagrams
}

(8.4)

• Response functions. These are a different type of Green’s function, of the form

R(1 − 2) = −i〈φ|[A(1), B(2)]|φ〉θ(t1 − t2) (8.5)

8.1 Heuristic Derivation
Feynman initially derived his diagramatic expansion as a mnemonic device for calculating scattering
amplitudes. His approach was heuristic: each diagram has a physical meaning in terms of a specific
scattering process. Feynman derived a set of rules that explained how to convert the diagrams into
concrete scattering amplitudes. These rules were fine tuned and tested in the simple cases where they
could be checked by other means; later, he applied his method to cases where the direct algebraic
approach was impossibly cumbersome. Later, Dyson gave his diagramatic expansion a systematic
mathematical framework.

Learning Feynman diagrams is a little like learning a language. You can learn the rules, and
work by the book, but to really understand it, you have to work with it, gaining experience in
practical situations, learning it not just as a theoretical construct, but as a living tool to communicate
ideas. One can be a beginner or an expert, but to make it work for you, like a language or a culture,
you will have to fall in love with it!

Formally, a perturbation theory for the fully interacting S-matrix is obtained by expanding the
S-matrix as a power-series, then using Wick’s theorem to write the resulting correlation functions
as a sum of contractions.

〈φo|Ŝ |φo〉 =
∞∑

n=0

(−i)n

n!

∫ ∞

−∞
dt1 . . . dtn

∑

Contractions
〈φo| |φo〉 (8.6)

The Feynman rules tell us how to expand these contractions as a sum of diagrams, where each
diagram provides a precise, graphical representation of a scattering amplitude that contributes to the
complete S-matrix.

Let us see examine how we might develop, heuristically, a Feynman diagram exapnsion for
simple potential scattering, for which

V(1) ≡
∫

d3x1U(%x1)ψ†(%x1, t1)ψ(%x1, t1). (8.7)

where we’ve suppressed spin indices into the background. When we start to make contractions
we will break up each product V(1)V(2) . . .V(r) into pairs of creation and annihilation operators,
replacing each pair as follows

−→ (
√
i)2 ×G(2 − 1). (8.8)
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where we have divided up the the prefactor of i two factors of
√
i, which we will transfer onto the

scattering amplitudes where the particles are created and annihilated. This contraction is denoted
by

G(2 − 1) = 2 1
(8.9)

representing the propagation of a particle from “1” to “2”. Pure potential scattering gives us one
incoming, and one outgoing propagator, so we denote a single potential scattering event by the
diagram

= (
√
i)2 × −iU(x) ≡ U(x)

(8.10)

Here, the “−i” has been combined with the two factors of
√
i taken from the incoming, and outgoing

propagators to produce a purel real scattering amplitude (
√
i)2 × −iU(x) = U(x).

The Feynman rules for pure potential scattering tell us that the S-matrix for potential scattering
is the exponential of a sum of connected “vacuum” diagrams

S = exp [ + + + . . . ] .
(8.11)

The “vacuum diagrams” appearing in the exponential do not have any incoming or outgoing propagators-
they represent the amplitudes for the various possible processes by which electron-hole pairs can
bubble out of the vacuum. Let us examine the first, and second order contractions for potential
scattering. To first order

−i〈φ0| |φ0〉 = −i
∑

σ

∫
d3xU(x)〈φ0|T |φ0〉 (8.12)

This contraction describes a single scattering event at (%x, t1). Note that the creation operator occurs
to the left of the annihilation operator, and to preserve this ordering inside the time-ordered expo-
nential, we say that the particle propagates “backwards in time” from t = t+1 to t = t−1 . When we
replace this term by a propagator the backward time propagation introduces a factor of ζ = −1 for
fermions, so that

〈φ0|T |φ0〉 = iζG(%x − %x, t−1 − t
+
1 ) = iζG(%0, 0−) (8.13)

We carry along the factor U(%x) as the amplitude for this scattering event. The result of this contrac-
tion procedure is then
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−i
∫ ∞

−∞
dt1〈φ0| |φ0〉 = −i(2S + 1)

∫
dt1 ×

∫
d3xU(x) × iζG(%0, 0−)

= , (8.14)

where we have translated the scattering amplitude into a a single diagram. You can think of it as
the spontaneous creation, and re-annhilation of a single particle. Here we may tentatively infer a
number of important “Feynman rules” - listed in Table 8.1: that we must associate each scattering
event with an amplitude U(x), connected by propagators that describe the amplitude for electron
motion between scattering events. The overall amplitude involves an integration over the space
time co-ordinates of the scattering events, and apparently, when a particle loop appears, we need to
introduce the factor ζ(2S + 1) (where ζ = −1 for fermions) into the scattering amplitude to account
for the presence of an odd-number of backwards-time propagators and the 2S + 1 spin components
of the particle field. These rules are summarized in the table below:

Physically, the vacuum diagram we have drawn here can be associated with the small first-order
shift in the energy ∆E1 of the particle due to the potential scattering. This inturn produces a phase
shift in the scattering S-matrix,

S ∼ exp
[
−i∆E1

∫
dt

]
∼ 1 − i∆E1

∫
dt, (8.15)

where the exponential has been audaciously expanded to linear order in the strength of the scattering
potential. If we compare this result with our leading Feynman diagram expansion of the S-matrix,

〈φo|Ŝ |φo〉 = 1 + ,

we see that we can interpret the overall factor of
∫
dt1 in (8.14) as the time period over which the

scattering potential acts on the particle. If we factor this term out of the expression we may identify

∆E1 =

ρ︷!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!︷
iζ(2S + 1)G(%0, 0−)

∫
d3xU(x) (8.16)

Here, following our work in the previous chapter, we have identified iζ(2S+1)G(%0, 0−) =
∑
σ〈ψ†σ(x)ψσ(x)〉 =

ρ as the density of particles. giving ∆E1 = ρ
∫
d3xU(x). The correspondence of our result with first

order perturbation theory is a check that the tentative Feynman rules are correct.
Let us go on to look at the second order contractions

〈φ0|T |φ0〉 = 〈φ0|T |φ0〉 + 〈φ0|T |φ0〉 (8.17)

which now generate two diagrams

1
2!

(−i)2
∫ ∞

−∞
dt1dt2〈φ0|T |φ0〉 =

1
2

[ ]2
=

[ ]
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1
2!

(−i)2
∫ ∞

−∞
dt1dt2〈φ0|T |φ0〉 = , (8.18)

The first term is simply a product of two first order terms- the beginning of an exponential combi-
nation of such terms. Notice how the square of one diagram is the original diagram, repeated twice.
The factor of 1/2 that occurs in the expression on the left hand-side is absorbed into this double dia-
gram as a so-called “symmetry factor”. We shall return to this issue shortly, but briefly, this diagram
has a permutation symmetry described by a group of dimension d = 2, according to the Feynman
rules, this generates a prefactor 1/d = 1/2. The second term derives from the second-order shift in
the particle energies due to scattering, and which, like the first order shift, produces a phase shift
in the S-matrix. This diagram has a cyclic group symmetry of dimension d = 2, and once again,
there is a symmetry factor of 1/d = 1/2. This connected, second-order diagram gives rise to the
scattering amplitude

=
1
2
ζ(2S + 1)

∫
d1d2U(1)U(2)G(1 − 2)G(2 − 1) (8.19)

where 1 ≡ ( %x1, t1), so that
∫

d1 ≡
∫

dt1d3x1

G(2 − 1) ≡ G(%x2 − %x1, t2 − t1). (8.20)

Once again, the particle loop gives a factor ζ(2S + 1), and the amplitude involves an integral over
all possible space-time co-ordinates of the two scattering events. You may interpret this diagram in
various ways- as the creation of a particle-hole pair at (%x1, t1) and their subsequent reannilation at
(%x2, t2) (or vice versa). Alternatively, we can adopt an idea that Feynman developed as a graduate
student with John Wheeler- the idea than that an anti-particle (or hole), is a particle propagating
backwards in time. From this perspective, this second-order diagram represents a single particle
that propagates around a loop in space time. Equation (8.19) can be simplified by first making the
change of variables t = t1 − t2, T = (t1 + t2)/2, so that

∫
dt1dt2 =

∫
dT ×

∫
dt. Next, if we Fourier

transform the scattering potential and Green functions, we obtain

=

∫
dT ×

1
2
ζ(2S + 1)

∫
dtd3qd3k|U(%q1)|2G(%k + %q, t)G(%k,−t) (8.21)

Once again, an overall time-integral factors out of the overall expression, and we can identify the
remaining term as the second-order shift in the energy

∆E2 =
i
2
ζ(2S + 1)

∫
dt

d3k
(2π)3

d3q
(2π)3 |U(%q1)|2G(%k + %q, t)G(%k,−t). (8.22)

To check that this result is correct, let us consider the case of fermions, where

G(k, t) = −i[(1 − nk)θ(t) − nkθ(−t)]e−iεkt (8.23)
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which enables us to do the integral

i
∫

dte−δ|t|G(%k + %q, t)G(%k,−t) =
(1 − nk+q)nk

εk+q − εk
+ (k↔ k + q) (8.24)

We recognize the first process as the virtual creation of an electron of momentum %k + %q, leaving
behind a hole in the state with momentum %k. The second-term is simply a duplicate of the first, with
the momenta interchanged, and the sum of the two terms cancels the factor of 1/2 infront of the
integral. The final result

∆E2 = −(2S + 1)
∫

d3k
(2π)3

d3q
(2π)3 |U(%q)|2

(1 − nk+q)nk

εk+q − εk

is recognized as the second-order correction to the energy derived from these virtual processes. Of
course, we could have derived these results directly, but the important point, is that we have estab-
lished a tentative link between the diagramatic expansion of the contractions, and the perturbation
expansion for the ground-state energy. Moreover, we begin to see that our diagrams have a direct
interpretation in terms of the virtual excitation processes that are generated by the scattering events.

To second-order, our results do indeed correspond to the leading order terms in the exponential

S = 1 +
[

+ . . .

]
+

1
2!

[
+ . . .

]2
+ · · · = exp

[
+ + . . .

]
.

Before we go on to complete this connection more formally in the next section, we need to
briefly discuss “source terms”, which couple directly to the creation and annihilation operators. The
source terms let us examine how the S-matrix responds to incoming currents of particles. Source
terms add directly to the scattering potential, so that

V(1) −→ V(1) + η̄(1)ψ(1) + ψ†(1)η(1).

The source terms involve a single creation or annihilation operator, thus produce either the beginning

η(1) ≡
∫

d1 · · · × η(1)
(8.25)

or the end

−iη̄ ≡ −i
∫

d2η̄(2) × . . .
(8.26)

of a Feynman diagram. In practice, each η̄ and η arrive in pairs, and the factor −i which multiplies
η̄ combines the two factors of −i from a pair (η̄, η) with the factor of i derived from the propagator
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line they share. We need these terms, so that we can generate diagrams which involve incoming and
outgoing electrons. The simplest contraction with these terms generates the bare propagator

(−i)2

2!

∫
d2d1〈0|

[

V (2) + η̄(2)ψ(2) + ψ†(2)η(2)
] [

V (1) + η̄(1)ψ(1) + ψ†(1)η(1)
]

|0〉

=

∫
d1d2

(√
−iη̄(2)G(2 − 1)

√
−iη(1)

)

= −iη̄ η. (8.27)

If we now include the contraction with the first scattering term we produce the first scattering cor-
rection to the propagator

(−i)3

3!

∫
d2dXd1〈0|

{

[. . . + η̄(2)ψ(2) + . . .]
[

U(X)ψ†(X)ψ(X) + . . .
] [

. . . + ψ†(1)η(1)
]

+ perms
}

|0〉

=

∫
d1d2

(√
−iη̄(2)

∫
dXG(2 − X)V(X)G(X − 1)

√
−iη(1)

)

= −iη η. (8.28)

where we have only shown one of six equivalent contractions on the first line. This diagram is
simply interpreted as a particle, created at 1, scattering at position X before propagating onwards to
position 2. Notice how we must integrate over the the space-time co-ordinate of the intermediate
scattering event at X, to obtain the total first order scattering amplitude. Higher order corrections
will merely generate multiple insertions into the propagator and we will have to integrate over the
space-time co-ordinate of each of these scattering events. Diagramatically, the sum over all such
diagrams generates the “renormalized propagator”, denoted by

G∗(2 − 1) = 2 1

= 2 1 + +

2 1 2 1
+ ... (8.29)

Indeed, to second-order in the scattering potential, we can see that all the allowed contractions are
consistent with the following exponential form for the generating functional

S = exp
[

+ + · · · − iη̄ η

]
. (8.30)

To prove this result formally requires a little more work, that we now go into in more detail. The
important point for you to grasp right now, is that the sum over all contractions in the S-matrix can
be represented by a sum of diagrams which concisely represent the contributions to the scattering
amplitude as a sum over all possible virtual excitation processes about the vacuum.

199

Chapter 8. c©Piers Coleman 2011

8.2 Developing the Feynman Diagram Expansion

A neat way to organize this expansion is obtained using the source term approach we encountered in
the last chapter. There we found we could completely evaluate the the response of a non-interacting
the system to a source term which injected and removed particles. We start with the source term
S-matrix

Ŝ [η̄, η] = T exp
[
−i

∫
d1[ψ†(1)η(1) + η̄(1)ψ(1)]

]
. (8.31)

Here, for convenience, we shall hide details of the spin away with the space-time co-ordinate, so
that 1 ≡ (x1, t1, σ1), ψ(1) ≡ ψσ(x, t). You can think of the quantities η(1) and η̄(1) as “control-
knobs” which we dial up, or down, the rate at which we are adding, or subtracting particles to the
system. For fermions, these numbers must be anticommuting Grassman numbers: numbers which
anticommute with each and all Fermion field operators. The vacuum expectation value of this S-
matrix is then

S [η̄, η] = 〈φ|Ŝ [η̄, η]|φ〉 = exp
[
−i

∫
d1d2η̄(1)G(1 − 2)η(2)

]
(8.32)

where here,G(1−2) ≡ δσσ2G(x1−x2, t1− t2) is diagonal in spin. In preparation for our diagramatic
approach, we shall denote

∫
d1d2η̄(1)G(1 − 2)η(2) = η̄ η (8.33)

where an integral over the space-time variables (x1, t1) and (x2, t2) and a sum over spin variables σ1,
σ2 is implied by the diagram. The S-matrix equation can then be written

S [η̄, η] = exp
[
−iη̄ η

]
(8.34)

This is called a “generating functional”. By differentiating this quantity with respect to the source
terms, we can compute the expectation value of any product of operators. Grassman numbers and
their differential operators anticommute with each other, and with the field operators. 1 Each time
we differentiate the S-matrix with respect to η̄(1), we pull down a field operator inside the time-
ordered product

i
δ

δη̄(1)
→ ψ(1)

i
δ

δη̄(1)
〈φ|TŜ {. . . }|φ〉 = 〈φ|TŜ {. . . ψ(1) . . . }|φ〉 (8.35)

1For example, if F[η̄, η] = Āη + η̄A + Bη̄η, where A, Ā, η and η̄ are Grassman numbers, while B is a commuting
number, then ∂F

∂η̄
= A + Bη, but ∂F

∂η
= −Ā − Bη̄ because the differential operator anticommutes with Ā and η̄. The second

derivative ∂2F
∂η∂η̄
= − ∂2F

∂η̄∂η
= B, illustrating that the differential operators of Grassman numbers anticommute.
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For example, the field operator has an expectation value

〈ψ(1)〉 =
〈φ|Ŝ [η̄, η]ψ(1)|φ〉
〈φ|Ŝ [η̄, η]|φ〉

= i
δ

δη̄(1)
lnS [η̄, η]

=

∫
G(1 − 2)η(2)d2

≡ [1 η] (8.36)

Notice how the differential operator i δδη̄(1) “grabs hold” of the end of a propagator and connects it up
to space-time co-ordinate 1. Likewise, each time we differentiate the S-matrix with respect to η(1),
we pull down a field creation operator inside the time-ordered product.

iζ
δ

δη(1)
→ ψ†(1), (8.37)

The appearance of a “ζ” in (8.37) compared with the “+i” in (8.35) arises because the source term
anticommutes with the field operators, ψ†(1)η(1) = −η(1)ψ†(1), so that

δ

δη(1)

∫
dXψ†(X)η(X) = ζ

δ

δη(1)

∫
dXη(X)ψ†(X) = ζψ†(1) (8.38)

and the expectation value of the creation operator has the value

〈ψ†(2)〉 =
〈φ|Ŝ [η̄, η]ψ†(2)|φ〉
〈φ|Ŝ [η̄, η]|φ〉

= iζ
δ

δη(2)
lnS [η̄, η]

=

∫
d1η̄(1)G(1 − 2)

≡ [η̄ 2] (8.39)

If we differentiate either (8.36) w.r.t. η(2), or (8.39 ) w.r.t. η̄(1) we obtain

δ

δη(2)
〈ψ(1)〉

∣∣∣∣∣
η=η̄=0

=
δ

δη̄(1)
〈ψ†(2)〉

∣∣∣∣∣
η=η̄=0

= −i〈φ|Tψ(1)ψ†(2)|φ〉 = G(1 − 2) (8.40)

as expected.
In general, we can calculate arbitrary functions of the field operators by acting on the S-matrix

with the appropriate function of derivative operators.

〈φ|TŜ [η̄, η]F[ψ†, ψ]|φ〉 = F
[
iζ
δ

δη
, i
δ

δη̄

]
exp

[
−iη̄ η

]
. (8.41)

If we now set F[ψ†, ψ] = Te−i
∫
V[ψ†,ψ]dt, then

S I[η̄, η] = 〈φ|Te−i
∫ ∞
−∞ dt

(
V(ψ†,ψ)+source terms

)
|φ〉 (8.42)

can be written completely algebraically, in the form

S I[η̄, η] = e−i
∫ ∞
−∞ V(iζ δδη ,i

δ
δη̄ )dt exp

[
−iη̄ η

]
(8.43)
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The action of the exponentiated differential operator on the source terms generates all of the contrac-
tions. It is convenient to recast this expression in a form that groups all the factors of “i”. To do this,
we write α = η, ᾱ = −iη̄, this enables us to rewrite the expression as S I[η̄, η] = SI[ᾱ, α]|α=η,ᾱ=−iη̄,
where

SI[ᾱ, α] = e(i)n−1
∫ ∞
−∞ V(ζ δδα ,

δ
δᾱ )dt exp

[
ᾱ α

]

where we have written

V(iζ
δ

δη
, i
δ

δη̄
) = inV(ζ

δ

δα
,
δ

δᾱ
) (8.44)

for an interaction involving n creation and n annihilation operators ( n-particle interaction). This
equation provides the basis for all Feynman diagram expansions.

To develop the Feynman expansion, we need to recast our expression in a more graphical form.
To see how this works, let us first consider a one-particle scattering potential (n = 1). In this case,
we write

in−1V(ζ
δ

δα
,
δ

δᾱ
) =

∫
d3xU(x)

(
ζ
δ

δα(x)
δ

δᾱ(x)

)
(8.45)

which we denote as

δ
δᾱ(1)

ζ δδα(1)

(8.46)

Notice that the basic scattering amplitude for scattering at point x is simply U(x) (or U(x)/! if we
reinstate Planck’s constant). Schematically then, our Feynman diagram expansion can be written as

SI[ᾱ, α] = exp
[

δ
δᾱ(1)

ζ δδα(1) ]
exp

[
ᾱ α

]

The differential operators acting on the bare S-matrix, glue the scattering vertices to the ends of the
propagators, and thereby generate a sum of all possible Feynman diagrams. Formally, we must
expand the exponentials on both sides, e.g.

SI[ᾱ, α] =
∑

n,m

1
n!m!

[

δ
δᾱ(1)

ζ δδα(1) ]n[
ᾱ α

]m

(8.47)
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The action of the differential operator on the left hand-side is to glue the m propagators together
with the n vertices, to make a series of Feynman diagrams. Now, at first sight, this sounds pretty
frightening- we will have a profusion of diagrams. Let us just look at a few: do not at this stage
worry about the details, just try to get a feeling for the general structure. The simplest n = 1, m = 1
term takes the form

[

δ
δᾱ(1)

ζ δδα(1) ][
ᾱ α

]
= ζ

∫
d1V(1)

δ2

δα(1)δᾱ(1)

∫
dXdYᾱ(X)G(X − Y)α(Y)

= ζ

∫
d1V(1)G(1− − 1) = (8.48)

This is the simplest example of a “linked-cluster” diagram, and it results from a single contraction of
the scattering potential. The sign ζ = −1 occurs for fermions, because the fermi operators need to be
interchanged to write the expression as a time-ordered propagator. One can say that the expectation
value involves the fermion propagating backwards in time from time t to an infinitesimally earlier
time t− = t − ε. The term n = 1, m = 2 gives rise to two sets of diagrams, as follows:

[

δ
δᾱ(1)

ζ δδα(1) ][
ᾱ α

]2
= ᾱ α + [ × ᾱ α]

(8.49)

The first term corresponds to the first scattering correction to the propagator, written out alge-
braically,

ᾱ α =

∫
d1d2ᾱ(1)

∫
dXG(1 − X)V(X)G(X − 2)α(2)

whereas the second term is an unlinked product of the bare propagator, and the first linked cluster
diagram. The Feyman rules enable us to write each possible term in the expansion of the S-matrix
as a sum of unlinked diagrams. Fortunately, we are able to systematically combine all of these
diagrams together, with the end result that

S I(ᾱ, α) = exp
[∑

linked diagrams
]

= exp
[

+ + . . . ᾱ α

]
. (8.50)

When written in this exponential form, the unlinked diagrams entirely disappear- a result of the so-
called “link-cluster” theorem we are shortly to encounter. The Feynman rules tell us how to convert
these diagrams into mathematical expressions. These rules are summarized in table 8.1.

Let us now look at how the same procedure works for a two-particle interaction. Working heuris-
tically, we expect a two-body interaction to involve two incoming and two outgoing propagators.
We shall denote a two-body scattering amplitude by the following diagram

1 2 = (
√
i)4 × −iV(1 − 2) ≡ iV(1 − 2). (8.51)
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Notice how, in contrast to the one-body scattering amplitude, we pick up four factors of
√
i from

the external legs, so that the net scattering amplitude involves an awkward factor of “i”. If we now
proceed using the generating function approach, we set n = 2 and then write

in−1V(ζ
δ

δα
,
δ

δᾱ
) = i

1
2

∫
d3xd3x′V(x − x′)

δ

δα(x)
δ

δα(x′)
δ

δᾱ(x′)
δ

δᾱ(x)
(8.52)

Notice how the amplitude for scattering two particles is now iV(x−x′) (or iV(x−x′)/! if we reinstate
Planck’s constant). We can now formally denote the scattering vertex as

1
2
δ
δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1)

(8.53)

This gives rise to the following expression for the generating functional

SI[ᾱ, α] = exp



1
2

δ
δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1) 

 exp
[
ᾱ α

]

for the S-matrix of interacting particles.
As in the one-particle scattering case, the differential operators acting on the bare S-matrix, glue

the scattering vertices to the ends of the propagators, and thereby generate a sum of all possible
Feynman diagrams. Once again, we are supposed to formally expand the exponentials on both
sides, e.g.

SI[ᾱ, α] =
∑

n,m

1
n!m!

[1
2 δ
δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1) ]n[

ᾱ α
]m

(8.54)

Let us again look at some of the leading diagrams that appear in this process. For instance

1
2!

[1
2 δ
δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1) ][

ᾱ α
]2
=

1
2

[
+

]
.

We shall see later that these are the Hartree and Fock contributions to the Ground-state energy. The
prefactor of 1

2 arises here because there are two distinct ways of contracting the vertices with the
propagators. At each of the vertices in these diagrams, we must integrate over the space-time co-
ordinates and sum over the spins. Since spin is conserved along each propagator, so this means that
each loop has a factor of (2S +1) associated with the spin sum. Once again, for fermions, we have to
be careful about the minus signs. For each particle loop, there is always an odd number of fermion
propagators propagating backwards in time, and this gives rise to a factor

ζ(2S + 1) = −(2S + 1) (8.55)
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per fermion loop. The algebraic rendition of these Feynman diagrams is then

1
2

∫
d1d2V(1 − 2)

[
(2S + 1)2G(0, 0−)2 + ζ(2S + 1)G(1 − 2)G(2 − 1)

]
(8.56)

Notice finally, that the first Hartree diagram contains a propagator which “bites its own tail”. This
comes from a contraction of the density operator,

−i
∑

σ

〈. . . ψσ†(x, t)ψσ(x, t) . . .〉 = ζ(2S + 1)G(x, 0−) (8.57)

and since the creation operator lies to the left of the destruction operator, we pick up a minus sign
for fermions. As a second example, consider

1
3!

[1
2 δ
δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1) ][

ᾱ α
]3
= ᾱ




+



α

corresponding to the Hartree and Fock corrections to the propagator. Notice how a similar minus
sign is associated with the single fermion loop in the Hartree self-energy. By convention the numer-
ical prefactors are implicitly absorbed into the Feynman diagrams, by introducing two more rules:
one which states that each fermion loop gives a factor of ζ, the other which relates the numerical
pre-factor to the symmetry of the Feynman diagram. When we add all of these terms, the S-matrix
becomes

SI(ᾱ, α) = 1 +




+ + + . . .




+ ᾱ




+ + + . . .



α

+ . . .

+

[
×

]
+

[
× + . . .

]
(8.58)

The diagrams on the first line are “linked-cluster” diagrams: they describe the creation of virtual
particle-hole pairs in the vacuum. The second-line of diagrams are the one-leg diagrams, which
describe the one-particle propagators. There are also higher order diagrams (not shown) with 2n
legs, coupled to the source terms, corresponding to the n-particle Green’s functions. The diagrams
on the third line are “unlinked” diagrams. We shall shortly see that we can remove these diagrams
by taking the logarithm of the S-matrix.
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8.2.1 Symmetry factors

Remarkably, in making the contractions of the S-matrix, the prefactors in terms like eq. (8.54) are
almost completely absorbed by the combinatorics. Let us examine the number of ways of making
the contractions between the two terms in (8.54). Our procedure for constructing a diagram is
illustrated in Fig. 8.1
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(a)

(b)

Figure 8.1: (a) Showing how six propagators and three interaction lines can be arranged on a Feyn-
man diagram of low symmetry (p = 1). (b) In a Feynman diagram of high symmetry, each possible
assignment of propagators and interaction lines to the diagram belongs to a p− tuplet of topolog-
ically equivalent assignments, where p is the order of the symmetry group of permutations under
which the topology of the diagram is unchanged. In the example shown above, p = 3 is the order of
the symmetry group. In this case, we need to divide the number of assignments W by a factor of p.

1. We label each propagator on the Feynman diagram 1 through m and label each vertex on the
Feynman diagram (1) through (n).

2. The process of making a contraction corresponds to identifying each vertex and each propa-
gator in (8.54 ) with each vertex and propagator in the Feynman diagram underconstruction.
Thus the P′r th propagator is placed at position r on the Feynman diagram, and the Pk-th in-
teraction line is placed at position k on the Feynman diagram, where P is a permutation of
(1, . . . n) and P′ a permutation of (1, . . . ,m).
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3. Since each interaction line can be arranged 2 ways at each location, there are 2nW(P) = 2nn!
ways of putting down the the interaction vertices and W(P′) = m! ways of putting down the
propagators on the Feynman diagram, giving a total of W = 2nn!m! ways.

4. The most subtle point is notice that if the topology of the Feynman graph is invariant un-
der certain permutations of the vertices, then the above procedure overcounts the number of
independent contractions by a “symmetry factor” p, where p is the dimension of the set of
permutations under which the topology of the diagram is unchanged. The point is, that each
of the 2nn!m! choices made in (2) actually belongs to a p− tuplet of different choices which
have actually paired up the propagators and vertices in exactly the same configuration. To
adjust for this overcounting, we need to divide the number of choices by the symmetry factor
p, so that the number of ways of making the same Feynman graph is

W =
2nn!m!
p

(8.59)

As an example, consider the simplest diagram,
1

2 (8.60)

This diagram is topologically invariant under the group of permutations

G = {(12), (21)} (8.61)

so p = 2. In a second example
1 2

4 3

(8.62)

the invariance group is

G =
{
(1234), (3412)

}
(8.63)

so once again, p = 2. By contrast, for the diagram
1 2

4 3

(8.64)

the invariance group is

G =
{
(1234), (3412), (2143), (4321)

}
(8.65)

so that p = 4.
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8.2.2 Linked Cluster Theorem

One of the major simplifications in developing a Feynman diagram expansion arise because of the
Linked Cluster Theorem. Ultimately, we are more interested in calculating the logarithm of the
S-matrix, lnS (η̄, η). This quantity determines both the energy shift due to interactions, but also, it
provides the n-particle (connected) Green’s functions. In the Feynman diagram expansion of the S-
matrix, we saw that there are two types of diagram: linked-cluster diagrams, and unlinked diagrams,
which are actually products of linked-cluster diagrams. The linked cluster theorem states that the
logarithm of the S-matrix involves just the sum of the linked cluster diagrams:

lnS I[η̄, η] =
∑
{Linked Cluster Diagrams} (8.66)

To show this result, we shall employ a trick called the “replica trick”, which takes advantage of the
relation

lnS = lim
n→0

[
S n − 1
n

]
(8.67)

In other words, if we expand S n as a power-series in n, then the linear coefficient in the expansion
will give us the logarithm of S . It proves much easier to evaluate S n diagramatically. To do this,
we introduce n identical, but independent replicas of the original system, each “replica” labelled by
λ = (1, n). The Hamiltonian of the replicated system is just H =

∑
λ=1,n and since the operators of

each replica live in a completely independent Hilbert space, they commute. This permits us to write

(S I[η̄, η])n = 〈φ|T exp


−i

∫ ∞

−∞
dt

∑

λ=1,n

(
V(ψλ†, ψλ) + source terms

)

 |φ〉 (8.68)

When we expand this, we will generate exactly the same Feynman diagrams as in S , excepting that
now, for each linked Feynman diagram, we will have to multiply the amplitude by N. The diagram
expansion for interacting fermions will look like

SI(ᾱ, α) = 1

+ n ×


 + + ᾱ


 + + + . . .


α + . . .




+ n2
[( )2

+

( )2
+

(
×

)
+ . . .

]

+ n3
[( )3

+ . . .

]
+ . . . (8.69)

from which we see that the coefficient of N in the replica expansion of S N is equal to the sum of the
linked cluster diagrams, so that

lnSI(ᾱ, α) =




+ + ᾱ




+ + + . . .



α + . . .



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By differentiating the log of the S-matrix with respect to the source terms, extract the one-particle
Green’s functions as the sum of all two-leg diagrams

G(2 − 1) = ζ
δ2lnSI(ᾱ, α)
δᾱ(2)δα(1)

=
∑
{Two leg diagrams}

=



2 1 + 2 1 + 2 1 + . . .




(8.70)

This is a quite non-trivial result. Were we to have attempted a head-on Feynman diagram expansion
of the Green’s function using the Gell Mann Lowe theorem,

G(1 − 2) = −i
〈φ|TSψ(1)ψ†(2)|φ〉

〈φ|S |φ〉
(8.71)

we would have to consider the quotient of two sets of Feynman diagrams, coming from the con-
tractions of the denominator and numerator. Remarkably, the unlinked diagrams of the S matrix in
the numerator cancel the unlinked diagrams appearing in the Wick expansion of the denominator,
leaving us with this elegant expansion in terms of two-leg diagrams.

The higher order derivatives w.r.t. α and ᾱ correspond to the connected n-body Green’s functions

Example 8.1: By introducing a chemical potential source term into the original Hamiltonian,

H =
∫

d3xδφ(x, t)ρ̂(x) (8.72)

show that the change in the logarithm of the S-matrix is

lnS [φ] = lnS [0] +
1
2


δφ(1) δφ(2)


 (8.73)

where

= + + + ... (8.74)

denotes the sum of all diagrams that connect two “density” vertices. Use this result to show that
the time-ordered density correlation function is given by

−i〈φ|Tδρ(1)δρ(2)|φ〉 = i
δ2

δφ(1)δφ(2)
lnS [φ] = i 1 2 (8.75)

Example 8.2: Expand the S-matrix to quadratic order in α and ᾱ, and use this to show that the
two-particle Green’s function is given by

1
S [ᾱ, α]

δ4S
δᾱ(1)δᾱ(2)δα(3)δα(4)

= −〈φ|T [ψ(1)ψ(2)ψ†(3)ψ†(4)]|φ〉
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=

1 4

32

1 4

32

1 4

2 3
+/− + (8.76)

Show that the last term, which is the connected two-particle Green’s function, is the quartic
term coefficient in the expansion of lnS [ᾱ, α].

8.3 Feynman rules in momentum space
Though it is easiest to motivate the Feynman rules in real space, practical computations are much
more readily effected in momentum space. We can easily transform to momentum space by expand-
ing each interaction line and Green’s function in terms of their Fourier components:

1 2 = G(X1 − X2) =
∫

ddp
(2π)d

G(p)eip(X1−X2)

1 2 = V(X1 − X2) =
∫

ddq
(2π)d

V(q)eiq(X1−X2) (8.77)

where we have used a short-hand notation p = (p, ω), q = (q, ν), X = (x, t), and pX = p · x−ωt. We
can deal with source terms in similar way, writing

α(X) =
∫

ddp
(2π)d

eipXα(p). (8.78)

Having made these transformations, we see that the space-time co-ordinates associated with each
vertex, now only appear in the phase factors. At each vertex, we can now carry out the integral over
all space-time co-ordinates, which then imposes the conservation of frequency and momentum at
each vertex.

, q p1

p2

X =

∫
ddXei(p1−p2−q)X = (2π)dδ(d)(p1 − p2 − q) (8.79)

Since momentum and energy are conserved at each vertex, this means that there is one independent
energy and momentum per loop in the Feynman diagram. Thus the transformation from real-space,
to momentum space Feynman rules is effected by replacing the sum over all space-time co-ordinates
by the integral over all loop momenta and frequency. (Table 8.2). The convergence factor

eiωO
+

(8.80)

is included in the loop integral. This term is only really needed when the loop contains a single prop-
agator, propagating back to the point from which it eminated. In this case, the convergence factor
builds in the information that the corresponding contraction of field operators is normal ordered.
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Actually, since all propagators and interaction variables depend only on the difference of posi-
tion, the integral over all n space-time co-ordinates can be split up into an integral over the center-
or-mass co-ordinate

Xcm =
X1 + X2 + . . . Xn

n
(8.81)

and the relative co-ordinates

X̃r = Xr − X1, (r > 1), (8.82)

as follows
∏

r=1,n
ddXr = ddXcm

∏

r=2,n
ddX̃r (8.83)

The integral over the X̃r imposes momentum and frequency conservation, whilst the integral over
Xcm can be factored out of the diagram, to give an overall factor of

∫
ddXcm = (2π)dδ(d)(0) ≡ VT (8.84)

where V is the volume of the system, and T the time over which the interaction is turned on. This
means that the proper expression for the logarithm of the S-matrix is

ln(S ) = VT
∑
{ linked cluster diagrams in momentum space}. (8.85)

In other words, the phase-factor associated with the S-matrix grows extensively with the volume
and the time over which the interactions act.

8.3.1 Relationship between energy, and the S-matrix

One of the most useful relationships of perturbation theory, is the link between the S-matrix and the
ground-state energy, originally derived by Jeffrey Goldstone[3]. Here the basic idea is very simple.
When we turn on the interaction, the ground-state energy changes which causes the phase of the
S-matrix to evolve. If we turn on the interaction for a time T , then we expect that for sufficiently
long times, the phase of the S-matrix will be given by −i∆ET :

S [T ] = 〈−∞|Û(T/2)U†(−T/2)|∞〉 ∝ e−i∆ET (8.86)

where ∆E = Eg = Eo is the shift in the ground-state energy as a result of interactions. This means
that at long times,

ln(S [T ]) = −i∆ET + constant (8.87)

But from the linked cluster theorem, we know that

S = VT
∑
{linked clusters in momentum space} (8.88)
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which then means that the change in the ground-state energy due to interactions is given by

∆E = iV
∑
{linked clusters in momentum space} (8.89)

To show this result, let us turn on the interaction for a period of time T , writing the ground-state
S-matrix as

S [T ] = 〈−∞|Û(T/2)U†(−T/2)|∞〉 (8.90)

If we insert a complete set of energy eigenstates 1 =
∑
λ |λ〉〈λ| into this expression for the S-matrix,

we obtain

S [T ] =
∑

λ

〈−∞|Û(T/2)|λ〉〈λ|U†(−T/2)|∞〉 (8.91)

In the limit T → ∞, the only state with an overlap with the time-evolved state U†(−T/2)|φo〉 will
be the true ground-state |ψg〉 of the interacting system, so we can write

S (T )→U(T/2)U†(−T/2) (8.92)

whereU(τ) = 〈−∞|Û(τ/2)|φ〉. Now differentiating the first term in this product, we obtain

∂

∂τ
U(τ) =

∂

∂τ
〈ψo|eiHoτ/2e−iHτ/2|ψg〉

=
i
2
〈ψo|{HoU(τ/2) − U(τ/2)H}|ψg〉

= −
i∆E

2
U(τ) (8.93)

Similarly, ∂∂τU
†(−τ) = − i∆E2 U

†(−τ), so that

∂S (T )
∂T

= −i∆ES (T ) (8.94)

which proves the original claim.

8.4 Examples

8.4.1 Hartree Fock Energy

As a first example of the application of Feynman diagrams, we use the linked cluster theorem to
expand the ground-state energy of an interacting electron gas to first order. To leading order in the
interaction strength, the shift in the ground-state energy is given by

Eg = Eo + iV
[

+

]
(8.95)
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corresponding to the Hartree, and Fock contributions to the ground-state energy. Writing out this
expression explicitly, noting that the symmetry factor associated with each diagram is p = 2, we
obtain

∆EHF =
iV
2

∫
d3kd3k′

(2π)6
dωdω′

(2π)2 ei(ω+ω
′)δ

[
(−[2S + 1])2(iVq=0) + (−[2S + 1])(iVk−k′)

]
G(k)G(k′)

In the last chapter (6.74), we obtained the result

〈c†kσckσ〉 = −i
∫

dω
2π
G(k, ω)eiωδ = fk = θ(kF − |k|) (8.96)

so that the shift in the ground-state energy is given by

∆EHF =
V
2

∫
d3kd3k′

(2π)6

[
(2S + 1)2(Vq=0) − (2S + 1)(Vk−k′)

]
fk fk′ (8.97)

In the first term, we can identify ρ = (2S + 1)
∑
fk as the density, so this term corresponds to the

classical interaction energy of the Fermi gas. The second term is the exchange energy. This term
is present because the spatial wavefunction of parallel spin electrons is antisymmetric, which keeps
them apart, producing a kind of “correlation hole” between parallel spin electrons.

Let us examine the exchange correlation term in more detail. To this end, it is useful to consider
the equal time density correlation function,

Cσσ′(%x − %x′) = 〈φ0| : ρσ(x)ρσ′(x′) : |φ0〉

In real space, the Hartree Fock energy is given by

〈φ0|V̂ |φ0〉 =
1
2

∑

σ,σ′

∫
d3xd3yV(%x − %y)〈φ0| : ρ̂σ(%x)ρσ′(%y) : |φ0〉

=
1
2

∑

σ,σ′

∫
d3xd3yV(%x − %y)Cσσ′(%x − %y) (8.98)

Now if we look at the real-space Feynman diagrams for this energy,

∆E = i
[

+
]

= −
1
2

∑

σσ′

∫

x,x′
V(x − x′)

[(
σ

x
σ’

x′
)
+ x

σ
x′

]
(8.99)

since each interaction line contributes a iV(x − x′) to the total energy, we deduce that the Feynman
diagram for the equal time density correlation functions are

Cσσ′(x − y) = −
[(

σ
x

σ’
x′

)
+

(x
σ

x′) δσσ′
]

(8.100)
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Written out explicitly,

Cσσ′(%x − %y) = −



(

−iρ0︷!!!!!︸︸!!!!!︷
−G(%0, 0−))2) − δσσ′G(%x − %y, 0−)G(%y − %x, 0−)




= ρ2
0 + δσσ′G(%x − %y, 0−)G(%y − %x, 0−) (8.101)

where we have identified G(%0, 0−) = iρ0 with the density of electrons per spin. From this we see
that C↑↓(%x − %y) = ρ2

0 is independent of separation- there are no correlations between the up and
down-spin density in the non-interacting electron ground state. However, the correlation function
between parallel spin electrons contains an additional term. We can calculate this term from the
equal time electron propagator, which in real space is given by

G(%x, 0−) =
∫

k
G(k, 0−)eik·x = i

∫

k,
fkeik·x

= i
∫

k<kF

k2dk
2π2

sin kr
kr︷!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!︷∫

d cos θ
2

eikr cos θ

=
i

2π2r3 [sin(kFr) − kFr cos(kFr)] = iρ0P(kF x) (8.102)

where ρ0 =
k3
F

6π2 is the density, while

P(x) = 3
(
sin x − x cos x

x3

)
=

3
x
j1(x) (8.103)

and j1(x) is the l = 1 spherical Bessel function. The density correlation function of parallel spin
fermions then takes the form

C↑↑(r) = ρ2
0
(
1 −

[
P(kFr)

]2)

This function is shown in Fig. 8.2: at r = 0 it goes to zero, corresponding to the fact that the
probability to find two “up” electrons in the same place actually vanishes. It is this hole in the cor-
relation function that gives the interacting electron fluid a pre-disposition towards the development
of ferromagnetism and triplet paired superfluids.

Before we end this section, let us examine the Hartree Fock energy for the Coulomb gas. For-
mally, with the Coulomb interaction the Hartree interaction becomes infinite, but in practice, we
need not worry, because to stabilize the charged Fermi gas, we need to compensate the charge of the
Fermi gas with a uniformly charged background. Provided the Fermi gas is uniform, the classical
Coulomb energy of the combined system is then identically zero. The leading order expression for
the ground-state energy of the compensated Coulomb gas of Fermions is then

Eg
V
= (2S + 1)

∫

k

!2k2

2m
fk −

(2S + 1)
2

∫

k,k′
fk fk′

e2

ε0(k − k)2 (8.104)
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Figure 8.2: “Correlation hole”. The equal time correlation function C↑↑(kFr) for the non-interacting
Fermi gas. Notice how this function vanishes at the origin, corresponding to a vanishing probability
to find two “up” electrons at the same location in space.

A careful evaluation of the above integrals (see Problem 8.1) gives

Eg
V
= ρ

[
3
5
εF −

3e2kF
4π

]

where ρ = (2S + 1)k3
F/(3π

2) is the density of particles. An important parameter for the electron gas
is the dimensionless separation of the electrons. The separation of electrons Re in a Fermi gas is
defined by

4πR3
e

3
= ρ−1

where ρ is the density of electrons. The dimensionless separation rs is defined as rs = Re/aB where
aB = !

24πε0
me2 is the Bohr radius, so that

rs =
1

αkFaB
(8.105)

where α =
(

4
9π

) 1
3 ≈ 0.521. Using rs, we can re-write the energy of the electron gas as

E
ρV

=
3
5
RY
α2r2

s
−

3
2π

RY
αrs
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=

(
2.21
r2
s
−

0.916
rS

)
RY (8.106)

where RY = !2

2ma2
B
= 13.6eV is the Rydberg energy. From this, we see that the most strongly

correlated limit of the electron gas is the dilute limit.

8.4.2 Electron in a scattering potential

As an illustration of the utility of the Feynman diagram approach, we now consider an electron
scattering off an attractive central scattering potential. Here, by resumming the Feynman diagrams,
it is easy to show how in dimensions d ≤ 2, an arbitrarily weak attractive potential gives rise to
bound-states.

The Hamiltonian is given by

H =
∑

k
εkc†kck + Hsc (8.107)

where εk = k2/2m − µ and the scattering potential is given by

Hsc =

∫
d3xψ†(x)ψ(x)U(x) (8.108)

If we Fourier transform the scattering potential, writing

U(x) =
∫

q
U(q)eiq·x (8.109)

then the scattering potential becomes

Hsc =

∫

k,k′
Uk−k′︸︷︷︸

amplitude to transfer momentum k − k′

c†kck′ (8.110)

The Feynman diagrams for the one-electron Green’s function are then

k′ k
= δk,k

k
+

k′ k
+

k′ k′′ k
+ . . . (8.111)

where

k
= Go(k, ω) =

1
ω − εk − iδk

(8.112)

denotes the propagator in the absence of potential scattering and

k′ k
= Uk−k′ (8.113)

is the basic scattering vertex. The first diagram represents the amplitude to be transmitted without
scattering; subsequent diagrams represent multiple scattering processes involving one, two three
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and more scattering events. We shall lump all scattering processes into a single amplitude, called
the t-matrix, represented by

tk,k′(ω) =

G

= +
k′′

+
k′′ k′′′

+ . . . (8.114)

With this short-hand notation, the diagrams for the electron propagator become

k′ k
= δk,k′

k
+

k′ k

tkk′(ω)
(8.115)

Written out as an equation, this is

G(k,k′, ω) = δk,k′Go(k, ω) +Go(k, ω)tk,k′(ω)Go(k′, ω) (8.116)

If we look at the second, third and higher scattering terms in the t-matrix, we see that they are
a combination of the t-matrix plus the bare scattering amplitude. This enables us to re-write the
t-matrix as the following self-consistent set of Feynman diagrams

k
=

k′ k
+

k′′
tkk′(ω)

(8.117)

Written out explicitly, this is

tkk′(ω) = Uk−k′ +
∑

k′′
Uk−k′′Go(k′′, ω)tk′′k′(ω) (8.118)

Equations (8.116) and (8.118) fully describe the scattering off the impurity.
As a simplified example of the application of these equations, let us look at the case of s-wave

scattering off a point-like scattering center:

U(x) = Uδ(d)(x) (8.119)

In this case, U(q) = U is independent of momentum transfer. By observation, this means that the
t-matrix will also be independent of momentum, i.e. tk,k′(ω) = t(ω). The equation for the t-matrix
then becomes

t(ω) = U + U
∑

k′′
Go(k′′, ω)t(ω) (8.120)

or

t(ω) =
U

1 − UF(ω)
(8.121)

where

F(ω) =
∫

ddp
(2π)d

1
ω − εk + iδk

=

∫ Λ

0
dεN(ε)

1
ω − ε + iδsign(ε)

(8.122)
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and N(ε) is the density of states. A high-energy cut-off has been introduced to guarantee the con-
vergence of the integral. Physically, such a cut-off corresponds to the energy scale, beyond which
,the scattering potential no longer behaves as a point potential. At low energies, F(ω) < 0, so that if
U < 0, there is the possibility of poles in the t-matrix, corresponding to bound-states.

As we have derived it, our scattering t-matrix describes scattering in the presence of a Fermi
sea. To recover free particle behavior, we imagine that the Fermi sea is empty, so that the chemical
potential is zero so that

εk =
k2

2m
(8.123)

In d-dimensions, the density of states is given by

N(ε) ∝ kd−1 dk
dε
∝ ε

d
2−1 (8.124)

The low energy behavior of F(ω) is then given by

F(ω) ∝ −ωd/2−1 (8.125)

This quantity diverges in dimensions d ≤ 2, so that there will be bound-states for arbitrarily small
attractive potentials U < 0. In two dimensions, the density of states is N(ω) = N(0)and F(ω) =
−N(0)ln Λ−ω , so that for attractive U = −|U |,

t(ω) = −
|U |

1 − |U |N(0)ln Λ−ω
=

1
N(0)ln

(
ωo
−ω

) (8.126)

where ωo = Λe−
1

|U |N(0) , giving rise to a bound-state at energies ω = −ωo.
Remarks

• The energy scale ωo can not be written as a power-series in U, and as such, is an elementary
example of a “non-perturbative” result. The bound-state appears because an infinite class of
Feynman diagrams have been resummed.

• The appearance of a bound-state for electrons scattering off an arbitrarily weak attractive
potential is similar to the Cooper instability.

8.5 The self-energy
The concept of the self-energy enables us to understand the feedback of the interacting environment
on a propagating particle. This is one of the most important examples of the power of Feynman
diagram resummation.

Let us consider the Greens function of a fermion in an interacting environment. Every dia-
gram contributing to the propagator consists of a sequence of free propagators separated by various
many-body scattering processes. The self-energy sums the amplitude for all of these intermediate
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scattering processes into a single entity represented by the symbol Σ. With this conceptual simplifi-
cation, the propagator has the structure

k
= + Σ + Σ Σ + . . . (8.127)

where

Σ(k, ω) = Σ =

k′′ k′′′

+

k′ k
+

k
+

k′ k

tkk′(ω)
+ . . . (8.128)

denotes the self-energy: the sum of all scattering processes that can not be separated into two by
cutting a single propagator. By convention each of these diagrams contain two small stubs (without
arrows) that denote the points where the diagram connects with incoming and outgoing propagators.
We do not associate any propagator with these stubs. In a rather macabre terminology, the external
legs of the self-energy are sometimes said to have been “amputated”.

The one-particle propagator can then be expanded as a geometric series involving the self-
energy, as follows

G(k, ω) = + Σ + Σ Σ + . . .

= G0 + G0ΣG0 + G0(ΣG0)2 + . . .

=
G0

1 − ΣG0 =
1

(G0(k, ω))−1 − Σ(k, ω)
(8.129)

So that

G(k, ω) =
1

ω − εk − Σ(k, ω)
(8.130)

Feynman propagator

This heuristic derivation involves the summation of a geometric series, which in general will be
outside its radius of convergence, but we may argue the result is true by analytic continuation.
Another way to derive the same result is to notice that the second and subsequent terms in the series
(8.129) can be re-written in terms of the original Green’s function, as follows:
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= + Σ

G(k, ω) = G0(k, ω) + G0(k, ω)Σ(k, ω)G(k, ω)

(8.131)

Dyson equation

This equation is called a “Dyson equation”[2]. Using it to solve forG(k, ω), we also obtain (8.130).
Physically, the self-energy describes the cloud of particle-hole excitations which accompanies the
propagating electron, “dressing” it into a quasiparticle. In general, the self-energy has both a real,
and an imaginary component.

Σ(k, ω − iδ) = Σ′(k, ω) + iΓ(k, ω). (8.132)

The imaginary component to the self-energy describes the rate of decay of the bare fermion, through
the emission of particle-hole pairs.

If we use this expression to evaluate the one-particle spectral function, we obtain

A(k, ω) =
1
π

ImG(k, ω − iδ) = Γ(k, ω)
[ω − εk − Σ′(k, ω)]2 + Γ(k, ω)2 (8.133)

If the self-energy is small, we see that this corresponds to a Lorentzian of width Γ centered around
a renormalized energy ε∗k = εk + Σ

′(k, ε∗k). If we expand the Lorentzian around this point, we must
be careful to write ω − εk − Σ′(k, ω) = (ω − ε∗k)Zk where Z−1

k = (1 − ∂ωΣ′(k, ω))|ω=ε∗k . Near the
renormalized energy ω ∼ ε∗k,

G(k, ω − iδ) = Zk
ω − ε∗k − iΓ

∗
k
, (8.134)

where, provided Γ∗k is small,

ε∗k = εk + Σ
′(k, ε∗k), renormalized energy

τ−1 = ZkΓ(k, ε∗k), Lifetime.
(8.135)

can be interpreted as a “quasiparticle” with energy ε∗bk and lifetime Γ∗k (see section 7.8). Now this
“quasiparticle peak” is not the only component to the spectral function, because it only contains a
weight Zk, while the total weight of the spectral function is unity. The full Green’s function is better
represented in the form

G(k, ω − iδ) = Zk
ω − ε∗k − iΓ

∗
k
+Ginc(k, ω) (8.136)

where Ginc represents the incoherent particle-hole continuum contribution to the Green’s function.
This is precisely the form of spectral function expected in a Fermi liquid (7.8), with a sharp quasipar-
ticle pole co-existing with an incoherent background Ainc(k, ω). From the spectral decomposition
(6.117), we can relate Zk to the overlap between the bare particle and the dressed quasiparticle:

Zk = |〈q.ptcle kσ|c†kσ|φ〉|2 “Quasiparticle weight”. (8.137)
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8.5.1 Hartree-Fock Self-energy

The simplest example of the self-energy is the Hartree-Fock self energy, given by the two diagrams

ΣHF(p, ω) =

Σ Σ

+
Σ

= i
∫

p′

{
−(2S + 1)Vq=0 + Vp−p′

} ∫ dω
2π
G0(k)eiω0+ (8.138)

Here we see a case where we must include a convergence factor, associated with the normal ordering
of the operators inside the interaction. Identifying

∫
dωG0(k)eiω0+ = 2πi fp′ , we obtain

ΣHF(p) =
∫

|p′|<kF

d3k′

(2π)3

[
(2S + 1)Vq=0 − Vp−p′

]
(8.139)

In the Hartree-Fock approximation, the electron acquires a renormalized energy

ε∗p = εp + ΣHF(p) (8.140)

but since the Hartree-Fock self-energy is completely static, in this approximation, the quasiparticle
has an infinite lifetime. The mass of the quasiparticle is nevertheless renormalized. Suppose we
write

p
m∗
= ∇pε

∗
p =

[ p
m
+ ∇pΣHF(p)

]
(8.141)

then integrating by parts,

∇pΣHF(p) = −
∫

p′
∇pVp−p′ fp′ = +

∫

p′
∇p′Vp−p′ fp′ = −

∫

p′
Vp−p′∇p′ fp′ (8.142)

Writing ∇p fp = ∇pε
∗
p (∂ f /∂ε∗) = − p

m∗ δ(ε
∗
p), we then obtain

∇pΣHF(p) =
∫

p′
Vp−p′

(
p′
m∗

)
δ(ε∗p)

=
pF
m∗

∫

p′
Vp−p′(p̂′ · p̂)δ(ε∗p) =

(pF
m∗

) N(0)
2

∫ dΩp′

4π
Vp−p′cosθp,p′

= −
p
m∗

Fs1 (8.143)

where N(0) = m∗pF/(π2!3) is the renormalized density of states and by analogy with Fermi liquid
theory, we have written,

Fs1 = N(0)
∫ dΩp̂′

4π

(
−
Vp−p′

2

)
cos(θp,p′). (8.144)
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This is the dipole (l = 1) Landau parameter expected in Hartree-Fock theory, where the quasiparticle
interaction is given by fpσ,pσ′ = Vq=0 − Vp−p′δσσ′ , so that f sp,p′ = Vq=0 − 1

2Vp−p′ (see eq. (7.36).
Combining (8.141) and (8.143), we then obtain

p
m∗

(1 + Fs1) =
p
m

(8.145)

so that the renormalized mass is given by

m∗

m
= 1 + Fs1 (8.146)

Formally, this result is the same as that derived in Landau Fermi liquid theory (section 7.4.2), using
the Hartree-Fock approximation to the quasiparticle interaction (7.36 )

f spp′ = Vq=0 − Vp−p′ . (8.147)

However, a more realistic theory would take into account the screening and modification of the
interactions by the medium, a subject which we touch on at the end of this chapter.

8.6 Response functions
One of the most valuable applications of Feynman diagrams, is to evaluate response functions.
Suppose we couple the interacting system up to an external source field,

H(t) = Ho + Hs(t) (8.148)

where

Hs(t) = −A(t) f (t) (8.149)

involves the coupling of an external force to a variable of the system. Examples would include

Hs(t) = −µB
∫

d3x%σ(x) · B(x, t), External magnetic field

Hs(t) = −
∫

d3xρ(x)Φ(x, t) External potential (8.150)

In each case, the system will respond by a change in the variable A(t). To calculate this change, we
use the interaction representation of H(t) , so that

AH(t) = U†(t)AI(t)U(t) (8.151)

where, from chapter 7,

U(t) = T exp
[
−i

∫ t

−∞
Hs(t′)dt′

]
(8.152)
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We shall now drop the subscript I, because AI(t) = A(t) also corresponds to the Heisenberg repre-
sentation of Ho. Expanding (8.151) to linear order in Hs, we obtain

AH(t) = A(t) − i
∫ t

−∞
[A(t),Hs(t′)]dt′ + O(H2

s ) (8.153)

Finally, taking expectation values, we obtain

〈AH(t)〉 = 〈φ|A(t)|φ〉 − i
∫ t

−∞
〈φ|[A(t),Hs(t′)]|φ〉dt′ (8.154)

But if A is zero in the absence of the applied force, i.e. 〈φ|A(t)|φ〉 = 0, then the linear response of
the system is given by

〈AH(t)〉 =
∫ ∞

−∞
dt′χ(t − t′) f (t′)dt′ (8.155)

where

χ(t − t′) = i〈φ|[A(t), A(t′)]|φ〉θ(t − t′) (8.156)

is called the “dynamical susceptibility” and A(t) is in the Heisenberg representation of the unper-
turbed system.

Now in diagramatic perturbation theory, we are able to evaluate time-ordered Green functions,
such as

χT (1 − 2) = (−i)2〈φ|TA(1)A(2)|φ〉. (8.157)

Here, the prefactor (−i)2 has been inserted because almost invariably, A is a bilinear of the quantum
field, so that χT is a two-particle Greens function. Fortunately, there is a very deep link between
the dissipative response function, and the fluctuations associaed with a correlation function, called
the “fluctuation-dissipation” theorem. The Fourier transforms of R andG are both governed by pre-
cisely the same many-body excitations, with precisely the same spectral functions, with one small
difference: in the complex structure of χ(ω), all the poles lie just below the real axis, guarantee-
ing a retarded response. By contrast, in χT (ω), the positive and negative energy poles give rise to
retarded, and advanced responses, respectively. The spectral decomposition of these functions are
then,

χ(ω) =
∑

λ

2|Mλ|2ωλ
ω2
λ − (ω + iδ)2

χT (ω) = i
∑

λ

2|Mλ|2ωλ
(ωλ − iδ)2 − ω2 (8.158)
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where Mλ = 〈λ|A|φ〉 is the matrix element between the ground-state and the excited state λ and
ωλ = Eλ − Eg is the excitation energy. In this way, the response function can be simply related to
the time-ordered response at a small imaginary frequency:

χ(ω) = −iχT (ω + iδ) (8.159)

We can obtain the Feynman rules for the time-ordered correlation function, by introducing a source
term Hs and calculating the S-matrix S [ f ]. In this case,

δ2

δ f (1)δ f (2)
lnS [ f ] = −〈φ|T [A(1)A(2)]|φ〉 = χT (1 − 2) ≡ 1 2 (8.160)

Diagramatically, the time-ordered correlation function for the quantity A, is given by

χT (ω) =
∑
{diagrams formed by connecting two ”A” vertices together.} (8.161)

as summarized in Table 8.3.
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8.6.1 Magnetic susceptibility of non-interacting electron gas

One of the fundamental qualities of an fermi liquid, is its non-local response to an applied field.
Suppose for example, one introduces a localized “delta-function” disturbance in the magnetic field,
δBz(x) = Bδ3(x). Since the fermions have a characteristic wave vector of order kF , this local distur-
bance will “heal” over a length-scale of order l ∼ 1/kF . Indeed, since the maximum wavevector for
low-energy particle-hole excitations is sharply cut-off at 2kF , the response produces oscillations in
the spin density with a wavelength λ = 2π/kF that decay gradually from the site of the disturbance.
These oscillations are called “Friedel Oscillations” (Fig. 8.3). In the case of the example just cited,
the change in the spin density in response to the shift in the chemical potential is given by

δM(%x) = χs(%x)B (8.162)

where
χs(%x) =

∫

q
χ(q, ω = 0)ei%q·%x (8.163)

is the Fourier transform of the dynamical spin susceptibility. We shall now calculate this quantity
as an example of the application of Feynman diagrams.

From the interaction in (8.150 ) the magnetization is given by

%M(x) =
∫

d4x′χ(x − x′)%B(x′) (8.164)

where
χ
ab

(x) = i〈φ|[σa(x), σb(0)]|φ〉θ(t) (8.165)

The electron fluid mediates this non-local response. If we Fourier transform this expression, then
%M(q) = χ(q)%B(q), where (in a relativistic short-hand)

χab(q) = iµ2
B

∫
d4x〈φ|[σa(x), σb(0)]|φ〉θ(t)e−iq·x (8.166)

We can relate χab(%q, ν) = −iχTab(%q, ν + iδ) where the time ordered Greens function is given by

χTab(q) = µ2
B

k+q

k

bσ σ a

= −µ2
B

∫

k

dω
2π

2δabG(k+q)G(k)︷!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!︷
Tr

[
σaG(k + q)σbG(k)

]
= δabχ

T (q). (8.167)

The susceptibility χT (q) is then

χT (q) = −2µ2
B

∫

k

dω
2π

[
1

ω + ν − ε̃k+q

1
ω − ε̃k

]
(8.168)

where we have invoked the notation ε̃k = εk − iδsgn(εk). The term inside the square brackets has
two poles at ω = ε̃k and at ω = ε̃k+q − ν,

∫

ω
=

∫
dω
2π

1
(ε̃k+q − ε̃k) − ν

[
1

ω + ν − εk+q + iδk+q
−

1
ω − εk + iδk

]
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Figure 8.3: “Friedel oscillations in the spin density, in response to a delta-function disturbance in
the magnetic field at the origin.These oscillations may be calculated from the Fourier transform of
the Lindhard function.

We may carry out the frequency integral by completing the contour in the upper half plane. Each
Green function gives a contribution 2πi × fermi function, so that

χT (q) = −2iµ2
B

∫

k

fk+q − fk
(ε̃k+q − ε̃k) − ν

(8.169)

so that the dynamic susceptibility χ(q, ν) = −iχT (q, ν + iδ) is given by

χ(q, ν + iδ) = 2µ2
B

∫

k

fk+q − fk
ν − (εk+q − εk) + iδ

dynamic spin susceptibility (8.170)

There are a number of important pieces of physics encoded in the above expression that deserve
special discussion:

• Spin Conservation. The total spin of the system is conserved, so that the application of a
strictly uniform magnetic field to the fluid can not change the total magnetization. Indeed, in
keeping with this expectation, if we take %q→ 0 we find lim%q→0 χ(%q, ν) = 0.
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Figure 8.4: “The Lindhard function”. The Fourier transform of this function governs the mag-
netic response of a non-interacting metal to an applied field. Notice the weak singularity around
q/(2kF) = 1 that results from the match between the Fermi surface, and the wavevector of the
magnetic response.

• Static susceptibility. When we take the limit ν → 0, we obtain the magnetization response to
a spatially varying magnetic field. The static susceptibility is given by

χ(q) = 2µ2
B

∫

k

fk − fk+q

(εk+q − εk)
. (8.171)

This response is finite, because the spins can always redistribute themselves in response to a
non-uniform field. When we take the wavelength of the applied field to infinity, i.e q → 0,
we recover the Pauli susceptibililty

χ→ 2µ2
B

∫

k

(
−
d f (ε)
dε

)
= 2µ2

B

∫

k
δ(εk) = µ2

BN(0), (8.172)

where N(0) = mkF
π2 is the total density of states. The detailed momentum-dependent static

susceptibility can be calculated (see below), and is given by

χ(q) = µ2
BN(0)F(

q
2kF

)

F(x) =
1
4x

(1 − x2)ln
∣∣∣∣∣
1 + x
1 − x

∣∣∣∣∣ +
1
2

(8.173)

The function F(x) is known as the Lindhard function[4]: it has the property that F(0) = 1,
while F′(x) has a logarithmic singularity at |x| = 1.

• Dissipation and the imaginary part of the susceptibility. The full dynamic spin susceptibility
has both a real and an imaginary part, given by

χ(q, ν) = χ′(q, ν) + iχ′′(q, ν).
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χ
′′(q, ν)

ν/(4εF )

q/(2kF )
2

1

2

0 1

F

q ~ 0

q ~ 2k

Figure 8.5: Density plot of the imaginary part of the dynamical spin susceptibility, calculated from
(8.180) showing the band of width 2kF that spreads up to higher energies. Excitations on the left
side of the band correspond to low momentum transfer excitations of electrons from just beneath
the Fermi surface to just above the Fermi surface. Excitations on the right hand side of the band
correspond to high momentum transfer processes, right across the Fermi surface.

where the imaginary part determines the dissipative part of the magnetic response. The dissi-
pation arises because an applied magnetic field generates a cloud of electron hole pairs which
carry away the energy. If we use the Dirac-Cauchy relation 1/(x + iδ) = P(1/x) − iπδ(x) in
(8.170 ), we obtain

χ′′(q, ν) = 2µ2
B

∫

k
πδ[ν − (εk+q − εk)]( fk − fk+q), (8.174)

This quantity defines the density of states of particle-hole excitations. The excitation energy
of a particle hole pair is given by

εk+q − εk =
q2

2m
+
qk
m

cos θ

where θ is the angle between k and q. This quantity is largest when θ = 0, k = kF and smallest
when θ = π, k = kF so that

q2

2m
+
qkF
m
> ν >

q2

2m
−
qkF
m

defines a band of allowed wavevectors where the particle-hole density of states is finite, as
shown in Figure 8.5. Outside this region, χo(q, ν) is purely real.

228



bk.pdf June 28, 2011 115

c©2011 Piers Coleman Chapter 8.

8.6.2 Derivation of Lindhard Function

The dynamic spin-susceptibility

χ(q, ν) = 2µ2
B

∫

k

fk − fk+q

(εk+q − εk − ν)
. (8.175)

can be rewritten as

χ(q, ν) = 2µ2
B

∫

k
fk

[
1

(εk+q − εk − ν)
+

1
(εk−q − εk + ν)

]
(8.176)

Written out explicity, this is

χ(q, ν) = 2µ2
B

∫ kF

0

k2dk
2π2

∫ 1

−1

d cos θ
2

[
1

(εk+q − εk − ν)
+ ((ν, q)→ −(ν, q))

]
.

By replacing εk → k2

2m − µ rescaling x = k/kF , q̃ = q/(2kF) and ν̃ = ν/(4εF), we obtain χ(q, ν) =
µ2
BN(0)F (q̃, ν̃), where

F (q̃, ν̃) =
1

4q̃

∫ 1

0
x2dx

∫ 1

−1
dc




1
xc + q̃ − ν̃q̃

+ (ν→ −ν)


 (8.177)

is the “Lindhard Function”. Carrying out the integral over angle, we obtain

F (q̃, ν̃) =
1
4q̃

∫ 1

0
xdx


ln



q̃ − ν̃q̃ + x

q̃ − ν̃q̃ − x


 + (ν̃→ −ν̃)




=
1

8q̃





1 −

(
q̃ −
ν̃

q̃

)2 ln



q̃ − ν̃q̃ + 1

q̃ − ν̃q̃ − 1


 + (ν̃→ −ν̃)


 +

1
2

(8.178)

This function is known as the Lindhard function. Its static limit, F(q̃) = F (q̃, ν̃ = 0),

F(q̃) =
1
4q̃

([
1 − q̃2

]
ln

∣∣∣∣∣
q̃ + 1
q̃ − 1

∣∣∣∣∣

)
+

1
2

(8.179)

has the property that F(0) = 1, and that dF/dx is singular at x = 1 as shown in Fig. 8.4. The
imaginary part of χ(q, ν + iδ) is given

χ′′(q, ν) = µ2
BN(0) ×

π

8q̃





1 −

[
q̃ −
ν̃

q̃

]2 θ

1 −

[
q̃ −
ν̃

q̃

]2 − (ν→ −ν)

 (8.180)

which is plotted in Fig. 8.5.
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8.7 The RPA (Large-N) electron gas
Although the Feynman diagram approach gives us a way to generate all perturbative corrections, we
still need a way to selecting the physically important diagrams. In general, as we have seen from
the last examples, it is important to resum particular classes of diagrams to obtain a physical result.
What principles can be used to select classes of diagrams?

Frequently however, there is no obvious choice of small parameter, in which case, one needs
an alternative strategy. For example, in the electron gas, we could select diagrams according to the
power of rs entering the diagram. This would give us a high-density expansion of the properties -
but what if we would like to examine a low density electron gas in a controlled way?

One way to select Feynman diagrams in a system with no natural small parameter is to take the
so-called “large-N” limit. This involves generalizing some internal degree of freedom so that it has
N components. Examples include:

• The Hydrogen atom in N-dimensions.

• The electron gas with N = 2S + 1 spin components.

• Spin systems, with spin S in the limit that S becomes large.

• Quantum Chromodynamics, with N, rather than three colours.

In each of these cases, the limit N → ∞ corresponds to a new kind of semiclassical limit, where
certain variables cease to undergo quantum fluctuations. The parameter 1/N plays the role of an
effective !

1
N
∼ ! (8.181)

This does not however mean that quantum effects have been lost, merely that their macroscopic
consequences can be lumped into certain semi-classical variables.

8.7.1 The RPA electron gas

We shall now examine the second of these two examples. The idea is to take an interacting Fermi
gas where each fermion has N = 2S + 1 possible spin components. The interacting Hamiltonian is
still written

H =
∑

k,σ
εkc†kσckσ +

1
2

∑
Vqc†k+qσc†k′−qσ′ck′σ′ckσ (8.182)

but now, the spin summations run over N = 2S + 1 values, rather than just two. As N is made very
large, it is important that both the kinetic and the interaction energy scale extensively with N, and
for this reason, the original interaction Vq is rescaled, writing

Vq =
1
N
Vq (8.183)
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where it is understood that as N → ∞, V is to be kept fixed. The idea is to now calculate quantities
as an expansion in powers of 1/N, and at the end of the calculation, to give N the value of specific
interest, in our case, N = 2. For example, if we are interested in a Coulomb gas of spin 1/2 electrons,
then study the family of problems where

Vq =
1
N
ẽ2

q2 =
Vq

N
(8.184)

and ẽ2 = 2e2/ε0. At the end, we set N = 2, boldly hoping that the key features of the solution around
N = 2 will be shared by the entire family of models. In practice, this only holds true if the density of
electron gas is large high enough to avoid instabilities, such as the formation of the Wigner crystal.
For historical reasons, the approxation that appears in the large N limit is called the “Random Phase
approximation” or “RPA” for short, a method developed during the 1950s. The early version of the
RPA approximation was developed by Bohm and Pines[5] while its reformulation in a diagrammatic
language was later given by Hubbard[6]. 2. The large N treatment of the electron gas recovers RPA
electron gas in a controlled approximation.

With the above substitution, the Feynman rules are unchanged, excepting that now we associate
a factor 1/N with each interaction vertex. Before we start however, there are a few few preliminar-
ies, in particular, we need to know how to handle long range Coulomb interactions. We’ll begin
considering a general Ṽq with a finite interaction range. To be concrete, we can consider a screened
Coulomb interaction

Vq =
ẽ2

q2 + δ2
(8.185)

where we take δ→ 0 at the end of the calculation to deal with the infinite range interaction.

8.7.2 Jellium: introducing an inert positive background.

To deal with long-range Coulomb interactions (and take δ→ 0 in the above interaction (8.185)), we
will need to make sure that the charge of the entire system is actually neutral. The resulting medium
is a radically simplified version of matter that is playfully refered to as “jellium”. In jellium, there
is an inert and completely uniform background of positive charges, with charge +|e| and number
density ρ+(x) = ρ+ adjusted so that ρ+ = ρe, the density of electrons. The the Coulomb interaction
Hamiltonian of jellium takes the form

HI =
1
2

∫

%x,%y
V(x − y) : (ρ̂(x) − ρ+)(ρ̂(y) − ρ+) :=

1
2

∫

%x,%y
V(x − y) : δρ(x)δρ(y) : (8.186)

where ρ̂(x) is the density of electrons and δρ(x) = ρ̂(x) − ρ+ is the fluctuation of the density. We
see that the Coulomb energy of jellium is only sensitive to the fluctuations in the density. The
presence of the background charge has the the effect of upwardly shifting the chemical potential of
the electrons by an amount

∆µ =

∫
V(x − x′)ρ+(x′) = Vq=0ρ+ (8.187)

2A more detailed discussion of this early history can be found in the book by Nozières and Pines[7]
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This chemical potential shift can be treated as a scattering potential that is diagonal in momen-
tum, ∆Vk,k′ = −∆µδk,k′ , which introduces an additional uniform potential scattering term into the
electron self energy

k k
= −∆µ = −Vq=0ρ+. (8.188)

If we compare this term with the the “tadpole” diagrams in the self-energy

= −i(2S + 1)Vq=0

∫

k
G(k) = Vq=0ρe. (8.189)

we see that when we combine the terms, provided ρe = ρ+, they cancel one-another.

+ = Vq(ρe − ρ+) = 0. (8.190)

Thus by introducing a uniform positively charged background, we can entirely remove all tadpole
insertions from the diagrams we draw.

Let us now examine how the fermions interact in this large-N fermi gas. We can expand the
effective interaction as follows

iVe f f (q)
=

iVq
N

+

iVq
N iVq

N

χ +

iVq
N iVq

N iVq
N

χ χ + . . .
(8.191)

The ”self-energy” diagram for the interaction line is called a ”polarization bubble”, and has the
following diagramatic expansion.

χ

O(N) O(1) O(1) O(1/N)

+ + + +  ...= = iNχ(q) (8.192)

By summing the geometric series that appears in (8.191) we obtain

Ve f f =
1
N

V(q)
1 +V(q)χ(q)

(8.193)

This modification of the interaction by the polarization of the medium is an example of “screening”.
In the large-N limit, the higher-order Feynman diagrams for χ(q) are smaller by factors of 1/N, so
in the large-N limit, these terms can be neglected giving

iχ(q)N = iχ0(q)N + O(1) = + O(1) (8.194)

The large N approximation where we replace χ(q)→ χ0(q) is also called the “RPA appoximation”.

232



bk.pdf June 28, 2011 117

c©2011 Piers Coleman Chapter 8.

In the case of a Coulomb interaction, where the screened interaction becomes

Ve f f (q, ω) =
1
N

ẽ2

q2εRPA(q, ω)
(8.195)

where we have identified

εRPA(q, ω) = 1 +V(q)χ(q) = 1 +
ẽ2

q2χo(q) (8.196)

as the dielectric function of the charged medium. Notice how, in the interacting medium, the in-
teraction between the fermions has become frequency dependent, indicating that the interactions
between the particles are now retarded. From our previous study of the Linhard function, we
showed that χo(q) = Ns(0)F (q/(2kF)), ν/(4εF)) where F is the dimensionless Lindhard function
and Ns(0) = mkF

2π2!2 is the density of states per spin at the Fermi surface, so we may write

εRPA(q, ω) = 1 + λ
(
F (q̃, ν̃)
q̃2

)
(8.197)

where the dimensionless coupling constant

λ =
ẽ2Ns(0)
(2kF)2 =

1
πkF
×

e2m
4πε0!2 =

1
πkFaB

=

(α
π

)
rs, (8.198)

here aB is the Bohr radius α =
(

4
9π

)1/3
≈ 0.521 and rs = (αkFaB)−1 is the dimensionless electron

separation (see 8.105). Notice that the accuracy of the large N expansion places no restriction on
the size of the coupling constant λ, which may take any value in the large N limit. Summarizing,

εRPA(q, ω) = 1 +
1

πkFaB

(
F (q̃, ν̃)
q̃2

)
(8.199)

Dielectric constant of the RPA electron gas

8.7.3 Screening and Plasma oscillations

At zero frequency and low momentum, F → 1, so the dielectric constant diverges:

ε = limq→0ε(q, ν = 0)→ ∞.

Is this a failure of our theory?
In fact: no! The divergence of the uniform, static dielectric constant is the quintisential electro-

static property of a metal. Since ε = ∞, no static electric fields penetrate a metal. Moreover, the
electron charge is completely screened. At small q, the effective interaction is

Ve f f (q, ν) =
1
N

ẽ2

q2 + κ2
≡

e2

ε0(q2 + κ2)
, (N = 2) (8.200)
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where κ =
√
ẽ2Ns(o) =

√
e2N(0)/ε0 (N = 2) can be identified as an inverse screening length. κ−1 is

the “Thomas-Fermi” screening length of a classical charge plasma. You can think of

escreening(q) =
e

ε(q, 0)
− e ∼ |e|

κ2

q2 + κ2

(where e = −|e|), as the Fourier transform of the screening charge around the electron. We can see
that the electron charge is fully screened, since escreening(q = 0) = +|e|. Note however, that there
is still a weak singularity in the susceptibility when q ∼ 2kF , χ0(q ∼ 2kF , 0) ∼ (q − 2kF) ln(q −
2kF), which Fourier transformed, gives rise to a long-range oscillatory component to the interaction
between the particles of the form

Ve f f (r) ∝
cos 2kFr

r3 . (8.201)

This long-range oscillatory interaction is associated with Friedel oscillations.
A second, and related consequence of the screening is the emergence collective of plasma os-

cillations. In the opposite limit of finite frequency, but low momentum, we may approximate χ0 by
expanding it in momentum, as follows

χo(q, ν) =
∫

k

fk+q − fk
ν − (εk+q − εk)

≈
∫

k

(q · vk)
ν − (q · vk)

(
d f (ε)
dε

)
(8.202)

where vk = ∇kεk is the group velocity. Expanding this to leading order in momentum gives

χo(q, ν) = −
∫

k

(q · vk)2

ν2

(
−
d f (ε)
dε

)
= −

Ns(0)v2
F

3

(
q2

ν2

)
= −

( ñ
m

) (
q2

ν2

)
, (8.203)

where ñ = n/N is the density of electrons per spin, so that

εo(q, ν) = 1 −
ω2
p

ν2
(8.204)

where

ω2
p =

ẽ2ñ
m
=
e2n
ε0m

(N = 2). (8.205)

is the plasma frequency. This zero in the dielectric function at ω = ωp indicates the presence of
collective plasma oscillations in the medium at frequency ωp. At finite q, ωP(q) develops a, forming
a collective mode.

It is instructive to examine the response of the electron gas to a time-dependent change in po-
tential energy −δU(x, t) (corresponding to a change in energy H = −

∫
δU(x, t)ρ(x)) with Fourier

transform δU(q). In a non-interacting electron gas, the induced change in charge is

δρe(q) = Nsχ0(q)δU(q)
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corresponding to the diagram

δρe(q) = −i δU(q) (8.206)

In the RPA electron gas, the change in the electron density induced by the applied potential produces
its own interaction, and the induced change in charge is given by

δρe(q) = −i
[

+ + + . . .
]
δU(q)

= N
[
χ0 + χ0(−Vχ0) + χ0(−Vχ0)2 + . . .

]
δU(q)

= N
[
χ0(q)

1 +Vqχ0(q)

]
δU(q). (8.207)

So we see that the dynamical charge susceptibility is renormalized by interactions

χ(q) = N
χ0(q)
εRPA(q)

= N(0)
[
F (q̃, ν̃)

1 + αrsπ F (q̃, ν̃)

]
, (q̃ = q/2kF , ν̃ = ν/4εF) (8.208)

where F (q̃, ν̃) is given in (8.178). The imaginary part of the dynaical susceptibility χ(q, ν − iδ)
defines the spectrum of collective excitations of the RPA electron gas, shown in in Fig. 8.6. Notice
how the collective plasma mode is split off above the particle-hole continuum.

Remarks:

• The appearance of this plasma mode depends on the singular, long-range nature of the Coulomb
interaction. It is rather interesting to reflect on what would have happened to the results of this
section had we kept the regulating δ in the bare interactionVq (8.185) finite. In this case the
plasma frequency would be zero, while the dielectic constant would be finite. In other words,
the appearance of the plasma mode, and the screening of an infinite range interaction are in-
timately interwined. In fact, the plasma mode in the Coulomb gas is an elementary example
of a Higg’s particle - a finite mass excitation that results from the screening of a long-range
(gauge) interaction. We shall discuss this topic in more depth in section (??).

8.7.4 Zero point energy of the RPA electron gas.

Let us now examine the linked cluster expansion of the ground-state energy. Without the tadpole
insertions, the only non-zero diagrams are then:

∆E
V

=




+ + + +...

O(1)



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ν/(4εF )

q/(2kF )

χ
′′(q, ν)

2

1

2

0 1

Figure 8.6: Density plot of the imaginary part of the dynamical charge susceptibility
Im[χ0(q, ν)/ε(q, ν)] in the presence of the Coulomb interaction calculated for αrsπ = 1, (rs ∼ 6).
using eq. (8.199) and eq. (8.178). Notice the split-off plasmon frequency mode, and how the charge
fluctuations have moved up to frequencies above the plasma frequency.

+




+ +...

O(1/N)


 +




2O(1/N  )

+...


+ . . . ...




(8.209)

These diagrams are derived from the zero the zero-point fluctuations in charge density, which mod-
ify the ground-state energy E → Eo + Ezp. We shall select the leading contribution

Ezp
V
= + + + +...

O(1)

(8.210)

Now the nth diagram in this series has a symmetry factor p = 2n, and a contribution (−χo(q)V(q))n
associated with the n polarization bubbles and interaction lines. The energy per unit volume associ-
ated with this series of diagrams is thus

Ezp = i
∞∑

n=1

1
2n

∫
d4q

(2π)4 (−χo(q)V(q))n. (8.211)

By interchanging the sum and the integral, we see that we obtain a series of the form
∑
n

(−x)n
n =

−ln(1 + x), so that the zero-point correction to the ground-state energy is

Ezp = −i
1
2

∫
d4q

(2π)4 ln[1 +Vqχo(q)]

Now the logarithm has a branch cut just below the real axis, for positive frequency, but just above the
real axis for negative frequency. If we carry out the frequency integral by completing the contour in
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the lower half plane, we can distort the contour integral around the branch cut at positive frequency,
to obtain

Ezp = −
i
2

∫

q

∫ ∞

0

dω
2π

[
ln[1 + χo(q, ν + iδ)Vq] − ln[1 + χo(q, ν − iδ)Vq]

]

=
1
2

∫

q

∫ ∞

0

dω
π

arctan
(
Vqχ

′′(q, ν)
[1 +Vqχ′(q, ν)]

)
(8.212)

If we associate a “phase shift”

δ(q, ω) = arctan
(
Vqχ

′′(q, ν)
[1 +Vqχ′(q, ν)]

)
(8.213)

then we can the zero-point fluctuation energy can also be written in the form

∆Ezp =
∫

d3q
(2π)3

∫ ∞

0
dωΛ(ω)

[ω
2

]
(8.214)

where

Λ(ω) =
1
π

∂δ(q, ω)
∂ω

. (8.215)

We can interpret Λ(ω) as the “density of states” of charge fluctuations at an energy ω. When the
interactions are turned on, each charge fluctuation mode in the continuum experiences a scattering
phase shift δ(%q, ω) which has the effect of changing the density of states of charge fluctuations.
The zero-point energy describes the change in the energy of the continuum due to these scattering
effects.

8.8 Exercises
1. The separation of electrons Rein a Fermi gas is defined by

4πR3
e

3
= ρ−1

where ρ is the density of electrons. The dimensionless separation rs is defined as rs = Re/a where
a = c!2

me2 is the Bohr radius.

(a) Show that the Fermi wavevector is given by

kF =
1
αrsa

where α =
(

4
9π

) 1
3 ≈ 0.521.
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(b) Consider an electron plasma where the background charge density precisely cancels the charge
density of the plasma. Show that the ground-state energy to leading order in the strength of the
Coulomb interaction is given by

E
ρV

=
3
5
RY
α2r2

s
−

3
2π

RY
αrs

=

(
2.21
r2
s
−

0.916
rS

)
RY (8.216)

where RY = !2

2ma2 is the Rydberg energy. (Hint - in the electron gas with a constant charge
background, the Hartree part of the energy vanishes. The Fock part is the second term in this
expression. You may find it useful to use the integral

∫ 1

0
dx

∫ 1

0
dyxy ln |

x + y
x − y

| =
1
2

(c) When can the interaction effects be ignored relative the kinetic energy?

2. Consider a gas of particles with interaction

V̂ = 1/2
∑

%k%k′%qσσ′
Vqc†%k−%qσc

†
%k′+%qσ′c%k′σ′c%kσ

(a) Let |φ〉 represent a filled Fermi sea, i.e. the ground state of the non interacting problem. Use
Wick’s theorem to evaluate an expression for the expectation value of the interaction energy 〈φ|V̂ |φ〉
in the non-interacting ground state. Give a physical interpretation of the two terms that arise and draw
the corresponding Feynman diagrams.
(b) Suppose |φ̃〉 is the full ground-state of the interacting system. If we add the the interaction energy
〈φ̃|V̂ |φ̃〉 to the non-interacting ground-state energy, do we obtain the full ground-state energy? Please
explain your answer.
(c) Draw the Feynman diagrams corresponding to the second order corrections to the ground-state en-
ergy. Without calculation, write out each diagram in terms of the electron propagators and interaction
Vq, being careful about minus signs and overall pre-factors.

3. Consider a d-dimensional system of fermions with spin-degeneracy N = 2S + 1, mass m and total
density Nρ, where ρ is the density per spin component. The fermions attract one-another via the
two-body potential

V(ri − r j) = −αδ(d)(ri − r j), (α > 0) (8.217)

(a.) Calculate the total energy per particle, εs(N, ρ) to first order in α.
(b.) Beyond some critical value αc, the attraction between to the particles becomes so great that the
gas becomes unstable, and may collapse. Calculate the dependence of αc on the density per spin ρ. To
what extent do you expect the gas to collapse in d = 1, 2, 3 when αc is exceeded?
(c.) In addition to the above two-body interaction nucleons are also thought to interact via a repulsive
three-body interaction. Write the three-body potential V(ri, r j, rk) = βδ(d)(ri − r j)δ(d)(r j − rk), in
second-quantized form.
(d.) Use Feynman diagrams to calculate the ground-state energy per particle, εs(N, ρ) to leading order
in both β and α. How does your result compare with that obtained in (a) when N = 2?
(e.) If we neglect Coulomb interactions, why is the case N = 4 relevant to nuclear matter?
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4. (a. )Consider a system of fermions interacting via a momentum-dependent interaction V(q) = 1
NU(q),

where N = 2S + 1 is the spin degeneracy. When N is large, the interactions in this fluid can be treated
exactly. Draw the Feynman diagram expansion for the ground-state energy, identifying the leading
and subleading terms in the 1/N expansion.
(b) Certain classes of Feynman diagrams in the linked-cluster expansion of the ground-state energy
identically vanish. Which ones, and why?
(c.) If Nχ(o)(q) = 〈δρ(q)δρ(−q)〉o is the susceptibility of the non-interacting Fermi gas, i.e

= iNχ(o)(q), (8.218)

where q = (q, ν), what is the effective interaction between the fermions in the large N limit? Suppose
that in real space, U(r) = e2/r is a long-range Coulomb interaction, explain in detail what happens to
the effective interaction at long-distances.

5. Compute the rms quantum fluctuations ∆ρ =
√
〈(ρ − ρo)2〉 in the charge density of the electron gas

about its average density, ρo, in the large-N limit. Show that ∆ρ/ρo ∼ O(1/N), so that the density
behaves as a semiclassical variable in the large N limit.

6. Show that the dynamical charge susceptibility of an interacting electron gas in the large N limit, defined
by

χ(q, ν + iδ) =
∫

d3x
∫ ∞

0
i〈φ|[ρ(x, t), ρ(0, 0)]|φ〉e−i(q·x−ωt) (8.219)

contains a pole at frequencies

ωq = ωp(1 +
3

10
qvF) (8.220)

where ωp =
√

4πẽ2ñ/m is the Plasma frequency and vF = pF/m is the Fermi velocity.
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Table. 8.1 Real Space Feynman Rules .

1 2 G(2 − 1)

x1 U(x1)

1 2 iV(1 − 2)

∏

i

∫
d3xidti Integrate over all intermediate times

and positions.

−(2S + 1)G(%0, 0−)

[−(2S + 1)]F ,

F = no. Fermion loops.

η(1) η(1)

−iη̄(1) −iη̄(1)

p = 2
1
p

× p = 8 p = order of symmetry group.
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Table. 8.2 Momentum Space Feynman Rules .

(k, ω)
Go(k, ω) Fermion propagator

iV(q) Interaction

(q, ν)
1 2

ig2
qDo(q) Exchange Boson.

q U(q) Scattering potential

[−(2S + 1)]F , F= no. Fermion loops

(q, ν)

∫
ddqdν

(2π)d+1 e
iν0+ Integrate over internal loop momenta

and frequency.

p = 2

1
p p = order of symmetry group.

× p = 8
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Table. 8.3 Relationship With Physical Quantities.

∆E iV
∑
{linked clusters} iV

[
+ + . . .

]

lnS VT
∑
{linked clusters} VT

[
+ + . . .

]

1
−i〈Tψ(2)ψ†(1)〉

2
∑
{Two leg diagrams}

Σ+

Σ Σ

+ +

(−i)n〈Tψ(1) . . . ψ†(2n)〉
∑
{2n- leg diagrams}

G n = 2
iVe f f (q)

−

iVq
N

+

iVq
N iVq

N

χ+

Response Functions

(−i)2〈ψ|T [A(2)B(1)]|ψ〉 = χTAB

B(1) A(2)
χAB = −iχTAB(ω − iδ) −i × + + . . .

i〈[A(2), B(1)]〉θ(t1 − t2) = χAB
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Chapter 9

Finite Temperature Many Body Physics

For most purposes in many body theory, we need to know how to include the effects of temperature.
At first sight, this might be thought to lead to undue extra complexity in the mathematics, for now
we need to average the quantum effects over an ensemble of states, weighted with the Boltzmann
average

pλ =
e−βEλ
Z

(9.1)

It is here that some of the the most profound aspects of many body physics come to our aid.

Ground State T=0 Ensemble of states at temperature T> 0

Figure 9.1: At zero temperature, the properties of a system are determined by the ground-state. At
finite temperature, we must average the properties of the system over an ensemble which includes
the ground-state and excited states, averaged with the Boltzmann probability weight e−βEλ

Z .

Remarkably, finite temperature Many Body physics is no more difficult than its zero temperature
partner, and in many ways, the formulation is easier to handle. The essential step that makes this
possible is due to the Japanese physicist Kubo, who noticed in the early fifties that the quantum-
mechanical partition function can be regarded as a time-evolution operator in imaginary time:

ρ̂ ∝ e−βĤ = U(−i!β),
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where U(t) = e−i tH! is the time-evolution operator, and by convention, we write H = H0−µN to take
into account of the chemical potential. Kubo’s observation led him to realize that finite temperature
many body physics can be compactly reformulated using an imaginary, rather than a real time to
time-evolve all states

it
!
−→ τ.

Kubo’s observation was picked up by Matsubara, who wrote down the first imaginary time formula-
tion of finite temperature many body physics. In the imaginary time approach, the partition function
of a quantum system is simply the trace of the time-evolution operator, evaluated at imaginary time
t = -i !β,

Z= Tre− βH= TrU(−i!β),

whilst the expectation value of a quantity A in thermal equilibrium is given by

〈A〉 =
Tr

[
U(−i!β)A

]

Tr
[
U(−i!β)

] ,

an expression reminiscent of the Gell-Mann Lowe formula excepting that now, the S-matrix is
replaced by time-evolution over the finite interval t ∈

[
0,−i!β

]
: The imaginary time universe is of

finite extent in the time direction! We will see that physical quantities turn out to be periodic in
imaginary time, over this finite interval τ ∈ [0, !β]. This can loosely understood as a consequence
of the incoherence induced by thermal fluctuations: thermal fluctuations lead to an uncertainty kBT
in energies, so

τT =
!

kBT
represents a characteristic time of a thermal fluctuation. Processes of duration longer than τT loose
their phase coherence, so coherent quantum processes are limited within a world of finite temporal
extent, !β.

One of the most valuable aspects of finite temperature quantum mechanics, first explored by
Kubo concerns the intimate relationship between response functions and correlation functions in
both real and imaginary time, which are mathematically quantified via the “fluctuation dissipation
theorem”.

Quantum/thermal Fluctuations↔ Dynamic Response

“Fluctuation dissipation”

These relationships, first exploited in detail by Kubo, and now known as the “Kubo formalism”, en-
able us to calculate correlation functions in imaginary time, and then, by analytically continuing the
Fourier spectrum, to obtain the real-time response and correlation functions at a finite temperature.

Most theoretical many body physics is conducted in the imaginary time formalism, and theorists
rarely give the use of this wonderful method a moments use. It is probably fair to say that we do
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T> 0

T=0

y

y

t

x

x

(a) τ

0

(b)

ψF (β) = −ψF (0)
ψB(β) = ψB(0)

Figure 9.2: (a) Zero temperature field theory is carried out in a space that extends infinitely from
t = −∞ to t = ∞. (b) Finite temperature field theory is carried out in a space that extends over
a finite time, from τ = 0 to τ = !β. Bosonic fields (ψB) are periodic over this interval whereas
Fermionic fields (ψF) are antiperiodic over this interval.

not understand the deep reasons why the imaginary time formalism works. Feynman admits in
his book on Statistical mechanics, that he has sought, but not found a reason for why imaginary
time and thermal equilibrium are so intimately intertwined. In relativity, it turns out that thermal
density matrices are always generated in the presence of an event horizon, which excludes any
transmission of information between the halves of the universe of different sides of the horizon.
It would seem that a complete understanding of imaginary time may be bound-up with a more
complete understanding of information theory and quantum mechanics than we currently possess.
What-ever the reason, it is a very pragmatic and beautiful approach, and it is this which motivates
us to explore it further!

9.1 Imaginary time

The key step in making the jump from zero temperature, to finite temperatures many body physics,
is the replacement

it
!
→ τ. (9.2)

With this single generalization, we can generalize almost everything we have done at zero tem-
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perature. In zero temperature quantum mechanics, we introduced the idea of the Schrödinger,
Heisenberg and interaction representations. We went on to introduce the concept of the Greens
function, and developed a Feynman diagram expansion of the S-matrix. We shall now repeat this
exact procedure in imaginary time, reinterpreting the various entities which appear in terms of finite
temperature statistical mechanics. Table 1. summarizes the key analogies between real time zero
temperature, and imaginary time, finite temperature many body physics.

Table. 9.0 The link between real and imaginary time formalisms.

Schrödinger eqn |ψs(t)〉 = e−itH |ψs(0)〉 |ψs(τ)〉 = e−τH |ψs(0)〉

Heisenberg rep Ah = eitHAse−itH AH = eτHAse−τH

Interaction rep |ψI(t)〉 = e−itH0 |ψI(t)〉 |ψI(τ)〉 = e−τH0 |ψI(τ)〉

Perturbation Expansion S = 〈−∞|Te−i
∫
Vdt|∞〉 Z

Z0
= Tr

[
e−

∫ β
0 Vdτ

]

Wick’s Theorem

Green’s function Gλλ′(t) = −i〈0|Tψλ(τ)ψ†λ′(0)|0〉 Gλλ′(τ) = −〈Tψλ(τ)ψ†λ′(0)〉

Feynman Diagrams ln S = TV
∑

[linked clusters] =
−iT∆E

ln Z
Zo = βV

∑
[linked clusters] =
−β∆F

9.1.1 Representations

The imaginary time generalization of the Heisenberg and interaction representations precisely paral-
lels the development in real time, but there are some minor differences that require us to go through
the details here. After making the substitution t → −iτ!, the real time Schrödinger equation

H|ψs〉 = i!
∂

∂t
|ψs〉, (9.3)

becomes
H|ψs〉 = −

∂

∂τ
|ψs〉. (9.4)

so the time-evolved wavefunction is given by

|ψs(τ)〉 = e−Hτ|ψs(0)〉. (9.5)
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The Heisenberg representation removes all time-dependence from the wavefunction, so that
|ψH〉 = |ψs(0)〉 and all time-evolution is transfered to the operators,

AH(τ) = eiH(−iτ)AS e−iH(−iτ) = eHτAS e−Hτ. (9.6)

so that the Heisenberg equation of motion becomes

∂AH
∂τ
= [H, AH]

If we apply this to the free particle Hamiltonian

H =
∑
εkc†kck

we obtain

∂ck
∂τ

= [H, ck] = −εkck
∂c†k
∂τ

= [H, c†k] = εkc†k (9.7)

so that
ck(τ) = e−εkτck
c†k(τ) = eεkτc†k

}
(p.s c†k(τ) = (ck(−τ))† ! (ck(τ))† ). (9.8)

Notice a key difference to the real-time formalism: in the imaginary time Heisenberg representation,
creation and annihilation operator are no longer Hermitian conjugates.

We go on next, to develop the Interaction representation, which freezes time-evolution from the
non-interacting part of the Hamiltonian H0, so that

|ψI(τ)〉 = eH0τ|ψs(τ)〉 = eH0τe−Hτ|ψH〉 = U(τ)|ψH〉

where U(τ) = eH0τe−Hτ is the time evolution operator. The relationship between the Heisenberg and
the interaction representation of operators is given by

AH(τ) = eHτAS e−Hτ = U−1(τ)AI(τ)U(τ)

In the interaction representation, states can be evolved between two times as follows

|ψI(τ1)〉 = U(τ1)U−1(τ2))|ψI(τ2)〉 = S (τ1, τ2)|ψI(τ2)〉

The equation of motion for U(τ) is given by

−
∂

∂τ
U(τ) = −

∂

∂τ

[
eHoτe−Hτ

]

= eHoτVe−Hτ
= eHoτVe−HoτU(τ)
= VI(τ)U(τ) (9.9)
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and a similar equation applies to S (τ1, τ2),

−
∂

∂τ
S (τ1, τ2) = VI(τ1)S (τ1, τ2). (9.10)

These equations parallel those in real time, and following exactly analogous procedures, we de-
duce that the imaginary time evolution operator in the interaction representation is given by a time-
ordered exponential, as follows

U(τ) = T exp
[
−

∫ τ

0
VI(τ)dτ

]

S (τ1, τ2) = T exp
[
−

∫ τ2

τ1

VI(τ)dτ
]
. (9.11)

One of the immediate applications of these results, is to provide a perturbation expansion for
the partition function. We can relate the partition function to the time-evolution operator in the
interaction representation as follows

Z = Tr
[
e−βH

]
= Tr

[
e−βHoU(β)

]

=

Z0︷!!!!!︸︸!!!!!︷
Tr

[
e−βH0

]

〈U(β)〉0︷!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!︷


Tr
[
e−βHoU(β)

]

Tr
[
e−βH0

]




= Z0〈U(β)〉0 (9.12)

enabling us to write the ratio of the interacting, to the non-interacting partition function as the
expectation value of the time-ordered exponential in the non-interacting system.

Z
Z0
= e−β∆F = 〈T exp

[
−

∫ β

0
VI(τ)dτ

]
〉 (9.13)

Notice how the logarithm of this expression gives the shift in Free energy resulting from interac-
tions. The perturbative expansion of this relation in powers of V is basis for the finite temperature
Feynman diagram approach.

9.2 Imaginary Time Green Functions
The finite temperature Green function is defined to be

Gλλ′(τ − τ′) = −〈Tψλ(τ)ψλ′ †(τ′)〉 = −Tr
[
e−β(H−F)ψλ(τ)ψλ′ †(τ′)

]
(9.14)

where ψλ can be either a fermionic or bosonic field, evaluated in the Heisenberg representation,
F = −T lnZ is the Free energy. The T inside the angle brackets the time-ordering operator. Provided
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H is time independent, time-translational invariance insures that G is solely a function of the time
difference τ−τ′. In most cases, we will refer to situations where the quantum number λ is conserved,
which will permit us to write

Gλλ′(τ) = δλλ′Gλ(τ).
For the case of continuous quantum numbers λ, such as momentum, it is convention to promote the
quantum number into the argument of the Green function, writing G(p, τ) rather than Gp(τ).

As an example, consider a non-interacting system with Hamiltonian

H =
∑
ελψ
†
λψλ, (9.15)

where ελ = Eλ −µ is the one-particle energy, shifted by the chemical potential. Here, the equal time
expectation value of the fields is

〈ψλ′ †ψλ〉 = δλλ′
{
n(ελ) (Bosons)
f (ελ) (Fermions) (9.16)

where

n(ελ) =
1

eβελ − 1
f (ελ) =

1
eβελ + 1

(9.17)

are the Bose and Fermi functions respectively. Similarly,

〈ψλψ†λ′ 〉 = δλλ′ ± 〈ψλ′ †ψλ〉 = δλλ′
{

1 + n(ελ) (Bosons)
1 − f (ελ) (Fermions) (9.18)

Using the time evolution of the operators,

ψλ(τ) = e−ελτψλ(0)
ψ†λ(τ) = eελτψ†λ(0) (9.19)

we deduce that

Gλλ′(τ − τ′) = −
[
θ(τ − τ′)〈ψλψ†λ′ 〉 + ζθ(τ′ − τ)〈ψ†λ′ψλ〉

]
e−ελ(τ−τ

′) (9.20)

where we have re-introduced ζ = 1 for Bosons and −1 for fermions, from Chapter 8. If we now
write Gλλ′(τ − τ′) = δλλ′Gλ(τ − τ′), then

Gλ(τ) = −e−ελτ.
{

[(1 + n(ελ))θ(τ) + n(ελ)θ(−τ)] (Bosons)[
(1 − f (ελ))θ(τ) − f (ελ)θ(−τ)

]
(Fermions) (9.21)

There are several points to notice about this Green’s function:
• Apart from prefactors, at zero temperature the imaginary time Green’s function Gλ(τ) is equal

to zero-temperature Green’s function Gλ(t), evaluated at a time t = −iτ, Gλ(τ) = −iGλ(−iτ).

• If τ < 0 the Green function satisfies the relation

Gλλ′(τ + β) = ζGλλ′(τ)

so that the bosonic Green function is periodic in imaginary time, while the fermionic Green
function is antiperiodic in imaginary time, with period β.
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9.2.1 Periodicity and Antiperiodicity

The (anti) periodicity observed in the last example is actually a general property of finite temperature
Green functions. To see this, take −β < τ < 0, then we can expand the Green function as follows

Gλλ′(τ) = ζ〈ψ†λ′(0)ψλ(τ)〉
= ζTr

[
e−β(H−F)ψ†λ′eτHψλe−τH

]
(9.22)

Now we can use the periodicity of the trace Tr(AB) = Tr(BA) to cycle the operators on the left of
the trace over to the right of the trace, as follows

Gλλ′(τ) = ζTr
[
eτHψλe−τHe−β(H−F)ψ†λ′

]

= ζTr
[
eβFeτHψλe−(τ+β)Hψ†λ′

]

= ζTr
[
e−β(H−F)e(τ+β)Hψλe−(τ+β)Hψ†λ′

]

= ζTr〈ψλ(τ + β)ψ†λ′(0)〉
= ζGλλ′(τ + β) (9.23)

This periodicity, or antiperiodicity was noted by Matsubara[1]. In the late 1950’s, Abrikosov,
Gorkov and Dzyalozinski[2] observed that we are in fact at liberty to extend the function outside
G(τ) outside the range τ ∈ [−β, β] by assuming that this periodicity, or antiperiodicity extends in-
definitely along the entire imaginary time axis. In otherwords, there need be no constraint on the
value of τ in the periodic or antiperiodic boundary conditions

Gλλ′(τ + β) = ±Gλλ′(τ)

With this observation, it becomes possible to carry out a Fourier expansion of the Green func-
tion in terms of discrete, frequencies. Today we use the term coined by Abrikosov, Gorkov and
Dzyaloshinskii, calling them “Matsubara” frequencies[2].

9.2.2 Matsubara Representation

The Matsubara frequencies are defined as

νn = 2πnkBT (Boson)
ωn = π(2n + 1)kBT (Fermion). (9.24)

where by convention, νn is reserved for Bosons and ωn for fermions. These frequencies have the
property that

eiνn(τ+β) = eiνnτ
eiωn(τ+β) = −eiωnτ (9.25)

The periodicity or antiperiodicity of the Green function is then captured by expanding it as a linear
sum of these functions:

Gλλ′(τ) =
{

T
∑
n Gλλ′(iνn)e−iνnτ Boson

T
∑
n Gλλ′(iωn)e−iωnτ Fermion (9.26)
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and the inverse of these relations is given by

Gλλ′(iαn) =
∫ β

0
dτGλλ′(τ)eiαnτ, (αn =

{
Matsubara frequency

}
) (9.27)

Example : Free Fermions and Free Bosons

For example, let us use (9.27) to derive the propagator for non-interacting fermions or bosons with
H =

∑
ελψ
†
λψλ. For fermions, the Matsubara frequencies are iωn = π(2n + 1)kBT so using the real

time propagator(9.21), we obtain

Gλ(iωn) = −
∫ β

0
dτe(iωn−ελ)τ

[1+e−βελ ]−1
︷!!!!!!!︸︸!!!!!!!︷
(1 − f (ελ))

= −
1

iωn − ελ

−1︷!!!!!!!!!!!︸︸!!!!!!!!!!!︷
(e(iωn−ελ) − 1)

1 + e−βελ
(9.28)

so that

Gλ(iωn) =
1

iωn − ελ
Free Fermions (9.29)

In a similar way, for free Bosons, where the Matsubara frequencies are iνn = π2nkBT , using (9.27)
and (9.21), we obtain

Gλ(iνn) = −
∫ β

0
dτe(iνn−ελ)τ

[1−e−βελ ]−1
︷!!!!!!︸︸!!!!!!︷
(1 + n(ελ))

= −
1

iνn − ελ

−1︷!!!!!!!!!!︸︸!!!!!!!!!!︷
(e(iνn−ελ) − 1)

1 − e−βελ
(9.30)

so that

Gλ(iνn) =
1

iνn − ελ
Free Bosons (9.31)

Remarks

• Notice how the finite temperature propagators (9.29) and (9.31) are essentially identical for
free fermions and bosons. All the information about the statistics is encoded in the Matsubara
frequencies.
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• With the replacement ω → iωn the finite temperature propagator for Free fermions (9.29)
is essentially identical to the zero temperature propagator, but notice that the inconvenient
iδsign(ελ) in the denominator has now disappeared.

Example: Finite temperature Propagator for the Harmonic Oscillator

As a second example, let us calculate the finite temperature Green function

D(τ) = −〈T x(τ)x(0)〉 (9.32)

and its corresponding propagator

D(iν) =
∫ β

0
eiνnτD(τ) (9.33)

for the simple harmonic oscillator

H = !ω(b†b +
1
2

)

x =
√
!

2mω
(b + b†) (9.34)

Expanding the Green function in terms of the creation and annihilation operators, we have

D(τ) = −
!

2mω
〈T (b(τ) + b†(τ))(b(0) + b†(0))〉

= −
!

2mω
(
〈Tb(τ)b†(0)〉 + 〈Tb†(τ)b(0)〉

)
, (9.35)

where terms involving two creation or two annihilation operators vanish. Now using the derivations
that led to (9.21 )

−〈Tb(τ)b†(0)〉 = G(τ) = −[(1 + n(ω))θ(τ) + n(ω)θ(−τ)]e−ωτ. (9.36)

and

−〈Tb†(τ)b(0)〉 = −[n(ω)θ(τ) + (1 + n(ω))]eωτ
= [(1 + n(−ω))θ(τ) + n(−ω)θ(−τ)]eωτ. (9.37)

which corresponds to −G(τ) with the sign of ω inverted. With this observation,

D(τ) =
!

2mω
[G(τ) − {ω→ −ω}] . (9.38)

When we Fourier transform the first term inside the brackets, we obtain 1
iνn−ω , so that

D(iνn) =
!

2mω

[
1

iνn − ω
−

1
iνn + ω

]

=
!

2mω

[
2ω

(iνn)2 − ω2

]
. (9.39)

This expression is identical to the corresponding zero temperature propagator, evaluated at fre-
quency z = iνn.
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Example 9.1: Consider a system of non-interacting Fermions, described by the Hamiltonian
H =

∑
λ ελc†λcλ where ελ = Eλ − µ and Eλ is the energy of a one-particle eigenstate and µ is the

chemical potential.
Show that the total number of particles in equilibrium is

N(µ) = T
∑
Gλ(iωn)eiωnO

+

where Gλ(iωn) = (iωn − ελ)−1 is the Matsubara propagator. Using the relationship N = −∂F/∂µ
show that that Free energy is given by

F(T, µ) = −kBT
∑

λ,iωn

ln
[
−Gλ(iωn)−1

]
eiωnO

+

+C(T ) (9.40)

Solution: The number of particles in state λ can be related to the equal time Green’s function
as follows

Nλ = 〈c†λcλ〉 = −〈Tcλ(0−)c†λ〉 = Gλ(0−).

Rewriting Gλ(τ) = T
∑
iωn Gλe

−iωnτ, we obtain

N(µ) =
∑

λ

Nλ = T
∑

λ,iωn

Gλ(iωn)eiωn0+

Now since −∂F/∂µ = N(µ), it follows that

F = −
∫ µ

dµN(µ) = −T
∑

λ,iωn

∫ µ

dµ
eiωnO+

iωn − Eλ + µ

= −T
∑

λ,iωn

ln [ελ − iωn] eiωnO
+

= −T
∑

λ,iωn

ln
[
−Gλ(iωn)−1

]
eiωnO

+

+C(T ). (9.41)

We shall shortly see that C = 0 using Contour integral methods.

Example 9.2: Consider an electron gas where the spins are coupled to a magnetic field, so that
ελ ≡ εk −µBσB. Write down an expression for the magnetization and by differentiating w.r.t the
field B, show that the temperature dependent magnetic susceptibility is given by

χ(T ) =
∂M
∂B

∣∣∣∣∣
B=0
= −2µ2

BkBT
∑

k,iωn

G(k)2

where G(k) ≡ G(k, iωn) is the Matsubara propagator.
Solution: The magnetization is given by

M = µB
∑

λ,σ

σ〈c†kσckσ〉 = µBT
∑

kσ,iωn

σGσ(k, iωn)eiωn0+
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Differentiating this w.r.t. B and then setting B = 0, we obtain

χ =
∂M
∂B

∣∣∣∣∣
B=0
= −µ2

BT
∑

kσiωn

σ2Gσ(k, iωn)2

∣∣∣∣∣∣∣
B=0

= −2µ2
BkBT

∑

k,iωn

G(k)2 (9.42)

9.3 The contour integral method

In practice, we shall do almost all of our finite temperature calculations in the frequency domain.
To obtain practical results, we will need to be able to sum over the Matsubara frequencies, and this
forces us to make an important technical digression. As an example of the kind of tasks we might
want to carry out, consider how we would calculate the occupancy of a given momentum state in a
Fermi gas at finite temperature, using the Matsubara propagator G(p, iωn). This can be written in
terms of the equal time Green function, as follows

〈c†pσcpσ〉 = G(p, 0−) = T
∑

n

1
iωn − ε(p)

eiωnO
+

. (9.43)

A more involved example, is the calculation of the finite temperature dynamical spin susceptibility
χ(q) of the Free electron gas at wavevector and frequency q ≡ (q, iνn). We shall see that this quantity
derives from a Feynman polarization bubble diagram which gives

χ(q) = −2µ2
BT

∑

p
G(p + q)G(p) = 2µ2

B

∑

p


kBT

∑

r
G(p + q, iωr + iνn)G(p, iωr)


 . (9.44)

where the −1 derives from the Fermion loop. In both cases, we need to know how to do the sum
over the discrete Matsubara frequencies, and to do this, we use the method of contour integration.
To make this possible, observe that the Fermi function f (z) = 1/[ezβ+1] has poles of strength −kBT
at each discrete frequency z = iωn, because

f (iωn + δ) =
1

eβ(iωn+δ) + 1
= −

1
βδ
= −

kBT
δ

so that for a general function F(iωn), we may write

kBT
∑

n
F(iωn) = −

∫

C

dz
2πi

F(z) f (z) (9.45)

where the contour integral C is to be taken anticlockwise around the poles at z = iωn as shown in
Fig. 9.3 (a)
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C

n

Pole of F(z)

C’C’

(c)

of F(z)
Branch−cut

ιωn(a)

Pole of F(z)
of F(z)
Branch−cut

C

(b)

ιω

Figure 9.3: (a) Contour integration around the poles in the Fermi function enables us to convert a
discrete Matsubara sum T

∑
F(iωn) to a continuous integral (b) The integral can be distorted around

the poles and branch-cuts of F(z) provided that F(z) dies away faster than 1/|z| at infinity.

Once we have cast the sum as a contour integral, we may introduce “null” contours (Fig. 9.3
(b)) which allow us to distort the original contour C into the modified contour C′ shown in Fig. 9.3
(c), so that now

kBT
∑

n
F(iωn) = −

∫

C′

dz
2πi

F(z) f (z) (9.46)

where C′ runs clockwise around all the poles and branch-cuts in F(z). Here we have used “Jordan’s
lemma” which guarantees that the contribution to the integral from the contour at infinity vanishes,
provided the function F(z) × f (z) dies away faster than 1/|z| over the whole contour.

For example, in case (9.43), F(z) = ez0+
z−εp , so that F(z) has a single pole at z = εp, and hence

〈npσ〉 = T
∑

n

1
iωn − ε(p)

eiωnO
+

= −
∫

C′

dz
2πi

1
z − εp

ez0
+

f (z)

= f (εp), (9.47)
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recovering the expected result. In this example, the convergence factor ez0+ that results from the
small negative time increment in the Green function, plays an important role inside the Contour
integral, where it gently forces the function F(z) to die away faster than 1/|z| in the negative half-
plane. Of course the original contour C integral could have been made by arbitrarily replacing f (z)
with f (z)− constant. However, the requirement that the function dies away in the positive half plane
forces us to set the constant term here to zero.

In the second example (9.44)

F(z) = G(p + q, iνn + z)G(p, z) = 1
iνn + z − εp+q

1
z − εp

which has two poles at z = εp and z = −iνn + εp+q. The integral for this case is then given by

χ(q) = 2µ2
B

∑

p

∫

C′

dz
2πi

G(p + q, z + iνn)G(p, z) f (z)

= −
∑

p

(
G(p,−iνn + εp+q) f (−iνn + εp+q) +G(p + q, εp) f (εp)

)
(9.48)

The first term in the above expression deserves some special attention. In this term we shall make
use the periodicity of the Fermi function to replace

f (−iνn + εp+q) = f (εp+q).

This replacement may seem obvious, however, later, when analytically extending iνn → z we will
keep this quantity fixed, i.e, we will not analytically extend f (−iνn + εp+q) → f (−z + εp+q). In
other words, the Matsubara sum and the replacement iνn → z are not to be commuted. With this
understanding, we continue, and find that the resulting expression is given by

χ(q, iνn) = 2µ2
B

∑

p

( fp+q − fp
iνn − (εp+q − εp)

)
(9.49)

where we have used the shorthand fp ≡ f (εp). The analytic extension of this quantity is then

χ(q, z) = 2µ2
B

∑

p

( fp+q − fp
z − (εp+q − εp)

)
(9.50)

A completely parallel set of procedures can be carried for summation over Matsubara boson
frequencies iνn, by making the observation that the Bose function n(z) = 1

eβz−1 has a string of poles
at z = iνn of strength kBT . Using a completely parallel procedure to the fermions, we obtain

kBT
∑

n
P(iνn) =

∫

C

dz
2πi

P(z)n(z) =
∫

C′

dz
2πi

P(z)n(z)

whereC is an anticlockwise integral around the imaginary axis andC′ is a clockwise integral around
the poles and branch-cuts of F(z). (See problem 9.1.)
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Example 9.3: Starting with the expression

F = −T
∑

λiωn

ln[(ελ − iωn)]eiωn0+ +C(T )

derived in example (9.1), use the contour integration method to show that

F = −T
∑

λ

ln
[
1 + e−βελ

]
+C(T )

so that C(T ) = 0.

Solution: Writing the Free energy as a contour integral around the poles of the imaginary axis,
we have

F =
∑

λ

∫

P

dz
2πi

f (z) ln [ελ − z] ez0
+

+C(T )

where the path P runs anticlockwise around the imaginary axis. There is a branch cut in the
function F(z) = ln[ελ − z] running from z = ελ to z = +∞. If we distort the contour P around
this branch-cut, we obtain

F =
∑

λ

∫

P′

dz
2πi

f (z) ln [ελ − z] ez0
+

+C(T )

where P′ runs clockwise around the branch cut, so that

F =
∑

λ

∫ ∞

ελ

dω
π
f (ω) +C(T )

=
∑

λ

−T ln(1 + e−βελ ) +C(T ) (9.51)

so that C(T ) = 0, to reproduce the standard expression for the Free energy of a set of non-
interacting fermions.

9.4 Generating Function and Wick’s theorem

The zero temperature generating functions for Free fermions or bosons, derived in chapter 7. can be
generalized to finite temperatures. Quite generally we can consider adding a source term to a free
particle Hamiltonian to form H(τ) = H0 + V(τ),

H0 =
∑
εψ†λψλ

V(τ) = −
∑
λ[η̄λ(τ)ψλ + ψ†λη(τ)]

}
(9.52)
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The corresponding finite temperature Generating functional is actually the partition function in the
presence of the perturbation V . Using a simple generalization of (9.13), we have

Z0[η̄, η] = Z0〈Te−
∫ β

0 VI (τ)dτ〉0

= Z0〈T exp


∫ β

0
dτ

∑

λ

(
η̄λ(τ)ψλ(τ) + ψ†λ(τ)ηλ(τ)

)

〉0 (9.53)

where the driving terms are complex numbers for bosons, but are anticommuting C-numbers or
Grassman numbers, for fermions. For free fields, the Generating functional is given by

Z0[η̄, η]
Z0

= exp

−

∑

λ

∫ β

0
dτ1dτ2η̄λ(1)Gλ(τ1 − τ2)ηλ(2)




Gλ(τ1 − τ2) = −〈Tψλ(τ1)ψ†λ(τ2)〉 (9.54)

A detailed proof of this result is given in Appendix A of this chapter. However, a heuristic proof is
obtained by appealing to the “Gaussian” nature of the underlying Free fields. As at zero temperature,
we expect the the physics to be entirely Gaussian, that is, that the amplitudes of fluctuation of the
free fields are entirely independent of the driving terms. The usefulness of the generating function,
is that we can convert partial derivatives with respect to the source terms into field operators inside
the expectation values,

δ

δη̄(1)
→ ψ†(1),

δ

δη(2)
→ ζψ†(2), (9.55)

where we have used the short-hand notation η(1) ≡ ηλ(τ1), ψ(1) ≡ ψλ(τ1)). In particular
δ lnZ0[η̄, η]
δη̄(2)

= 〈ψ(2)〉, (9.56)

where the derivative of the logarithm of Z0[η̄, η] is required to place a Z0[η̄, η] in the denominator
for the correctly normalized expectation value. For bosons, you can think of the source terms as
an external field that induces a condensate of the field operator. At high temperatures, once the
external source term is removed, the condensate disappears. However, at low temperatures, in a
Bose-Einstein condensate, the expectation value of the field survives even when the source terms
are removed. For fermions, the idea of a genuine expectation value for the Fermi field is rather
abstract, and in this case, once the external source is removed, the expectation value disappears.

We can of course take higher derivatives, and these do not vanish, even when the source terms
are removed. In particular the second derivative determines the fluctuations of the quantum field,
given by

δ2 lnZ0[η̄, η]
δη(1)δη̄(2)

=
δ

δη(1)

[
1

Z0[η̄, η]
δZ0[η̄, η]
δη̄(2)

]
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=
1

Z0[η̄, η]
δ2Z0[η̄, η]
δη(1)δη̄(2)

−
1

Z0[η̄, η]

[
δZ0[η̄, η]
δη(1)

]
1

Z0[η̄, η]

[
δZ0[η̄, η]
δη̄(2)

]

= ζ
(
〈Tψ†(2)ψ(1)〉 − 〈ψ†(2)〉〈ψ(1)〉

)

= 〈Tψ(1)ψ†(2)〉 − 〈ψ(1)〉〈ψ†(2)〉
= 〈T

(
ψ(1) − 〈ψ(1)〉

)(
ψ†(2) − 〈ψ†(2)〉

)
〉 = 〈δψ(1)δψ†(2)〉, (9.57)

where δψ(1) = ψ(1) − 〈ψ(1)〉 represents the fluctuation of the field ψ around its mean value. If this
quantity is independent of the source terms, then it follows that the fluctuations must be equal to
their value in the absence of any source field, i.e.

δ2 lnZ0[η̄, η]
δη̄λ(τ1)δηλ(τ2)

=
δ2 lnZ0[η̄, η]
δη̄λ(τ1)δηλ(τ2)

∣∣∣∣∣∣
η=η̄=0

= −Gλ(τ1 − τ2).

A more detailed, algebraic rederivation of this result is given in Appendix A. One of the immedi-
ate corolloraries of (9.128) is that the multi-particle Green functions can be entirely decomposed
in terms of one-particle Green functions, i.e., the imaginary time Green functions obey a Wick’s
theorem. If we decompose the original generating function (9.127) into a power series, we find that
the general coefficient of the source terms is given by

(−1)nG(1, 2, . . . n; 1′, 2′, . . . n′) = 〈Tψ(1) . . . ψ(n)ψ†(n′) . . . ψ(1′)〉

by contrast, if we expand the right-hand side of (9.128) in the same way, we find that the same
coefficient is given by

(−1)n
∑

P
(ζ)p

n∏

r=1
G(r − Pr)

where p is the number of pairwise permutations required to produce the permutation P. Comparing
the two results, we obtain the imaginary time Wick’s theorem

G(1, 2, . . . n; 1′, 2′, . . . n′) =
∑

P
(−1)p

n∏

r=1
G(r − Pr)

Although this result is the precise analog of the zero-temperature Wick’s theorem, notice that that
unlike its zero-temperature counterpart, we can not easily derive this result for simple cases by
commuting the destruction operators so that they annihilate against the vacuum, since there is no
finite temperature vacuum.

Just as in the zero temperature case, we can define a “contraction” as the process of connecting
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two free -field operators inside the correlation function,

〈T [. . . ψ(1) . . . ψ†(2) . . .]〉 −→ 〈T [ψ(1)ψ†(2)]〉 = −G(1 − 2)

〈T [. . . ψ†(2) . . . ψ(1) . . .]〉 −→ 〈T [ψ†(2)ψ(1)]〉 = −ζG(1 − 2)

so that as before,

(−1)n〈T [ψ(1)ψ(2) . . . ψ(n) . . . ψ†(P′
2) . . . ψ†(P′

1) . . . ψ†(P′
n)]〉

= ζPG(1 − P′1)G(2 − P′2) . . .G(n − P′n). (9.58)

Example 9.4:
Use Wick’s theorem to calculate the interaction energy of a dilute Bose gas of spin S bosons

particles interacting via a the interaction

V̂ =
1
2

∑

q,kσ,k′,σ′
V(q)b†k+qσb†k′σ′bk′+qσ′bkσ

at a temperature above the Bose Einstein condensation temperature.
Solution: To leading order in the interaction strength, the interaction energy is given by

〈V〉 =
∑

q,k,k′,σ,σ′
V(q)〈b†k+q,σb†k′,σ′bk′+q,σ′bkσ〉

Using Wick’s theorem, we evalute

〈b†k+q,σb†k′,σ′bk′+q,σ′bk,σ〉 = 〈b†k+q,σb†k′,σ′bk′+q,σ′bk,σ〉 + 〈b†k+q,σb†k′,σ′bk′+q,σ′bk,σ〉

= nknk′δq,0 + nknk+qδk,k′δσσ′ (9.59)

so that
〈V̂〉 =

1
2

∫

k,k′
nknk′

[
(2S + 1)2Vq=0 + (2S + 1)Vk−k′

]

where nk =
1

eβ(εk−µ)−1 .
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9.5 Feynman diagram expansion

We are now ready to generalize the Feynman approach to finite temperatures. Apart from a very
small change in nomenclature, almost everything we learnt for zero temperature in chapter 8 now
generalizes to finite temperature. Whereas previously, we began with a Wick expansion of the S
matrix, now we must carry out a Wick expansion of the partition function

Z = e−βF = Z0〈T exp
[
−

∫ β

0
V̂(τ)dτ

]
〉0 =

All the combinatorics of this expansion are unchanged at finite temperatures.
Now we are at finite temperature, the Free energy F = E − ST − µN replaces the energy. The

main results of this procedure can almost entirely be guessed by analogy. In particular:

• The partition function

Z = Z0
∑
{Unlinked Feynman diagrams }

• The change in the Free energy due to the perturbation V is given by

∆F = F − F0 = −kBT ln
[
Z
Z0

]
= −kBT

∑
{Linked Feynman diagrams}

This is the finite temperature version of the linked cluster theorem.

• Matsubara one-particle Green’s functions

G(1 − 2) =
∑
{Two-legged Feynman diagrams}

, and the main changes are

(i) the replacement of a −i −→ −1 in the time-ordered exponential.

(ii) the finite range of integration in time
∫ ∞

−∞
dt −→

∫ β

0
dτ

which leads to the discrete Matsubara frequencies.

The effect of these changes on the real-space Feynman rules is summarized in Table 9.1.
The book-keeping that leads to these diagrams now involves the redistribution of a “−1” asso-

ciated with each propagator

−→ (i)2 × G(2 − 1). (9.60)

263

Chapter 9. c©Piers Coleman 2011

Table. 9.1 Real Space Feynman Rules: Finite Temperature .

2 1 G(2 − 1)

x1 U(x1)

1 2 −V(1 − 2)

∏

i

∫
d3xi

∫ β

0
dτ Integrate over all intermediate times and positions.

−(2S + 1)G(%0, 0−)

[−(2S + 1)]F ,

F = no. Fermion loops.

η(1) η(1)

− η̄(1) −η̄(1)

p = 2
1
p

× p = 8 p = order of symmetry group.
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where as before,

G(2 − 1) = 2 1
(9.61)

represents the propagation of a particle from “1” to “2”, but now we must redistribute an i (rather
than a

√
−i) to each end of the progator. When these terms are redistributed onto one-particle

scattering vertices, they cancel the −1 from the time-ordered exponential

i

i

−U(x) = (i)2 × −U(x) ≡ U(x)
(9.62)

whereas for a two-particle scattering potential V(1 − 2), the four factors of i give a (i)4 = 1, so that
the two-particle scattering amplitude is −V(1 − 2).

1 2 = (i)4 × −V(1 − 2) ≡ −V(1 − 2). (9.63)

Apart from these small changes, the real-time Feynman rules are basically the same as those at zero
temperature.

9.5.1 Feynman rules from Functional Derivatives

As in chapter 8, we can formally derive the Feynman rules from a functional derivative formulation.
Using the notation

∫
d1d2η̄(1)G(1 − 2)η(2) = η̄ η (9.64)

where d1 and d2 implies the integration over the space-time variables (%1, τ1) and (%2, τ2) and a sum
over suppressed spin variables σ1 and σ2, we can write the non-interacting generating functional as

Z0[η̄, η]
Z0

= 〈Ŝ 〉0 = exp
[
−η̄ η

]
(9.65)

where we have used the short-hand

Ŝ = T exp
[∫ β

0
d1[η̄(1)ψ(1) + ψ†(1)η(1)]

]

Now each time we differentiate Ŝ with respect to its source terms, we bring down an additional field
operator, so that

δ

δη̄(1)
〈T . . . Ŝ 〉0 = 〈. . . ψ(1) . . . Ŝ 〉0,
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δ

δη(2)
〈T . . . Ŝ 〉0 = 〈T . . . ψ†(2) . . . Ŝ 〉0 (9.66)

we can formally evaluate the time-ordered expectation value of any operator F[ψ†, ψ] as

〈TF
[
ψ†, ψ

]
Ŝ 〉0 = F[

δ

δη
,
δ

δη̄
] exp

[
−η̄ η

]

so that

Z[η̄, η]
Z0

= 〈Texp
[
−

∫ β

0
V̂(τ)dτ

]
Ŝ 〉0

= 〈exp
[
−

∫ β

0
dτV

(
δ

δη
,
δ

δη̄

)]
exp

[
−η̄ η

]

The formal expansion of this functional derivative generates the Feynman diagram expansion.
Changing variables to (α, ᾱ) = (η,−η̄), we can remove the minus-sign associated with each propa-
gator, to obtain

Z[−ᾱ, α]
Z0

= exp
[
(−1)n

∫ β

0
dτV

( δ
δα
,
δ

δᾱ

)]
exp

[
ᾱ α

]
(9.67)

for an n− body interaction. The appearance of the (−1)n in the exponent indicates that we should
associate a (−1)n with the corresponding scattering amplitude.

As in the case of zero temperature, we may regard (??) as a machine for generating a series of
Feynman diagrams- both linked and unlinked, so that formally,

Z[ᾱ, α] = Z0
∑
{Unlinked Feynman diagrams}.

9.5.2 Feynman rules in frequency/momentum space

As at zero temperature, it is generally more convenient to work in Fourier space. The transforma-
tion to Fourier transform space follows precisely parallel lines to that at zero temperature, and the
Feynman rules which result are summarized in Table 9.2. We first re-write each interaction line and
Green’s function in a Feynman diagram in terms of their Fourier transformed variables

1 2 = G(X1 − X2) =
∑

n

∫
dd−1p

(2π)d−1G(p)eip(X1−X2)

1 2 = V(X1 − X2) = T
∑

n

∫
dd−1q

(2π)d−1V(q)eiq(X1−X2) (9.68)

where we have used a short-hand notation p = (p, iαn) (where αn = ωn for fermions, αn = νn for
bosons), q = (q, iνn), X = (x, iτ), ip.X = ip · x − iωnτ and iq.X = iq · x − iνrτ). As an example,
consider a screened Coulomb interaction

V(r) =
e2

r
e−κr
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Table. 9.2 Momentum Space Feynman Rules: Finite Temperature .

(k, iωn)
Go(k, iωn) Fermion propagator

−V(q) Interaction

(q, νn)
1 2

−g2
qDo(q, iνn) Exchange Boson.

= −g2
q




2ωq
(iνn)2 − ω2

q




q U(q) Scattering potential

[−(2S + 1)]F , F= no. Fermion loops

(q, iνn)
T

∑

n

∫
ddq

(2π)d
eiαn0+ Sum over internal loop frequency and

momenta.

p = 2

1
p p = order of symmetry group.

× p = 8
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In our space time notation, we write the interaction as

V(X) = V(x, τ) = e2

|x|e
−κ|x| × δ̃(τ)

Where the delta function in time arises because the interaction is instantaneous. (Subtle point: we
will in fact inforce periodic boundary conditions by taking the delta function to be a periodic delta
function δ̃(τ) =

∑
n δ(τ − nβ)). When we Fourier transform this interaction, we obtain

V(Q) = V(q, iνr) =
∫

d4XV(X)e−iQ.X

=

∫
d3x

∫ β

0
dτV(x)δ̃(τ)e−i(q·x−νrτ)

= V(q) =
4πe2

q2 + κ2
(9.69)

and the delta function in time translates to an interaction that is frequency independent.
We can also transform the source terms in a similar way, writing

η(X) = T
∑

n

∫
dd−1p

(2π)d−1 e
ipXη(p)

η̄(X) = T
∑

n

∫
dd−1p

(2π)d−1 e
−ipX η̄(p) (9.70)

where, ipX = i%p · %x − iαnτ. With these transformations, the space-time co-ordinates associated
with each scattering vertex now only appear as “phase factors”. By making the integral over space-
time co-ordinates at each such vertex, we impose the conservation of momentum and (discrete)
Matsubara frequencies at each vertex

, q p1

p2

X =

∫
ddXei(p1−p2−q)X = (2π)3βδ(d−1)(p1 − p2 − q)δα1+α2−νr (9.71)

Since momentum and frequency are conserved at each vertex, this means that there is one indepen-
dent energy and frequency per loop in the Feynman diagram. To be sure that this really works, let
us count the number of independent momenta that are left over after imposing a constraint at each
vertex in the diagram. Consider a diagram with V vertices and P propagators. Each propagator
introduces P × d, momenta. When we integrate over the space-time co-ordinates of the V vertices,
we must be careful to split the integral up into the integral over the V − 1 relative co-ordinates
X̃ j = Xj+1 − Xj and the center of mass co-ordinates:

∫ V∏

j=1
ddX j =

∫
ddXCM

∫ V−1∏

j=1
ddX̃ j

This imposes (V − 1) constraints per dimension, so the number of independent momenta are then

no. of independent momenta = d[P − (V − 1)]
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Now in a general Feynman graph, the apparent number of momentum loops is the same as the
number of facets in the graph, and this is given by

L = E + (P − V)

where E is the Euler characteristic of the object. The Euler characteristic is equal to one for planar
diagrams, and equal to one plus the number of “handles” in a non-planar diagram. For example, the
diagram

V=4, P=6, L=4 (9.72)

has V = 4 vertices, P = 6 propagators and it has one handle with Euler characteristic E = 2, so
that L = 6 − 4 + 2 = 4 as expected. So from the above, we deduce that the number of independent
momenta is given by

d[L − (E − 1)]

This result needs a moments pause. One might have expected number of independent momentum
loops to be equal to L. However, when there are handles, this overcounts the number of independent
momentum loops - for each handle added to the diagram adds only one additional momentum loop,
but L increases by 2. If you look at our one example, this diagram can be embedded on a cylinder,
and the interaction propagator which loops around the cylinder only counts as one momentum loop,
giving a total of 4 − (2 − 1) = 3 independent momentum loops.

L =  4 − 1 = 3

Handle

L=4 (9.73)

In this way, we see that L̃ = L + (E − 1) is the correct number of independent momentum loops.
Indeed, our momentum constraint does indeed convert the diagram from an integral over V space-
time co-ordinates to L̃ independent momentum loops.
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In this way, we see that the transformation from real-space, to momentum space Feynman rules
is effected by replacing the sum over all internal space-time co-ordinates by an integral/sum over all
loop momenta and frequencies. A convergence factor

eiαn0+

is included in the loop integral. This term guarantees that if the loop contains a single propagator
which propagates back to the point from which it eminated, then the corresponding contraction of
field operators is normal ordered.

9.5.3 Linked Cluster Theorem

The linked cluster theorem for imaginary time follows from the replica trick, as at zero temperature.
In this case, we wish to compute the logarithm of the partition function

ln(
Z
Z0

) = lim
n→0

1
n

[(
Z
Z0

)n
− 1

]

It is worth mentioning here that the replica trick was in fact originally invented by Edwards as a
device for dealing with disorder- we shall have more to say about this in chapter 11.

We now write the term that contains (Z/Z0)n as the product of contributions from n replica
systems, so that (

Z
Z0

)n
=

〈
exp


−

∫ β

0
dτ

n∑

λ=1
V (λ)(τ)




〉

0

When we expand the right-hand side as a sum over unlinked Feynman diagrams, each separate
Feynman diagram has a replica index that must be summed over, so that a single linked diagram is
of order O(n), whereas a group of k unlinked diagrams is of order O(nk). In this way, as n→ 0, only
the unlinked diagrams survive, so that. The upshot of this result is that the shift in the Free energy
∆F produced by the perturbation V̂ , is given by

−β∆F = ln(Z/Z0) =
∑
{Closed link diagrams in real space}}

Notice that unlike the zero temperature proof, here we do not have to appeal to adiabaticity to extract
the shift in Free energy from the closed loop diagrams.

When we convert to momentum space, Fourier transforming each propagator and interaction
line, an overall integral over the center of mass co-ordinates factors out of the entire diagram, giving
rise to a prefactor ∫

ddXcm = β(2π)d−1δ(d−1)(0) ≡ Vβ

where V is the spatial volume. Consequently, expressed in momentum space, the change in Free
energy is given by

∆F
V
= −

∑{
Closed linked diagrams in momentum space

}
.
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Finally, let us say a few words about Green-functions Since the n− th order coefficients of α and
ᾱ are the irreducible n-point Green-functions,

lnZ[ᾱ, α] = −β∆F +
∫

d1d2ᾱ(1)G(1 − 2)α(2)

+
1

(2!)2

∫
d1d2d3d4ᾱ(1)ᾱ(2)α(3)α(4)Girr(1, 2; 3, 4) + . . . . (9.74)

n-particle irreducible Green functions are simply the n-particle Green functions in which all con-
tributions from n − 1 particle Green functions have been subtracted. Now since the n-th order
coefficients in the Feynman diagram expansion of lnZ[ᾱ, α] are the connected 2n-point diagrams, it
follows that the n-paricle irreducible Green functions are given by the sum of all 2n point diagrams

Girr(1, 2, . . . n; 1′, 2′, . . . n′) =
∑
{Connected n-point diagrams}.

The main links between finite temperature Feynman diagrams and physical quantities are given
in table 9.3.

9.6 Examples of the application of the Matsubara Technique

To illustrate the Matsubara technique, we shall examine three examples. In the first, we will see
briefly how the Hartree Fock approximation is modified at finite temperatures. This will give some
familiarily with the techniques. In the second, we shall examine the effect of disorder on the electron
propagator. Surprisingly, the spatial fluctuations in the electron potential that arise in a disordered
medium behave like a highly retarded potential, and the scattering created by these fluctuations is
responsible for the Drude lifetime in a disordered medium. As our third introductory example, we
will examine an electron moving under the retarded interaction effects produced by the exchange of
phonons, examining for the first time how inelastic scattering generates an electron lifetime.

9.6.1 Hartree Fock at a finite temperature.

As a first example, consider the Hartree-Fock correction to the Free energy,

∆FHF
V

= −




+




(9.75)

These diagrams are precisely the same as those encountered in chapter 8, but now to evaluate them,
we implement the finite temperature rules, which give,

∆FHF
V
=

1
2

∑

k
G(k)

∑

k′
G(k′)

{
[−(2S + 1)]2 V(k − k′) − (2S + 1)V(q = 0)

}
(9.76)
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where the prefactor is the p = 2 symmetry factor for these diagrams and

∑

k
G(k) ≡

∫

k
T

∑ 1
iωn − εk

eiωn0+

Using the contour integration method introduced in section (9.3), following (9.47 ), we have

T
∑ 1

iωn − εk
eiωn0+ =

∫

C

dz
2πi

1
z − εk

ez0
+

f (z) = f (εk),

where the contour C runs anticlockwise around the pole at z = εk, so that the first order shift in the
Free energy is

∆FHF =
1
2

∫

k,k′

[
(2S + 1)2(Vq=0) − (2S + 1)(Vk−k′)

]
fk fk′ .

This is formally exactly the same as at zero temperature, excepting that now fk refers to the finite
temperature Fermi Dirac. Notice that we could have applied exactly the same method to bosons, the
main result being a change in sign of the second Fock term.

9.6.2 Electron in a disordered potential

As a second example of the application of finite temperature methods, we shall consider the prop-
agator for an electron in a disordered potential. This will introduce the concept of an “impurity
average”.

Our interest in this problem is driven ultimately by a desire to understand the bulk properties
of a disordered metal. The problem of electron transport is almost as old as our knowledge of the
electron itself. The term “electron” was first coined to describe the fundamental unit of charge
(already measured from electrolysis) by the Irish physicist George Johnstone Stoney in 1891[3].
Heinrich Lorentz derived his famous force law for charged “ions” in 1895[4], but did not use the
term electron until 1899. In 1897 J. J. (“JJ”) Thomson[5] made the crucial discovery of the electron
by correctly interpreting his measurement of the m/e ratio of cathode rays in terms of a new state
of particulate matter “from which all chemical elements are built up”. Within three years of this
discovery, Paul Drude[6] had synthesized these ideas and had argued, based on the idea of a classical
gas of charged electrons, that electrons would exhibit a mean-free path l = velectronτ, where τ is
the scattering rate an l the average distance between scattering events. In Drude’s theory electrons
were envisioned as diffusing through the metal, and he was able to derive his famous formula for
the conductivity σ

σ =
ne2τ

m
.

Missing from Drude’s pioneering picture, was any notion of the Fermi-Dirac statistics of the electron
fluid. He had for example, no notion that the characteristic velocity of the electrons was given by
the Fermi velocity, velectron ∼ vF a vastly greater velocity at low temperatures than could ever be
expected on the grounds of a Maxwell Boltzman fluid of particles. This raises the question - how -
in a fully quantum mechanical picture of the electron fluid, can we rederive Drude’s basic model?
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A real metal contains both disorder and electron-electron interactions - in this course we shall
only touch on the simpler problem of disorder in an otherwise free electron gas. We shall actually
return to this problem in earnest in the next chapter. Our task here in our first example will be to
examine the electron propagator in a disordered medium of elastically scattering impurities. We
shall consider an electron in a disordered potential

H =
∑

k
εkc†kck + Vdisorder

Vdisorder =
∫

d3xU(%x)ψ†(x)ψ†(x) (9.77)

where U(x) represents the scattering potential generated by a random array of Ni impurities located
at positions Rj, each with atomic potentialU(x − Rj),

U(x) =
∑

j
U(x − Rj)

An important aspect of this Hamiltonian, is that it contains no interactions between electrons, and
as such the energy of each individual electron is conserved: all interactions are elastic.

We shall not be interested in calculating the value of a physical quantity for a specific location
of impurities, but rather on the value of that quantity after we have averaged over the locations of
the impurities, i.e.

〈A〉 =
∫ ∏

j

1
V
d3Rj〈Â[{R j}]〉

This is an elementary example of a “quenched average”, in which the “impurity average” takes place
after the Thermodynamic average. Here, we’ll calculate the impurity averaged Green function. To
do this we need to know something about the fluctuations of the impurity scattering potential about
its average. It is these fluctuations that scatter the electrons.

Electrons will in general scatter off the fluctuations in the potential. The average impurity po-
tential U(x) plays the roll of a kind of shifted chemical potential. Indeed, if we shift the chemical
potential by an amount ∆µ, the scattering potential becomes U(x) − ∆µ, and we can always choose
∆µ so thatU(x)−µ = 0. The more important quantity are the fluctuations about the average potential
δU(x) = U(x) − U(x). These fluctuations are spatially correlated, with variance

δU(x)δU(x′) =
∫

q
eiq·(x−x′)ni |u(q)|2 (9.78)

where u(q) =
∫
d3xU(x)e−iq·x is the Fourier transform of the scattering potential and ni = Ni/V

is the concentration of impurities. It is these fluctuations that scatter the electrons, and when we
come to draw the impurity averaged Feynman diagrams, we’ll see that the spatial correlations in the
potential fluctuations induce a sort of “attractive interaction”, denoted by the diagram
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x x’
∫

ni|u(q)|2eiq·(x−x′) = −Veff(x − x′)

(9.79)

Although in principle, we should keep all higher moments of the impurity scattering potential, in
practice, the leading order moments are enough to extract a lot of the basic physics in weakly
disordered metals. Notice that the fluctuations in the scattering potential are short-range - they only
extend over the range of the scattering potential. Indeed, if we neglect the momentum dependence
of u(q), assuming that the impurity scattering is dominated by low energy s-wave scattering, then
we can write u(q) = u0. In this situation, the fluctuations in the impurity scattering potential are
entirely local,

δU(x)δU(x′) = niu2
0δ(x − x′) white noise potential

In our discussion today, we will neglect the higher order moments of the scattering potential, effec-
tively assuming that it is purely Gaussian.

To prove (9.78 ), we first Fourier transform the potential

U(q) =
∑

j
e−iq·Rj

∫
d3xU(x − Rj)e−iq·(x−Rj) = u(q)

∑

j
e−iq·Rj , (9.80)

so that the locations of the impurities are encoded in the phase shifts which multiply u(q). If we
now carry out the average,

δU(x)δU(x′) =
∫

q,q′
ei(q·x−q·x′)

(
U(q)U(−q′) − U(q) U(−q′)

)

=

∫

q,q′
ei(q·x−q·x′) u(q)u(−q′)

∑

i, j

(
e−iq·Rieiq′·Rj − e−iq·Ri eiq′·Rj

)
(9.81)

Now since the phase terms are independent at different sites, the variance of the random phase term
in the above expression vanishes unless i = j, so

∑

i, j

(
e−iq·Ri eiq′·R j − e−iq·Ri eiq′·Rj

)
= Ni ×

∫
1
V
d3Rje−i(q−q′)·R j

= ni(2π)3δ(3)(q − q′) (9.82)

from which
U(q)U(−q′) − U(q) U(−q′) = ni|u(q)|2(2π)3δ(3)(q − q′)

and (9.78) follows.
Now let us examine how electrons scatter off these fluctuations. If we substitute ψ†(x) =∫

k c
†
ke−ik·x into V̂disorder, we obtain

V̂disorder =
∫

k,k′
c†kck′δU(k − k′)
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Figure 9.4: Double scattering event in the random impurity potential.

We shall represent the scattering amplitude for scattering once

jR

k k’

δU(k − k′) =


u(k − k′)

∑

j
ei(k−k′)·Rj


 − ∆µδk−k′ .

(9.83)

where we have subtracted the scattering off the average potential. The potential transfers momen-
tum, but does not impart any energy to the electron, and for this reason frequency is conserved
along the electron propagator. Let us now write down, in momentum space the Greens function of
the electron

G(k,k′, iωn) = ++ + + ,

275

Chapter 9. c©Piers Coleman 2011

= G0(k, iωn)δk,k′ + G0(k, iωn)δU(k − k′)G0(k′, iωn)
+

∫

k1

G0(k, iωn)δU(k − k1)G0(k1, iωn)δU(k1 − k′)G0(k′, iωn) + . . . (9.84)

where the frequency iωn is constant along the electron line. Notice that G is actually a function
of each impurity position! Fig. 9.4 illustrates one of the scattering events contributing to the third
diagram in this sum. We want to calculate the quenched avaerage G(k,k′, iωn), and to do this, we
need to average each Feynman diagram in the above series.

When we impurity average the single scattering event, it vanishes:

G0(k, iωn)δU(k − k′)G0(k′, iωn) = G0(k, iωn)

=0︷!!!!!!!︸︸!!!!!!!︷
δU(k − k′)G0(k′, iωn)

but the average of a double scattering event is

∑

k1

G0(k, iωn)G0(k1, iωn)G0(k′, iωn) ×

ni |uk−k′ |2δk−k′︷!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!︷
δU(k − k1)δU(k1 − k′)

= δk−k′ × G0(k, iωn)2ni
∑

k1

u(k − k1)2G0(k1, iωn)G0(k, iωn) (9.85)

Notice something fascinating - after impurity averaging, momentum is now conserved. We can
denote the impurity averaged double scattering event Feynman diagram

k k
k−q

q

=
(9.86)

where we have introduced the Feynman diagram

k

k−Q

Q k’+Q

k’

ni|u(q)|2 = −Veff(Q)

(9.87)

to denote the momentum transfer produced by the quenched fluctuations in the random potential.
In writing the diagram this way, we bring out the notion that quenched disorder can be very loosely
thought of as an interaction with an effective potential

Veff(q, iνn) =
∫ β

0
dτeiνnτ

−ni |u(q)|2︷!!!!!︸︸!!!!!︷
Veff(q, τ) = −βδn0ni|u(q)|2
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where the βδn0 ≡
∫
dτeiνnτ is derived from the fact that the interaction Veff(q, τ)does not depend on

the time difference guarantees that there is no energy transferred by the quenched scattering events.
In otherwords, quenched disorder induces a sort of infinitely retarded, but “attractive” potential
between electrons. (Our statement can be made formally correct in the language of replicas - this
interaction takes place between electrons of the same, or different replica index. In the n→ 0 limit,
the residual interaction only acts on one electron in the same replica. ) The notion that disorder
induces interactions is an interesting one, for it motivates the idea that disorder can lead to new
kinds of collective behavior.

After the impurity averaging, we notice that momentum is now conserved, so that the impurity
averaged Green function is now diagonal in momentum space,

G(k,k′, iνn) = δk−k′G(k, iνn).

If we now carry out the impurity averaging on multiple scattering events, only repeated scattering
events at the same sites will give rise to non-vanishing contributions. If we take account of all
scattering events induced by the Gaussian fluctuations in the scattering potential, then we generate
a series of diagrams of the form

G(k) = + + +

In the Feynman diagrams, we can group all scatterings into connected self-energy diagrams, as
follows:

Σ(k) = Σ = + + +

G(k) = + += Σ Σ Σ

= [iωn − εk − Σ(k)]−1 (9.88)

In the case of s-wave scattering, all momentum dependence of the scattering processes is lost, so
that in this case Σ(k) = Σ(iωn) only depends on the frequency. In the above diagram, the double line
on the electron propagator indicates that all self-energy corrections have been included. From the
above, you can see that the self-energy corrections calculated from the first expression are fed into
the electron propagator, which in turn is used in a self-consistent way inside the self-energy

We shall begin by trying to calculate the first order above diagrams for the self-energy without
imposing any self-consistency. This diagram is given by

Σ(iωn) = = ni
∑

k′
|u(k − k′)|2G(k′, iωn)
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= ni
∑

k′
|u(k − k′)|2 1

iωn − εk′
(9.89)

Now we can replace the summation over momentum inside this self-energy by an integration over
solid angle and energy, as follows

∑

k′
→

∫
dΩk′

4π
dε′N(ε′)

where N(ε) is the density of states. With this replacement,

Σ(iωn) = niu2
0

∫
dεN(ε)

1
iωn − ε

where
u2

0 =

∫
dΩk′

4π
|u(k − k′)|2 = 1

2

∫ 1

−1
d cos θ|u(θ)|2

is the angular average of the squared scattering amplitude. To a good approximation, this expression
can be calculated by replacing the energy dependent density of states by its value at the Fermi
energy. In so doing, we neglect a small real part to the self-energy, which can, in any case be
absorbed by the chemical potential. This kind of approximation is extremely common in many
body physics, in cases where the key physics is dominated by electrons close to the Fermi energy.
The deviations from constancy in N(ε), will in practice affect the real part of Σ(iωn), and these
small changes can be accomodated by a shift in the chemical potential. The resulting expression for
Σ(iωn) is then

Σ(iωn) = niu2
0N(0)

∫ ∞

−∞
dε

1
iωn − ε

= −i
1
2τ

sgn(ωn) (9.90)

where we have identified 1
τ = 2πniu2

0 as the electron elastic scattering rate. We notice that this
expression is entirely imaginary, and it only depends on the sign of the Matsubara frequency. Notice
that in deriving this result we have extended the limits of integration to infinity, an approximation
that involves neglecting terms of order 1/(εFτ).

We can now attempt to recompute Σ(iωn) with self-consistency. In this case,

Σ(iωn) = = niu2
0

∑

k′

1
iωn − εk′ − Σ(iωn)

(9.91)

If carry out the energy integration again, we see that the imposition of self-consistency has no effect
on the scattering rate

Σ(iωn) = niu2
0N(0)

∫ ∞

−∞
dε

1
iωn − ε − Σ(iωn)

= −i
1
2τ

sgn(ωn). (9.92)
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Our result for the electron propagator, ignoring the “vertex corrections” to the scattering self-energy
is given by

G(k, z) = 1
z − εk + i 1

2τsgnIm(z)

where we have boldly extended the Green function into the complex plane. We may now make a
few remarks:

• The original pole of the Green function has been broadened. The electron “spectral function”,

A(k, ω) =
1
π

ImG(k, ω − iδ) = 1
π

(2τ)−1

(ω − εk)2 + (2τ)−2

is a Lorentzian of width 1/τ. The electron of momentum k now has a lifetime τ due to elastic
scattering effects.

• Although the electron has a mean-free path, l = vFτthe electron propagator displays no fea-
tures of diffusion. The main effect of the finite scattering rate is to introduce a decay length
into the electron propagation. The electron propagator does not bear any resemblance to the
“diffusion propagator” χ = 1/(iν−Dq2) that is the Greens function for the diffusion equation
(∂t − D∇2)χ = −δ(x, t). The physics of diffusion and Ohm’s law do not appear until we are
able to examine the charge and spin response functions, and for this, we have to learn how to
compute the density and current fluctuations in thermal equilibrium. (Chapter 10).

• The scattering rate that we have computed is often called the “classical” electron scattering
rate. The neglected higher order diagrams with vertex corrections are actually smaller than
the leading order contribution by an amount of order

1
εFτ
=

1
kFl

This small parameter defines the size of “quantum corrections” to the Drude scattering physics,
which are the origin of the physics of electron localization. To understand how this small num-
ber arises in the self-energy, consider the first vertex correction to the impurity scattering,

k  + k   − k1 2

k2 k 1k k

(9.93)

This diagram is given by

Σ2 =

−i 1
2τ︷!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!︷

N(0)
∫

dε1
iωn − ε1

−i 1
2τ︷!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!︷

N(0)
∫

dε2
iωn − ε2

∼ −i
kF vF︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷∫

dΩ1dΩ2

(4π)2
1

iωn − εk1+k2−k
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∼ i
1
τ
×

1
kFl

(9.94)

where the last term in the integral derives from the central propagator in the self-energy. In this
self-energy, the momentum of the central propagator is entirely determined by the momentum
of the two other internal legs, so that the energy associated with this propagator is ε−k+k1+k2 .
This energy is only close to the Fermi energy when k1 ∼ −k2, so that only a small fraction
1/(kFl) of the possible directions of k2 give a large contribution to the scattering processes.

9.7 Interacting electrons and phonons

The electron phonon interaction is one of the earliest successes of many body physics in condensed
matter. In many ways, it is the condensed matter analog of quantum-electrodynamics - and the
early work on the electron phonon problem was carried out by physicists who had made their early
training in the area of quantum electrodynamics.

When an electron passes through a crystal, it attracts the nearby ions, causing a local build-up
of positive charge. Perhaps a better analogy, is with a supersonic aircraft, for indeed, an electron is
a truly supersonic particle inside crystals, moving at many times the velocity of sound. To get an
idea of just how much faster the electron moves in comparison with sound, notice that the ratio of
the sound velocity vs to the Fermi velocity vF is determined by the ratio of the Debye frequency to
the Fermi energy, for

vs
vF
∼
∇kωk
∇kεk

∼
ωD/a
εF/a

=
ωD
εF

where a is the size of the unit cell. Now an approximate estimate for the Debye frequency is given
by ω2

D ∼ k/M, where M is the mass of an atomic nucleus and k ∼ εF/a2 is the “spring constant”
associated with atomic motions, thus

ω2
D ∼

(εF
a2

) 1
M

and
ω2
D

ε2F
∼

1
(εFa2)︸︷︷︸
∼1/m

1
M
∼
m
M

so that the ratio
vs
vF
∼

√
m
M
∼

1
100
.

so an electron moves at around Mach 100. As it moves through the crystal, it leaves behind it a very
narrow wake of “positively charged” distortion in the crystal lattice which attracts other electrons,
long after the original disturbance has passed by. This is the origin of the weak attractive inter-
action produced by the exchange of virtual phonons. This attractive interaction is highly retarded,
quite unlike the strongly repulsive Coulomb interaction that acts between electrons which is almost
instantaneous in time. (The ratio of characteristic timescales being ∼ εF

ωD
∼

√
M
m ∼ 100). Thus-

280



bk.pdf June 28, 2011 141

c©2011 Piers Coleman Chapter 9.

whereas two electrons at the same place and time, feel a strong mutual Coulomb repulsion, two elec-
trons which arrive at the same place, but at different times can be subject to an attractive electron
phonon interaction. It is this interaction that is responsible for the development of superconductivity
in many conventional metals.

In an electron fluid, we must take into account the quantum nature of the sound-vibrations.
An electron can not continously interact with the surrounding atomic lattice - it must do so by
the emission and absorption of sound quanta or “phonons”. The basic Hamiltonian to describe
the electron phonon problem is the Frohlich Hamiltonian, derived by Fröhlich, a German emigré
to Britain, who worked in Liverpool shortly after the second-world war[7]. Fröhlich recognized
that the electron-phonon interaction is closely analogous to the electron-photon interaction of QED.
Fröhlich appreciated that this interaction would give rise to an effective attraction between electrons
and he was the first to identify it as the driving force behind conventional superconductivity.

To introduce the Frohlich Hamiltonian, we will imagine we have a three phonon modes labelled
by the index λ = (1, 2, 3), with frequency ωqλ. For the moment, we shall also ignore the Coulomb
interaction between electrons. The Fröhlich Hamiltonian is then

He =
∑

kσ
εkc†kσckσ

Hp =
∑

q,λ
ωqλ(a†qλaqλ +

1
2

)

HI =
∑

k,q,λ
gqλc†k+qσckσ

[
aqλ + a†−qλ

]
(9.95)

To understand the electron phonon coupling, let us consider how long-wavelength fluctuations of
the lattice couple to the electron energies. Let %Φ(x) be the displacement of the lattice at a given
point x, so that the strain tensor in the lattice is given by

uµν(x) =
1
2

(
∇µΦν(x) + ∇νΦµ(x)

)

In general, we expect a small change in the strain to modify the background potential of the lattice,
modifying the energies of the electrons, so that locally,

ε(k) = ε0(k) +Cµνuµν(x) + . . .

Consider the following, very simple model. In a free electron gas, the Fermi energy is related to the
density of the electrons N/V by

εF =
1

2m

(
3π2N
V

) 2
3

. (9.96)

When a portion of the lattice expands from V → V + dV , the positive charge of the background
lattice is unchanged, and preservation of overall charge neutrality guarantees that the number of
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electrons N remains constant, so the change in the Fermi energy is given by

δεF
εF
= −

2
3
dV
V
∼ −

2
3
%∇ · %Φ

On the basis of this simple model, we expect the following coupling between the displacement
vector and the electron field

HI = C
∫

d3xψσ†(x)ψσ(x)%∇.%Φ C = −
2
3
εF (9.97)

The quantity C is often called the “deformation potential”. Now the displacement of the the
phonons was studied in Chapter 4. In a general model, it is given by

Φ(x) = −i
∑

qλ
eλq ∆xqλ

[
aqλ + a†−qλ

]
eiq·x

where we’ve introduced the shorthand

∆xqλ =

(
!

2MNsωqλ

) 1
2

to denote the characteristic zero point fluctuation associated with a given mode. (Ns is the number
of sites in the lattice. ) The body of this expression is essentially identical to the displacement of a
one-dimensional harmonic lattice (see (3.81)), dressed up with additional polarization indices. The
unfamiliar quantity eλq is the polarization vector of the mode. For longitudinal phonons, for instance,
eLq = q̂. The “−i” infront of the expression has been introduced into the definition of the phonon
creation and annihilation operators so that the requirement that the Hamiltonian is hermitian (which
implies (eλq)∗ = −(eλ−q)) is consistent with the convention that e changes sign when the momentum
vector q is inverted.

The divergence of the phonon field is then

%∇ · Φ(x) =
∑

qλ
q · eλq∆xqλ

[
aqλ + a†−qλ

]
eiq·x

In this simple model, the electrons only couple to the longitudinal phonons, since these are the only
phonons that change the density of the unit cell. When we now Fourier transform the interaction
Hamiltonian, making the insertion ψσ(x) = 1√

V
∑

k ckσeik·x (9.97), we obtain

HI = C
∫

d3xψσ†(x)ψσ(x)%∇ · %Φ(x)

=
∑

k,k′,q,λ
c†k′σckσ

[
aqλ + a†−qλ

]
δk′−(k+q)︷!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!︷

1
V

∫
d3xei(q+k−k′)·x ×C∆xqλ(q · eλq)
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=
∑

qkλ
gqλc†k+qσckσ

[
aqλ + a†−qλ

]
(9.98)

where

gqλ =



Cq∆xqλ = Cq

(
!

2MNsωqλ

) 1
2

(λ = L)
0 (otherwise )

Note that Ns = V/a3, where a is the lattice spacing. To go over to the thermodynamic limit, we
will replace our discrete momentum sums by continuous integrals,

∑
q ≡ V

∫
q →

∫
q. Rather than

spending a lot of time keeping track of how the volume factor is absorbed into the integrals, it is
simpler to regard V = 1 as a unit volume, replacing Ns → a−3 whenever we switch from discrete,
to continuous integrals. With this understanding, we will use

gq = Cq
√
!a3/(2Mωqλ) (9.99)

for the electron-phonon coupling to the longitudinal modes. Our simple model captures the basic
aspects of the electron phonon interaction, and it can be readily generalized. In a more sophisticated
model,

• C becomes momentum dependent and should be replaced by the Fourier transform of the
atomic potential. For example, if we compute the electron - phonon potential from given by
the change in the atomic potential Vatomic resulting from the displacement of atoms,

δV(x) =
∑

j
δVatomic(x − R0

j − %Φ j) = −
∑

j

%Φ j · %∇Vatomic(x − R0
j)

we must replace interaction,

C → Vatomic(q) =
1
vcell

∫
d3xVatomic(x)e−iq·x. (9.100)

• When the plane-wave functions are replaced by the detailed Bloch wavefunctions of the elec-
tron band, the electron phonon coupling becomes dependent on both the incoming and out-
going electron momenta, so that

gk′−kλ → gk′,kλ.

Nevertheless, much can be learnt from our simplified model In the discussion that follows, we
shall drop the polarization index, and assume that the phonon modes we refer to are exclusively
longitudinal modes.

In setting up the Feynman diagrams for our Frohlich model, we need to introduce two new
elements- a diagram for the phonon propagator, and a diagram to denote the vertex. If we denote
φq = aq + a†−q, then the phonon Green function is given by

D(q, τ − τ′) = −〈Tφq(τ)φq(τ′)〉 = T
∑

iνn

D(q)e−iνn(τ−τ′) (9.101)
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where the propagator

D(q) =
2ωq

(iνn)2 − (ωq)2

is denoted by the diagram

(q, iνn)
= D(q, iνn) (9.102)

The interaction vertex between electrons and phonon is denoted by the diagram

k

k + q

q
= (i)3 × −gq = igq (9.103)

The factor i3 arises because we have three propagators entering the vertex, each donating a factor of
i. The −1gq derives from the interaction Hamiltonian in the time-ordered exponential. Combining
these two Feynman rules, we see that when two electrons exchange a boson, this gives rise to the
diagram

(q, νn)
1 2 = (igq)2D(q) = −(gq)2D(q) (9.104)

so that the exchange of a boson induces an effective interaction

Veff(q, z) = g2
q

2ωq

(z)2 − ω2
q

(9.105)

Notice three things about this interaction -

• It is strongly frequency dependent, reflecting the strongly retarded nature of the electron
phonon interaction. The characteristic phonon frequency is the Debye frequency ωD, and the
characteristic “restitution” time associated with the electron phonon interaction is τ ∼ 1/ωD,
whereas the corresponding time associated with the repulsive Coulomb interaction is of order
1/εF . The ratio εF/ωD ∼ 100 is a measure of how much more retarded the electron-phonon
interaction is compared with the Coulomb potential.

• It is weakly dependent on momentum, describing an interaction that is spatially local over
one or two lattice spacings.

• At frequencies below the Debye energy, ω<
˜
ωD the denominator in Veff changes sign, and the

residual low-energy interaction is actually attractive. It is this component of the interaction
that is responsible for superconductivity in conventional superconductors.

We wish to now calculate the effect of the electron-phonon interaction on electron propagation.
The main effect on the electron propagation is determined by the electron-phonon self energy. The
leading order Feynman diagram for the self-energy is given by
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k k − q

q

k
≡ Σ(k) =

∑

q
(igq)2G0(k − q)D(q) (9.106)

or written out explicitly,

Σ(k, iωn) = −T
∑

q,iνn
g2

q




2ωq

(iνn)2 − ω2
q




1
iωn − iνn − εk−q

= −T
∑

q,iνn

[
1

iνn − ωq

1
iωn − iνn − εk−q

− (ωq → −ωq)
]

(9.107)

where we have simplified the expression by splitting up the boson propagator into a positive and
negative frequency component, the latter being obtained by reversing the sign on ωq. We shall carry
out the Matsubara sum over the bosonic frequencies by writing it as a contour integral with the Bose
function:

−T
∑

iνn

F(iνn) = −
∫

C

dz
2πi

n(z)F(z) =
∫

C′

dz
2πi

n(z)F(z) (9.108)

where C runs anti-clockwise around the imaginary axis and C′ runs anticlockwise around the poles
in F(z). In this case, we choose

F(z) =
1

z − ωq

1
iωn − z − εk−q

=

[
1

z − ωq
−

1
z − (iωn − εk−q)

]
1

iωn − (ωq + εk−q)
(9.109)

which has two poles, one at z = ωq and one at z = iωn − εk−q (Fig. 9.5). Carrying out the contour

ιω  − εn k−q

ω q

ιω  − εn k−q

ω q
−1 x   =

C

C’

C’

Figure 9.5: Contours C and C′ used in evaluation of Σ(k, iωn)

285

Chapter 9. c©Piers Coleman 2011

integral, we then obtain

Σ(k) =
∑

q
g2

q




n(ωq) −
−(1− fk−q)

︷!!!!!!!!!!︸︸!!!!!!!!!!︷
n(iωn − εk−q)

iωn − (ωq + εk−q)
− {ωq → −ωq}




=
∑

q
g2

q

[ 1 + nq − fk−q

iωn − (ωq + εk−q)
− {ωq → −ωq}

]
(9.110)

The second term in this expression is obtained by reversing the sign on ωq in the first term, which
gives finally,

Σ(k, z) =
∑

q
g2

q

[ 1 + nq − fk−q

z − (εk−q + ωq)
+

nq + fk−q

z − (εk−q − ωq)

]

where we have taken the liberty of analytically extending the function into the complex plane.
There is a remarkable amount of physics hidden in this expression.

The terms appearing in the electron phonon self-energy can be interpreted in terms of virtual and
real phonon emission processes. Consider the zero temperature limit, when the Bose terms nq = 0.
If we look at the first term in Σ(k), we see that the numerator is only finite if the intermediate
electron state is empty, i.e |k − q| > kF . Furthermore, the poles of the first expression are located at
energies ωq + εk−q, which is the energy of an electron of momentum k − q and an emitted phonon
of momentum ωq, so the first process corresponds to phonon emission by an electron. If we look
at the second term, then at zero temperature, the numerator is only finite if |k − q| < kF , so the
intermediate state is a hole. The pole in the second term occurs at −z = −εk−q + ωq, corresponding
to a state of one hole and one phonon, so one way to interpret the second term as the energy shift
that results from the emission of virtual phonons by holes. At zero temperature then,

Σ(k, z) =
∑

q
g2

q

[
virtual/real phonon emission by electron

︷!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!︷
1 − fk−q

z − (εk−q + ωq)
+

virtual/real phonon emission by hole
︷!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!︷

fk−q

z − (εk−q − ωq)

]

As we shall discuss in more detail in the next chapter, the analytically extended Greens function

G(k, z) = 1
z − εk − Σ(k, z)

can be used to derive the real-time dynamics of the electron in thermal equilibrium. In general,
Σ(k, ω − iδ) = ReΣ(k, ω − iδ) + iImΣ(k, ω − iδ) will have a real and an imaginary part. The solution
of the relation

ε∗k = εk + ReΣ(k, ε∗k)

286



bk.pdf June 28, 2011 144

c©2011 Piers Coleman Chapter 9.

determines the renormalized energy of the electron due to virtual phonon emission. Let’s consider
the case of an electron, for which ε∗k is above the Fermi energy. The quasiparticle energy takes the
form

ε∗k = εk −

energy lowered by virtual phonon emission︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷∑

|k−q|>kF

g2
q

1
(εk−q + ωq) − ε∗k

+

energy raised by blocking vacuum fluctuations︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷∑

|k−q|<kF

g2
q

1
ε∗k + |εk−q| + ωq

.

If we approximate ε∗k by its unrenormalized value εk, we obtain the second-order perturbation cor-
rection to the electron quasiparticle energy, due to virtual phonon processes. To understand these
two terms, it is helpful to redraw the Feynman diagram for the self energy so that the scattering
events are explicitly time ordered, then we see that there are two virtual processes - depending on
whether the intermediate electron line propagates forwards or backwards in time:

Virtual phonon emission

2t1t
1 2<(t t  )

Virtual phonon and e−h pair

1t2t

1 2>(t t  )k

k

k−q

k−q

q

The first term is recognized as the effect of virtual scattering into an intermediate state with one pho-
ton and one electron. But what about the second term? This term involves the initial formation of an
electron-hole pair and the subsequent reannihilation of the hole with the incoming electron. During
the intermediate process, there seem to be two electrons (with the same spin) in the same momentum
state k. Can it really be that virtual processes violate the exculsion principle? Fortunately, another
interpretation can be given. Under close examination, we see that unlike typical virtual fluctuations
to high energy states, which lower the total energy, this term actually raises the quasiparticle energy.
These energy raising processes are a “blocking effect” produced by the exclusion principle, on the
vacuum fluctuations. In the ground-state, there are virtual fluctuations

GS " electron (k′) + hole (−k′ − q) + phonon (q)

which lower the energy of the ground-state. When a single electron occupies the state of momentum
k, the exclusion principle prevents vacuum fluctuations with k′ = k, raising the energy of the
quasiparticle. So time ordered diagrams that appear to violate the exclusion principle describe the
suppression of vacuum fluctuations by the exclusion principle.

If we now extend our discussion to finite temperatures, for any given k and q, both the first
and the second terms in the phonon self-energy are present. For phonon emission processes, the
appearance of the additional Bose terms nq is the the effect of stimulated emission, whereby the
occupancy of phonon states enhances the emission of phonons. The terms which vanish at zero
temperature can also be interpreted as the effect of phonon absorption of the now thermally excited
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phonons, i.e

Σ(k, z) =
∑

q
g2

q

[ 1 − fk−q + nq

z − (εk−q + ωq)
︸!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!︸

virtual/real phonon absorption by hole

+
fk−q + nq

z − (εk−q − ωq)
︸!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!︸

virtual/real phonon absorption by electron

]

By contrast, the imaginary part of the self-energy determines the decay rate of the electron due
to real phonon emission, and the decay rate of the electron is related to the quantity

Γk = 2ImΣ(k, ε∗k − iδ) ≈ 2ImΣ(k, εk − iδ)

If we use the Dirac relation
[

1
x − a − iδ

]
= P

1
x − a

+ iπδ(x − a)

then we see that for a weak interaction, the decay rate of the electron is given by

Γk = 2π
∑

q
g2

q

[ phonon emission
︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷
(1 + nq − fk−q)δ(εk − (εk−q + ωq))+

phonon absorption
︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷
(nq + fk−q)δ(εk − (εk−q − ωq))

]

which we may identify as the contribution to the decay rate from phonon emission and absorption,
respectively. Schematically, we may write

Im
[

k k − q

q
k ]
=

∑

q




[

k
k − q

q

]2

+

[

k
k − q

q

]2
 × 2πδ(E f − Ei)

so that taking the imaginary part of the self-energy “cuts” the internal lines. The link between
the imaginary part of the self-energy and the real decay processes of absorption and emission is
sometimes refered to as the “optical theorem”.

9.7.1 α2F: the electron-phonon coupling function

One of the most important effects of the electron phonon interaction, is to give rise to a supercon-
ducting instability. Superconductivity is driven by the interaction of low-energy electrons very close
to the Fermi surface, so the amount of energy transferred in an interaction is almost zero. For this
reason, the effective interaction between the electrons is given by (9.105)

Veff(q, 0) = −
2g2

q

ωq

Now the momentum dependence of this interaction is very weak. In our simple model, for example,
g2

q/2ωq ∼
q2

ω2
q
∼ constant, and a weak momentum dependence implies that to a first approximation
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then, the effective low energy interaction is local, extending over one unit cell and of approximate
form

He f f ≈ −g
∑

σσ′

∑

q,k,k′,(|εk |, |εk′ |, |εk+q |, |εk′+q |, <ωD)
ψ†k+qσψ

†
k′σ′ψk′+qσ′ψkσ (9.111)

where the sum over electron momenta is restricted to within a narrow band of energies, within ωD
of the Fermi energy. This means that the interaction is “instantaneous” to within a time-scale of
δt ∼ 1/ωD. The effective interaction strength g is the sum over all 2g2

q/ωq,

g =
1
V

∑

q

2g2
q

ωq
≡

∫

q

2g2
q

ωq
(V ≡ 1) (9.112)

Bardeen and Pines were amongst the first to realize that the electron-electron interaction induced by
phonon exchange is highly retarded relative to the almost instantaneous Coulomb interaction, so that
for low energy processes, the Coulomb interaction could be ignored. The attractive interaction in
(9.111) was then the basis of the “Bardeen-Pines” model[8] - a predecessor of the BCS Hamiltonian.
We can make an order-of-magnitude estimate of g, by replacing

g ∼
g2

2kF
a3ωD

∼
1

a3ωD

(g2kF )2

︷!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!︷[(
a3

2MωD

)
ε2F(2kF)2

]
∼

M
m︷︸︸︷


ε2F
ω2
D



k2
F

2M
∼ εF

where we have taken ! = 1 and replaced
∫

q → 1/a3. The electron phonon coupling constant is
defined as the product of the interaction strength, times the electron density of states,

λ = N(0)g =
∑

q

2N(0)g2
q

ωq
(9.113)

This dimensionless quantity is not reduced by the small ratio of electron to atom mass, and in typical
metals λ ∼ 0.1 − 0.2. We’ll now relate the electron phonon self energy to this quantity.

The electron-phonon self-energy can be simplified by the introduction of a function we call
“α2F”, that keeps track of the frequency dependence of the electron-phonon coupling constant,
where α(ω) is the typical energy dependent coupling constant and F is the phonon density of states.
It turns out that α2F can be actually measured inside superconductors and F can be measured by
neutron scattering.

The basic idea here, is that the momentum dependence of the electron-phonon self energy is
far smaller than the frequency dependence, so the momentum dependence of the self-energy can
be neglected. The dimensionless ratio between these two dependences is a small number of order
ωD/εF , (

1
vF
|∇kΣ|

)
/

(
∂Σ

∂ω

)
∼
ωD
εF
<< 1
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To a good approximation then, the electron phonon self-energy can be averaged over the Fermi
surface, writing

Σ(ω) =

∫
dS Σ(k, ω)

∫
dS

where
∫
dS ≡

∫
d2k/(2π)3 is an integral over the Fermi surface. Now the sum over k′ inside the

self-energy can be replaced by a combination of an energy integral, and a Fermi surface integral, as
follows ∑

k′
→

∫
dS ′dk′perp =

∫
dS ′

|dεk′/dk′|
dε′ =

∫
dS ′

vF(S ′)
dε′

where dS ′ ≡ d2k is a surface integral along the surface of constant energy and vF(S ) = n · ∇kεk is
the local Fermi velocity normal to this surface. Making this substitution,

Σ(ω) =
1∫
dS

∫
dS dS ′

v′F
dε′g2

k−k′

[
1 + nk−k′ − f (ε′)
z − (ε′ + ωk−k′)

+
nk−k′ + f (ε′)
z − (ε′ − ωk−k′)

]

If we introduce a delta function in the phonon frequency into this expression, using the identity
1 =

∫
dνδ(ν − ωqλ), then we may rewrite it as follows

Σ(ω) =
1∫
dS

∫
dε′dν

∫
dS dS ′

v′F
g2

k−k′δ(ν − ωk−k′)
[
1 + n(ν) − f (ε′)
z − (ε′ + ν)

+
n(ν) + f (ε′)
z − (ε′ − ν)

]

=

∫ ∞

−∞
dε

∫ ∞

0
dνα2(ν)F(ν)

[
1 + n(ν) − f (ε′)
z − (ε′ + ν)

+
n(ν) + f (ε′)
z − (ε′ − ν)

]
(9.114)

where the function
F(ω) =

∑

q,λ
δ(ω − ωqλ)

is the phonon density of states, and

α2F(ν) =
1∫
dS

∫
dS dS ′

v′F
δ(ω − ωk−k′)g2

k−k′λ

is the Fermi surface average of the phonon matrix element and density of states. With this definition,
we may rewrite the self energy as

Σ(z) =
∫ ∞

−∞
dε

∫ ∞

0
dνα2(ν)F(ν)

[
1 + n(ν) − f (ε)
z − (ε + ν)

+
n(ν) + f (ε)
z − (ε − ν)

]
,

where the energy dependence of the electron density of states has been neglected. This is a very
practical form for the electron self-energy. In practice, most of the energy dependence in α2F
is determined by the phonon density of states. As we shall see later, in a conventional electron-
phonon superconductor, one may infer the function α2F using the density of electron states in the
superconductor measured by tunneling in the superconducting state.
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9.7.2 Mass Renormalization by the electron phonon interaction

Our simplified expression for of the self-energy enables us to examine how electron propagation is
modified by the exchange of virtual phonons. Let us expand the electron-phonon self energy around
zero frequency in the ground-state. In the ground-state,

Σ(ω) =
∫ ∞

−∞
dε

∫ ∞

0
dνα2(ν)F(ν)

[
θ(ε)

z − (ε + ν)
+

θ(−ε)
z − (ε′ − ν)

]

=

∫ ∞

0
dνα2(ν)F(ν) ln

[ν − z
ν + z

]

so that at low frequencies,
Σ(ω) = Σ(0) − λω

where

λ = −
dΣ(ω)
dω

∣∣∣∣∣
ω=0

= 2
∫

dν
α2(ν)F(ν)
ν

(9.115)

If we look at our definition of α2F, we see that this expression is the Fermi surface average of the
electron phonon coupling constant defined in (9.113).

Now at low energies, we can write the electron propagator in terms of the quasiparticle energies,
as follows

G(k, ω − iδ) = 1
ω − εk − Σ(ω − iδ)

=
1

ω − εk − Σ(ε∗k − iδ)︸!!!!!!!!!!!!︷︷!!!!!!!!!!!!︸
ε∗k−iΓ/2

+λ(ω − ε∗k )
, (9.116)

or

G(k, ω − iδ) = Z
ω − ε∗k − iΓ∗/2

(9.117)

where

Z = (1 + λ)−1 wavefunction renormalization
ε∗k = εk + Σ(ε∗k ) quasiparticle energy
Γ∗ = 2ZImΣ(ε∗k − iδ) quasiparticle decay rate.

(9.118)

We see that in the presence of the electron phonon interaction, electron quasiparticles are still well-
defined at low temperatures. Indeed, at the Fermi surface, Γ∗ = 0 in the ground-state, so that electron
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quasiparticles are infinitely long-lived. This is an example of a Landau Fermi liquid, discussed in
chapter 8. If we differentiate εk with respect to ε∗k, we obtain

dεk
dε∗k
= (1 + λ) =

(
m∗

m

)

so that the effective mass of the electron is enhanced by the cloud of virtual phonons which trails
behind it. The density of states is also renormalized in the same way

N(0)∗ =
dεk
dε∗k

N(0) = N(0)(1 + λ)

while the electron group velocity is renormalized downwards according to

v∗F = ∇kε
∗
k =

dε∗k
dεk
∇kεk = ZvF

Thus the electron phonon interaction drives up the mass of the electron, effect of squeezing the
one-particle states more closely together and driving the electron group velocity downwards. This
in turn will mean that the linear coefficient of the electronic specific heat Cv = γ∗T

γ∗ =
π2k2

B
3

N∗(0) = γ0(1 + λ)

is enhanced.
We can give the wavefunction renormalization another interpretation. Recall that using the

method of contour integration, we can always rewrite the Matsubara representation of the Green
function

G(k, τ) = T
∑

n
G(k, iωn)e−iωnτ

as
G(k, τ) = −

∫
dω
π

[
(1 − f (ω))θ(τ) − f (ω)θ(−τ)

]
A(k, ω)e−ωτ, (9.119)

where A(k, ω) = ImG(k, ω − iδ) is the spectral function. Now, from the normalization of the
fermionic commutation relation {ckσ, c†kσ} = 1, we deduce that the spectral function is normalized:

1 = 〈{ckσ, c†kσ}〉 =
〈c†kσckσ〉︷!!!︸︸!!!︷
G(k, 0−)−

−〈ckσc†kσ〉︷!!!︸︸!!!︷
G(k, 0+)

=

∫
dω
π
A(k, ω) (9.120)

The quasiparticle part of the spectral function (9.117) is a Lorentzian of width Γ∗k, weight πZ, and
since the width Γ∗k → 0 as ε∗k gets closer to the Fermi energy, we deduce that for k ∼ kF , the
quasiparticle part of the spectral function ever more closely represents a delta function of weight Z,
so that

1
π
A(k, ω) ∼ Zδ(ω − ε∗k) + incoherent background
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where the incoherent background is required so that the total frequency integral of the spectral
function is equal to unity.

Now from (9.119), we see that the ground-state occupancy of the electron momentum state k is
given by

nkσ = 〈n̂kσ〉T=0 = −G(k, 0−) =
∫

dω
π
f (ω)A(k, ω)

∣∣∣∣∣
T=0

=

∫ 0

−∞

dω
π
A(k, ω), (T = 0) (9.121)

The presence of the quasiparticle pole in the spectral function means that at the Fermi surface, there
is a discontinuity in the occupancy given by

nkσ|k=k−F − nkσ|k=k+F = Z =
1

1 + λ

as shown in Fig. 9.6

ZZ
F
−

F

+

F

1

a) b)

c)

A(k,  )ω

ω

A(k,  )ω

ω

k = k k = k 

k

kn

k

Z= 1/(1+  )λ

Figure 9.6: Illustrating the relationship between the coherent, quasiparticle component in the elec-
tron spectral function, and the discontinuity in the momentum-space occupancy at the Fermi surface
due to the electron-phonon interaction. a) Spectral function just below the Fermi surface - quasipar-
ticle peak occupied. b) Spectral function just above Fermi surface - quasiparticle peak unoccupied.
c) Momentum space occupancy nk.

Remarks:

• The survival of a sharp “coherent” delta-function peak in the quasiparticle spectral function,
together with this sharp precipace-like discontinuity in the momentum-space occupancy, are
one of the hallmark features of the Landau Fermi liquid. In an electron-phonon mediated
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superconductor, it is the coherent part of the spectral function which condenses into the pair
condensate.

• At first sight, one might imagine that since the density of states N∗(0) = (1 + λ)N(0) is
enhanced, the magnetic susceptibility will follow suit. In actual fact, the compression of the
density of states produced by phonons is always located at the Fermi energy, and this means
that if the electron phonon interaction is turned on adiabatically, it does not affect the Fermi
momenta of either up, or down electrons, so that the magnetization, and hence the magnetic
susceptibility are unaffected by the electron phonon interaction.

9.7.3 Migdal’s theorem.

At first sight, one might worry about the usefulness of our leading order self-energy correction. We
have already seen that the size of the electron phonon interaction λ is of order unity. So what permits
us to ignore the vertex corrections to the self energy?

One of the classic early results in the electron phonon problem, is Migdal’s theorem[9], accord-
ing to which that the renormalization of the electron-phonon coupling by phonon exchange, is of
order

√
m
M . Migdal’s theorem is a result of the huge mismatch between the electron and phonon dis-

persion. Basically- when an electron scatters off a phonon, it moves away so fast that other phonons
can not “catch up” with the outgoing electron.

Migdal’s theorem concerns the correction to the electron-phonon vertex. Diagramatically, the
electron self-energy can be expanded as follows

Σ = + + . . . (9.122)

which we can denote by the shorthand

Σ = (9.123)

Here, the shaded circle denotes the vertex part, given by
q

k′ + q

k − k′

k + q

k′
k

= + + · · · = ig(q)(1 + Λ(q)) (9.124)
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We shall discuss the leading order vertex correction,

q

k′ + q

k − k′

k + q

k′
k

= (igq)Λ(q) (9.125)

where the vertex function Λ(q) is given by

Λ(q) = T
∑

k′≡(iω′n,k′)
(igk−k′)2G(k′ + q)G(k′)D(k − k′) (9.126)

We are interested in an order of magnitude estimate of this quantity.
Now at low temperatures, we can replace the summation over the Matsubara frequency can be

replaced by an integral,

T
∑

ω′n

→
∫ dω′n

2π

so that
Λ(q) = −

∫ dω′n
2π

∫
d3k′

(2π)3 (gk−k′)2G(k′ + q)G(k′)D(k − k′)

Now the propogator
D(k − k′) = −

ωk−k′

(ωn − ω′n)2 + ω2
q

vanishes as 1/(ω′n)2 in the region where |ωn − ω′n|>˜ωD, so we restrict this integral, writing

Λ(q) = −
∫ ωD

−ωD

dω′n
2π

∫
d3k′

(2π)3 (gk−k′)2D(k − k′)G(k′ + q)G(k′)

Inside the restricted frequency integral, to obtain an estimate of this quantity, we shall replace
g2

k−k′D(k − k′) ∼ a3g × 2ωk−k′D(k − k′) ∼ −g, since 2ωk−k′D(k − k′) ∼ −1. To good approx-
imation, the frequency integral may be replaced by a single factor ωD, so that

Λ(q) ∼ ωDga3

∼ (kF )3

ε2F︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷∫
d3k′

(2π)3G(k′ + q)G(k′)
∣∣∣∣∣∣
ω′n=ωn

.

Now inside the momentum summation over k′, the electron momenta are unrestricted so the energies
εk′ and εk′+q are far from the Fermi energy and we may estimate this term as of order (kFa)3

ε2F
. Putting

these results together,

Λ ∼ gωD
(kFa)3

ε2F
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Now since g ∼ λεF and (kFa)3 ∼ 1, we see that

Λ ∼ λ
ωD
εF
∼

√
m
M

In otherwords, even though the electron phonon interaction is of order unity, the large ratio of
electron to ion mass leads to a very small vertex correction.
Remarks:

• Perhaps the main difficulty of the Migdal argument, is that it provides a false sense of security
to the theorist- giving the impression that one has “proven” that the perturbative treatment of
the electron phonon interaction is always justified. Migdal’s argument is basically a dimen-
sional analysis. The weak-point of the derivation, is that the dimensional analysis does not
work for those scattering events where the energies of the scattered electrons are degenerate.
While such scattering events may make up a small contribution to the overall phase space
contributing to the self-energy, they become important because the associated scattering am-
plitudes can develop strong singularities that ultimately result in a catastrophic instability of
the Fermi liquid. The dimensional analysis in the Migdal argument breaks down when elec-
trons inside the loop have almost degenerate energies. For example, the Migdal calculation,
does not work for the case where q is close to a nesting vector of the Fermi surface, when q
spans two nested Fermi surfaces, this causes εk′ and εk′+q to become degenerate, enhancing
the size of the vertex by a factor of εF/ωD× log(ωD/T ). The singular term ultimately grows to
a point where an instability to a density wave takes place, producing a charge density wave.
The other parallel instability is the Cooper instability, which is a singular correction to the
particle-particle scattering vertex, caused by the degeneracy of electron energies for electrons
of opposite momenta.

9.8 Appendix A

In this appendix, we consider the Hamiltonian

H =

H0︷!!!!!!!!︸︸!!!!!!!!︷∑

λ

ελψ
†
λψλ −

−VI︷!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!︷∑

λ

[
z̄λ(τ)ψλ + ψ†)λ

]

and show that the generating functional

Z0[η̄, η] = Z0〈Te−
∫ β

0 VI (τ)dτ〉0

= Z0〈T exp


∫ β

0
dτ

∑

λ

(
η̄λ(τ)ψλ(τ) + ψ†λ(τ)ηλ(τ)

)

〉0 (9.127)

is explicitly given by
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Z0[η̄, η]
Z0

= exp

−

∑

λ

∫ β

0
dτ1dτ2η̄λ(1)Gλ(τ1 − τ2)ηλ(2)




Gλ(τ1 − τ2) = −〈Tψλ(τ1)ψ†λ(τ2)〉 (9.128)

for both bosons and fermions.
We begin by evaluating the equation of motion of the fields in the Heisenberg representation:

∂ψλ
∂τ
= [H, ψλ] = −ελψλ(τ) + ηλ(τ)

Multiplying this expression by the integrating factor eελτ, we obtain

∂

∂τ

[
eελτψλ(τ)

]
= eελτηλ(τ)

which we may integrate from τ′ = 0 to τ′ = τ, to obtain

ψλ(τ) = e−ελτψλ(0) +
∫ τ

0
dτ′e−ελ(τ−τ

′)ηλ(τ′)dτ′

We shall now take expectation values of this equation, so that

〈ψλ(τ)〉 = e−ελτ〈ψλ(0)〉 +
∫ τ

0
dτ′e−ελ(τ−τ

′)ηλ(τ′)dτ′ (9.129)

If we impose the boundary condition 〈ψλ(β)〉 = ζ〈ψλ(0)〉, where ζ = 1 for bosons and ζ = −1 for
fermions, then we deduce that

〈ψλ(0)〉 = ζnλ
∫ β

0
eελτ

′
ηλ(τ′)dτ′,

where nλ = 1/(eβελ − ζ) is the Bose (ζ = 1), or Fermi function ζ = −1. Inserting this into (9.129),
we obtain

〈ψλ(τ)〉 = ζnλ
∫ β

0
e−ελ(τ−τ

′)ηλ(τ′)dτ′ +
∫ β

0
e−ελ(τ−τ

′)θ(τ − τ′)ηλ(τ′)dτ′, (9.130)

where we have introduced a theta function in the second term, in order to extend the upper limit of
integration to β. Rearranging this expression, we obtain

〈ψλ(τ)〉 =
∫ β

0
dτ′

−Gλ(τ−τ′)︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷
e−ελ(τ − τ′)

[
(1 + ζnλ)θ(τ − τ′) + ζnλθ(τ′ − τ)

]

= −
∫ β

0
dτ′Gλ(τ − τ′)ηλ(τ′) (9.131)
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so Gλ(τ) is the imaginary time response of the field to the source term. We may repeat the same
procedure for the expectation value of the creation operator. The results of these two calculations
may be summarized as

〈ψλ(τ)〉 =
δZ[η̄, η]
δη̄(τ)

= −
∫ β

0
dτ′Gλ(τ − τ′)ηλ(τ′)

〈ψ†λ(τ)〉 =
δZ[η̄, η]
δη(τ)

= −
∫ β

0
dτ′η̄(τ)Gλ(τ − τ′). (9.132)

Notice how the creation field propagates backwards in time from the source. The common integral
to these two expression is

lnZ[η̄, η] = lnZ0 −
∫ β

0
dτdτ′η̄λ(τ)Gλ(τ − τ′)ηλ(τ′)

where the constant term lnZ0 has to be intependent of both η and η̄. The exponential of this expres-
sion recovers the result (9.128 ).

9.9 Exercises
1. Use the method of complex contour integration to carry out the Matsubara sums in the following:

(i) Derive the density of a spinless Bose Gas at finite temperature from the boson propagator D(k) ≡
D(k, iνn) = [iνn−ωk]−1, where ωk = Ek−µ is the energy of a boson, measured relative to the chemical
potential.

ρ(T ) =
N
V
= V−1

∑

k
〈Tbk(0−)b†k(0)〉 = −(βV)−1

∑

iνn,k
D(k)eiνn0+ . (9.133)

How do you need to modify your answer to take account of Bose Einstein condensation?
(ii) The dynamic charge-susceptibility of a free Bose gas, i.e

χc(q, iνn) =
D(k+q)

D(k)

= T
∑

iνn

∫
d3k

(2π)3D(q + k)D(k). (9.134)

Please analytically extend your final answer to real frequencies.
(iii) The “pair-susceptibility” of a spin-1/2 free Fermi gas, i.e.

χP(q, iνn) =
G(k+q)

G(-k)

= T
∑

iωr

∫
d3k

(2π)3G(q + k)G(−k) (9.135)

where G(k) ≡ G(k, iωn) = [iωn − εk]−1. (Note the direction of the arrows: why is there no minus sign
for the Fermion loop?) Show that the static pair susceptibility, χP(0)is given by

χP =

∫
d3k

(2π)3
tanh[βεk/2]

2εk
(9.136)

Can you see that this quantity diverges at low temperatures? How does it diverge, and why ?
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2. A simple model an atom with two atomic levels coupled to a radiation field is described by the Hamil-
tonian

H = Ho + HI + Hphoton, (9.137)

E

−1
−τ

+
−1τ

γ

E

E-

+

οω

where

Ho = Ẽ−c†−c− + Ẽ+c†+c+ (9.138)

describes the atom, treating it as a fermion

HI = V−1/2
∑

%q

g(ω%q)
(
c†+c− + c†−c+

)[
a†%q + a−%q

]
(9.139)

describes the coupling to the radiation field (V is the volume of the box enclosing the radiation) and

Hphoton =
∑

%q

ω%qa†%qa%q, (ωq = cq) (9.140)

is the Hamiltonian for the electromagnetic field. The “dipole” matrix element g(ω) is weak enough to
be treated by second order perturbation theory and the polarization of the photon is ignored.
(i) Calculate the self-energy Σ+(ω) and Σ−(ω) for an atom in the + and − states.
(ii) Use the self-energy obtained above to calculate the life-times τ± of the atomic states, i.e.

τ−1
± = 2ImΣ±(Ẽ± − iδ). (9.141)

If the gas of atoms is non-degenerate, i.e the Fermi functions are all small compared with unity,
f (E±) ∼ 0 show that

τ−1
+ = 2π|g(ωo)|2F(ωo)[1 + n(ωo)]
τ−1
− = 2π|g(ωo)|2F(ωo)n(ωo), (9.142)

where ωo = Ẽ+ − Ẽ− is the separation of the atomic levels and

F(ω) =
∫

d3q
(2π)3 δ(ω − ωq) =

ω2

2πc3 (9.143)

is the density of state of the photons at energy ω. What do these results have to do with stimulated
emission? Do your final results depend on the initial assumption that the atoms were fermions?
(iii)Why is the decay rate of the upper state larger than the decay rate of the lower state by the factor
[1 + n(ω0)]/n(ω0)?
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Table. 10.3 Relationship With Physical Quantities: Finite Temperature

∆F −V
∑
{linked clusters} −V

[
+ + . . .

]

lnZ/Zo Vβ
∑
{linked clusters} VT

[
+ + . . .

]

1
−〈Tψ(2)ψ†(1)〉

2
∑
{Two leg diagrams}

+ + +

(−1)n〈Tψ(1) . . . ψ†(2n)〉
∑
{2n- leg diagrams}

G n = 2
− + +

Response Functions

〈ψ|T [A(2)B(1)]|ψ〉 = χTAB

B(1) A(2)
χAB = χ

T
AB(ω − iδ) + + . . .

i〈[A(2), B(1)]〉θ(t1 − t2) = χAB
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Chapter 10

Fluctuation Dissipation Theorem and
Linear Response Theory

10.1 Introduction

In this chapter we will discuss the deep link between fluctuations about equilibrium, and the re-
sponse of a system to external forces. If the susceptibility of a system to external change is large,
then the fluctuations about equilibrium are expected to be large. The mathematical relationship that
quantifies this this connection is called the “fluctuation-dissipation” theorem. We shall discuss and
derive this relationship in this chapter. It turns out that the link between fluctuations and dissipation
also extends to imaginary time, enabling us to relate equilibrium correlation functions and response
functions to the imaginary time Greens function of the corresponding variables.

To describe the fluctuations and response at a finite temperature we will introduce three related
three types of Green function- the correlation function S (t),

S (t − t′) = 〈A(t) A(t′)〉 =
∫ ∞

−∞

dω
2π

e−iω(t−t′)S (ω),

the dynamical susceptibility χ(t)

χ(t − t′) = i〈[A(t), A(t′)]〉θ(t − t′),

which determines the retarded response

〈A(t)〉 =
∫ ∞

−∞
dt′χ(t − t′) f (t′), 〈A(ω)〉 = χ(ω) f (ω),

to a force f (t) term coupled to A inside the Hamiltonian HI = − f (t)A(t), and lastly, the imaginary
time response function χ(τ)

χ(τ − τ′) = 〈TA(τ)A(τ′)〉

.
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The fluctuation dissipation theorem relates the Fourier transforms of these quantities. according
to

S (ω)︸︷︷︸
Fluctuations

= 2![
Quantum︷︸︸︷

1 +

Thermal︷︸︸︷
nB(ω)] χ′′(ω)︸︷︷︸

Dissipation

,

where χ′′(ω) = Im χ(ω) describes the dissipative part of the response function. In the limit, ω <<
kBT , when n(ω) ∼ kBT/!ω, this result reverts to the classical fluctuation-dissipation theorem,

S (ω) =
2kBT
ω
χ′′(ω).

Thus in principle, if we know the correlation functions in thermal equilibrium, we can compute the
response function of the system.

The dissipative response of the system also enters into the Kramer’s Kronig expansion of the
response function,

χ(z) =
∫

dω
π

1
ω − z

χ′′(ω)

and this expression can be used to analytically extend χ(ω) into the complex plane. In practice,
the theorist takes advantage of a completely parallel fluctuation-dissipation theorem which exists in
imaginary time. The imaginary time correlation function χ(τ) is periodic in time. χ(τ + β) = χ(τ),
and has an discrete Matsubara Fourier expansion, given by

χ(τ) = 〈TA(τ)A(0)〉 =
1
β

∑

n
e−iνnτχM(iνn)

The key relation between this function and the physical response function is that

χM(iνn) = χ(z).|z=iνn .

This relation permits us to compute the physical response function by analytically continuing the
Fourier components of the imaginary-time correlation functions onto the real axis.

To understand these relations, we need first to understand the nature of the quantum mechan-
ical response functions. We shall then carry out a “spectral decomposition” of each of the above
functions, deriving the fluctuation dissipation theorem by showing that the same underlying matrix
elements enter into each expression. A heuristic understanding of the relationship between fluctu-
ations and dissipation, is obtained by examining a classical example. The main difference between
the classical and the quantum fluctuation-dissipation theorem, is that in classical mechanics we are
obliged to explicitly include the external sources of noise, whereas in the quantum case, the noise
is intrinsic, and we can analyse the fluctuations without any specific reference to external sources
of noise. Nevertheless, the classical case is highly pedagagocical, and it is this limit that we shall
consider first.
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10.2 Fluctuation dissipation theorem for a classical harmonic oscilla-
tor

fluctuations
︷ ︸︸ ︷

〈x(t)x(0)〉 = 2kBT

∫
dω

2π

χ′′(ω)

ω
︸ ︷︷ ︸

dissipation

e−iωt

t

x(t)

Figure 10.1: Fluctuations in a classical harmonic oscillator are directly related to the dissipative
response function via the “fluctuation dissipation theorem”.

In a classical system, to examine correlation functions we need to include an explicit source of
external noise. To illustrate the procedure, consider a harmonic oscillator in thermal equilibrium
inside a viscous medium. Suppose that thermal fluctuations give rise to a random force, acting on
the oscillator, according to the quation of motion:

m(ẍ + ω2
ox) + ηẋ = f (t)

If we Fourier transform this relationship, we obtain

x(ω) = χ(ω) f (ω)
χ(ω) = [m(ω2

0 − ω
2) − iωη]−1 (10.1)

Here χ(ω) is the response function , or susceptibility to the external force. The imaginary part of
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the susceptibility governs the dissipation and is given by

χ′′(ω) =
ωη

m(ω2
0 − ω

2) + ω2η2 = |χ(ω)|2ωη. (10.2)

Now let us consider the fluctuations in thermal equilibrium. Over long time periods, we expect the
two-point correlation function to be purely a function of the time difference:

〈x(t)x(t′)〉 = 〈x(t − t′)x(0)〉

The power spectrum of fluctuations is defined as

〈|x(ω)|2〉 =
∫

dt〈x(t)x(0)〉eiωt

and the inverse relation gives

〈x(t)x(t′)〉 =
∫

dω
2π

e−iω(t−t′)〈|x(ω)|2〉.

Now in thermal equilibrium, the equipartition theorem tells us that

mω2
0

2
〈x2〉 =

kBT
2
,

or
〈x2〉 =

∫
dω
2π
〈|x(ω)|2〉 =

∫
dω
2π
|χ(ω)|2〈| f (ω)|2〉 =

kBT
mω2

0

Since the integrand is very sharply peaked around |ω| = ω0, we replace 〈| f (ω)|2〉 → 〈| f (ω0)|2〉 in
the above expression. Replacing |χ(ω)|2 → 1

ωηχ
′′(ω) we then obtain

kBT
mω2

0
=
〈| f (ω0)|2〉

2η

∫
dω
π

χ′′(ω)
ω
=
| f (ω0)|2

2ηmω2
0
.

so that the spectrum of force fluctuations is determined by the viscosity η

〈| f (ω0)|2〉 = 2ηkBT.

Now if we assume that the noise spectrum it depends only on the properties of the viscous medium in
which the oscillator is embedded, and that it does not depend on the properties of the oscillator, then
we expect this expression holds for any frequency ω0, and since it is independent of the frequency,
we conclude that the power spectrum of the force is a flat function of frequency, enabling us to
replaceω0 → ω in the above expression. This implies that in thermal equilibrium, the force coupling
the system to the environment is a source of white noise of amplitude which depends on the viscosity
of the medium

〈 f (t) f (t′)〉 =
∫

dω
2π

e−iω(t−t′)

2ηkBT︷!!!!︸︸!!!!︷
〈| f (ω)|2〉 = 2ηkBTδ(t − t′)
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We can now compute the noise spectrum of fluctuations, which is given by

S (ω) = 〈|x(ω)|2〉 = |χ(ω)|2〈| f (ω)|2〉 = 〈| f (ω)|2〉
χ′′(ω)
ωη

=
2kBT
ω
χ′′(ω).

This expression relates the thermal fluctuations of a classical system to the dissipation, as described
by the imaginary part of the response function, χ′′(ω).

10.3 Quantum Mechanical Response Functions.

Suppose we couple a force f to variable A. For later generality, it suits our need to consider a force
in both in real and imaginary time, with Hamiltonian

H = Ho − f (t)A
H = Ho − f (τ)A. (10.3)

We shall now show that the response to these forces are given by

〈A(t)〉 = 〈A〉 +
∫ ∞

−∞
χ(t − t′) f (t′)dt′

〈A(τ)〉 = 〈A〉 +
∫ β

0
χ̃(τ − τ′) f (τ′)dτ′ (10.4)

χ(t − t′) = i〈[A(t), A(t′)]〉θ(t − t′)

χ̃(τ − τ′) = 〈TA(τ)A(τ′)]〉 − 〈A〉2 (10.5)

where 〈A〉 is the value of A in thermal equilibrium. Let us begin in real time. Using the interaction
representation, we know that

AH(t) = U†(t)AI(t) U(t),

where

U(t) = T exp i
∫ t

−∞
dt′AI(t′) f (t′).

Remembering that the interaction representation corresponds to the Heisenberg representation for
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Ho, we can drop the subscript on AI(t) ≡ A(t), so that to linear order in f (t),

U(t) = 1 + i
∫ t

−∞
dt′A(t′) f (t′),

U†(t) = 1 − i
∫ t

−∞
dt′A(t′) f (t′)

so that

AH(t) = A(t) + i
∫ t

−∞
dt′[A(t), A(t′)] f (t′),

In thermal equilibrium if 〈A(t)〉 = 〈A〉 , so the response to the applied force is given by

〈AH(t)〉 = 〈A〉 +
∫ +∞

−∞
dt′ χ(t − t′) f (t′),

where

χ(t − t′) = i〈[A(t), A(t′)] 〉θ(t − t′)

is the “retarded response function”, also known as the “dynamical susceptibility”. The above
equation is particularly interesting, for it relates a quantum-mechanical response function to a
correlation-function.

Let us now consider imaginary time. In this case, the partition function in the presence of the
perturbation is

Z = Z0〈T exp
∫ β

0
dτ f (τ)AI(τ)〉0

The expectation value of A(τ) is then given by

〈A(τ)〉 =
δ lnZ
δ f (τ)

=
〈TA(τ) exp

∫ β
0 dτ′ f (τ′)AI(τ′)〉

〈T exp
∫ β

0 dτ′ f (τ′)AI(τ′)〉

= 〈A〉 +
∫ β

0
dτ′

χ̃(τ−τ′)︷!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!︷[
〈TA(τ)A(τ′)〉 − 〈A〉2

]
f (τ′) + O( f 2) (10.6)

so that

χ̃(τ) = 〈TA(τ)A(0)〉 − 〈A〉2
= 〈T (A(τ) − 〈A〉)(A(0) − 〈A〉)〉 (10.7)

where the expectation values are to be taken in thermal equilibrium for H0.
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10.4 Fluctuations and Dissipation in a quantum world

Unlike classical mechanics, the quantum Boltzmann formulation of many body physics is naturally
tailored to a discussion of the statistics of fluctuations and dissipation. Quantum systems are natu-
rally noisy, and there is no need for us to add any additional noise source to examine the deep link
between flucutations and dissipation in a quantum many body system. Indeed, the quantum fluctua-
tion dissipation theorem can be derived in rather mechanistic fashion by carrying out out a spectral
decomposition of the various response and correlation functions. The procedure is formally more
direct that its classical analogue, but the algebra tends to hide the fact that the underlying physics
holds precisely the same link between fluctuations- now both thermal and quantum in character-
and dissipation.

To derive the quantum fluctuation theorem, we must first spectrally decompose the correlation
function S (t − t′) and the response function χ(t − t′).

10.4.1 Spectral decomposition I: the correlation function S (t − t′)

This is the easiest decomposition of the three to carry out. We begin by expanding the response
function in terms of a complete set of energy eigenstates which satisfy

H |λ〉 = Eλ |λ〉 ,∑

λ

|λ〉 〈λ| = 1,

〈λ |A(t)| ζ〉 =
〈
λ
∣∣∣eiHtA e−iHt

∣∣∣ ζ
〉
= e−i(Eζ−Eλ)(t−t

′) 〈λ |A| ζ〉 .

Using these key results, we make the expansion as follows,

S (t − t′) = 〈A(t)A(t′)〉
=

∑

λ,ζ

e−β(Eλ−F) 〈λ |A(t)| ζ〉
〈
ζ
∣∣∣A(t′)

∣∣∣ λ
〉

=
∑

λ,ζ

e−β(Eλ−F) |〈ζ |A| λ〉|2 e−i(Eζ−Eλ)(t−t
′) (10.8)

If we now Fourier transform this expression, the frequency dependent correlation function can be
written

S (ω) =
∫ ∞

−∞
dteiωtS (t)

=
∑

λ,ζ

e−β(Eλ−F) |〈ζ |A| λ〉|2 2πδ(Eζ − Eλ − ω). (10.9)

This is the frequency spectrum of the correlations.
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10.4.2 Spectral decomposition II: the response function χ(t − t′)

We now use the same spectral decomposition approach for the response function. In this case, we
need to take care of two operator orderings inside the commutator, which yield

χ(t − t′) = i
∑

λ,ζ

e−β(Eλ−F)
{
〈λ |A(t)| ζ〉

〈
ζ
∣∣∣A(t′)

∣∣∣ λ
〉
−

〈
λ
∣∣∣A(t′)

∣∣∣ ζ
〉
〈ζ |A(t)| λ〉

}
θ(t − t′)

= i
∑

λ,ζ

eβF(e−βEλ − e−βEζ ) |〈ζ |A| λ〉|2 e−i(Eζ−Eλ)(t−t
′)θ(t − t′).

By introducing the spectral function

χ′′(ω) = π(1 − e−βω)
∑

λ,ζ

|〈ζ |A| λ〉|2 δ[ω − (Eζ − Eλ)]e−β(Eλ−F), (10.10)

we see that the retarded response function can be written,

χ(t) = i
∫

dω e−iωtθ(t) χ′′(ω). (10.11)

Fourier transforming this result, using

i
∫ ∞

0
dtei(ω−ω

′+iδ) t =
1

ω′ − ω − iδ
,

we obtain

χ(ω) =
∫

dω′

π

1
ω′ − ω − iδ

χ′′(ω′). (10.12)

This “Kramers-Krönig” relation can be used to extend the response function into the complex plane.
Notice that because the response function is retarded, χ(ω) is analytic in the upper-half complex
plane and the poles lie just below the real axis, at z = ω′ − iδ. Finally, taking the imaginary part of
this expression, using the Dirac relation Im[1/(ω′ − ω − iδ) = πδ(ω′ − ω), we are able to identify

χ′′(ω) = Imχ(ω + iδ)

as the dissipative part of the response function.

10.4.3 Quantum Fluctuation dissipation Theorem

If we compare the relations (10.10 ) and (10.9), we see that

S (ω) =
2

1 − e−βω
χ′′(ω).

If we restore !, this becomes

S (ω) =
2!

1 − e−β!ω
χ′′(ω) = 2! [1 + nB(!ω)]χ′′(ω). (10.13)

Thus, by carrying out a spectral analysis, we have been able to directly link the correlation function
S (ω) with the dissipative part of the response function χ(ω).
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10.4.4 Spectral decomposition III: fluctuations in imaginary time

For the final of our three decompositions, we move to imaginary time, and write, τ − τ′ > 0,

χ(τ − τ′) =
∑

λ,ζ

e−β(Eλ−F)
{
〈λ |A(τ)| ζ〉

〈
ζ
∣∣∣A(τ′)

∣∣∣ λ
〉}

=
∑

λ,ζ

e−β(Eλ−F)e−(Eλ−Eζ )(τ−τ′) |〈ζ |A| λ〉|2 .

Now ∫ β

0
dτ eiνnτe−(Eλ−Eζ )τ =

1
(Eζ − Eλ − iνn)

(1 − e−(Eλ−Eζ )β),

so

χ(iνn) =
∫ β

0
dτ eiνnτχ(τ)

=
∑

λ,ζ

e−β(Eλ−F)(1 − e−β(Eζ−Eλ)) |〈ζ |A| λ〉|2
1

(Eζ − Eλ − iνn)
.

Using (10.10 ), we can write this as

χ(iνn) =
∫

dω
π

1
ω − iνn

χ′′(ω) (10.14)

so that χ(iνn) is the unique analytic extension of χ(ω) into the complex plane. Our procedure to
calculate response functions will be to write χ(iνn) in the form 10.14, and to use this to read off
χ′′(ω).

10.5 Calculation of response functions
Having made the link between the imaginary time, and real time response functions, we are ready
to discuss how we can calculate response functions from Feynman diagrams. Our procedure is to
compute the imaginary time response function, and then analytically continue to real frequencies.
Suppose we are interested in the response function for A where,

A(x) = ψ†α(x)Aαβψβ(x).

(See table 10.0). The corresponding operator generates the vertex

β

α

x = Aαβ

(10.15)
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Table. 10.0 Selected Operators and corresponding response function.

Quantity Operator Â A(k) Response Function

Density ρ̂(x) = ψ†(x)ψ(x) ραβ = δαβ Charge susceptibility

Spin density %S (x) = ψα†(x)
(
%σ
2

)
αβ
ψβ(x) %Mαβ = µB%σαβ Spin susceptibility

Current density e
mψ
†(x)

(
−i!

↔
∇ −e%A

)
ψ(x) %j = e%vk = e%∇εk Conductivity

Thermal current !2

2mψ
†(x)

↔
∇
↔
∂ t ψ(x) %jT = iωn%vk = iωn%∇εk Thermal conductivity

(Where
↔
∇≡ 1

2

(→
∇ −

←
∇
)
,
↔
∂ t≡ 1

2

(→
∂ t −

←
∂ t

)
)

where the spin variables αβ are to be contracted with the internal spin variables of the Feynman
diagram. This innevitably means that the variable Aαβ becomes part of an internal trace over spin
variables. If we expand the corresponding response function χ(x) = 〈A(x)A(0)〉 using Feynman
diagrams, then we obtain

χ(τ) = 〈A(x)A(0)〉 =
∑

closed linked two-vertex diagrams

= x 0

For example, in a non-interacting electron system, the imaginary time spin response function
involves A(x) = µBψα†(x)σαβψβ(x), so the corresponding response function is

χab(x − x′) = µ2
B × αβ

a
σ βα

b
σ

β

α

x x’

= −

Trace over
spin variables︷︸︸︷

Tr
[
σaG(x − x′)σbG(x′ − x)

]

= −δab2µ2
BG(x − x′)G(x′ − x) (10.16)
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Now to analytically continue to real frequencies, we need to transform to Fourier space, writing

χ(q) =
∫

d4xe−iqxχ(x)

where the integral over time τ runs from 0 to β. This procedure converts the Feynman diagram from
a real-space, to a momentum space Feynman diagram. At the measurement vertex at position x, the
incoming and outgoing momenta of the fermion line give the following integral

∫
d4xe−iqxei(kin−kout)x = βVδ4(kout − kin + q).

As in the case of the Free energy, the βV term cancels with the 1/(βV)
∑
k terms associated with each

propogator, leaving behind one factor of 1/(βV) = T/V per internal momentum loop. Schematically,
the effect of the Fourier transform on the measurement vertex at position x, is then

∫
d4xe−iqx


 x


 =

q

k

k+q

(10.17)

For example, the momentum-dependent spin response function of the free electron gas is given
by

χab(q) = µ2
B ×

a
σ

b
σ

k

k+q

= −
1
βV

∑

k
Tr

[
σaG(k + q)σbG(k)

]
= δabχ(q) (10.18)

where

χ(q, iνr) = −2µ2
B

∫

k
T

∑

iωn

G(k + q, iωn + iνr)G(k, iωn) (10.19)

When we carry out the Matsubara summation in the above expression by a contour integral, (see
Chapter 9), we obtain

−T
∑

iωn

G(k + q, iωn + iνr)G(k, iωn) = −
∫

C′

dz
2πi

f (z)G(k + q, z + iνr)G(k, z)

=

( fk − fk−q

(εk+q − εk) − iνr

)
, (10.20)

whereC′ encloses the poles of the Green functions. Inserting this into (10.19), we obtain χ(q, iνr) =
χ(q, z)|z=iνr ,where

χ(q, z) = 2µ2
B

∫

k

( fk − fk−q

(εk+q − εk) − iνr

)
(10.21)
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From this we can also read off the power-spectrum of spin fluctuations

χ′′(q, ω) = Imχ(q, ω + iδ) = 2µ2
B

∫

q
πδ(εq+k − εk − ω)

[
fk − fk+q

]
(10.22)

When we come to consider conductivities, which involve the response function of current oper-
ators, we need to know how to deal with an operator that involves spatial, or temporal derivatives.
To do this, it is convenient to examine the Fourier transform of the operator A(x),

∫
d4xe−iqxψ†(x)Aψ(x) =

∑

k
ψ†(k − q/2)Aψ(k + q/2)

In current operators, A is a function of gradient terms such as
↔
∇ and

↔
∂ t. In this case, the use of

the symmetrized gradient terms ensures that when we Fourier transform, the derivative terms are
replaced by the midpoint momentum and frequency of the incoming or outgoing electron.

∫
d4xe−iqxψ†(x)A[−i

↔
∇, i

↔
∂ t]ψ(x) =

∑

k
ψ†(k − q/2)A(k, iωn)ψ(k + q/2)

for example, the current operator %J(x) = e!
m

(
−i
↔
∇
)

becomes

J(q) =
∑

k
e%vkψ

†(k − q/2)ψ(k + q/2),

where %vk =
!%k
m is the electron velocity. For the thermal current operator %Jt(%x) = !

2

m

(↔
∇
↔
∂ t

)
,

%Jt(q) =
∑

k
iωn
!2%k
m
ψ†(k − q/2)ψ(k + q/2).

Example 10.1: Calculate the imaginary part of the dynamic susceptibility for non-interacting
electrons and show that at low energies ω << εF ,

χ′′(q, ω)
ω

=

{
µ2
B
N(0)
vFq (q ≤ 2kF)

0 (q > 2kF)

where vF = !kF/m is the Fermi velocity.

Solution: Starting with (10.22) In the low energy limit, we can write

lim
ω→0

χ′′(q, ω)
ω

= 2µ2
B

∫

q
δ(εq+k − εk)

fk+q − fk
εk − εk+q

= 2µ2
B

∫

q
δ(εq+k − εk)

(
−
d f
dεk

)
(10.23)
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Replacing ∫

q
→

∫
dεN(ε)

∫ 1

−1

d cos θ
2

we obtain

lim
ω→0

χ′′(q, ω)
ω

= 2µ2
BN(0)

∫ 1

−1

d cos θ
2
δ(
q2

2m
+
qkF
m

cos θ)

= 2µ2
BN(0)

m
2qkF

= µ2
B

(
N(0)
vFq

)
(q < 2kF) (10.24)

10.6 Spectroscopy: linking measurement and correlation
The spectroscopies of condensed matter provide the essential window on the underlying excitation
spectrum, the collective modes and ultimately the ground-state correlations of the medium. Re-
search in condensed matter depends critically on the creative new interpretations given to measure-
ments. It is from these interpretations, that new models can be built, and new insights discovered,
leading ultimately to quantitative theories of matter.

Understanding the link between experiment and the microscopic world is essential for theorist
and experimentalist. At the start of a career, the student is often flung into a seminar room, where
it is often difficult to absorb the content of the talk, because the true meaning of the spectroscopy
or measurements is obscure to all but the expert - so it is important to get a rough idea of how and
what each measurement technique probes - to know some of the pitfalls of interpretation - and to
have an idea about how one begins to calculate the corresponding quantities from simple theoretical
models.

315

Chapter 10. c©Piers Coleman 2011

Table. 10.1 Selected Spectroscopies .

CH
A

RG
E

SP
IN

EL
EC

TR
O

N

NAME SPECTRUM Â Questions and Issues
Surface probe. T ∼ 0 measurement.

STM
dI
dV

dI
dV

(x) ∝ A(x, ω)|ω=eV ψ(x) Is the surface different?

ARPES I(k, ω) ∝ f (−ω)A(k,−ω) ckσ(t) p⊥ unresolved.
Surface probe. No magnetic field

Inverse PES I(ω) ∝
∑

k
[1 − f (ω)]A(k, ω) c†kσ(t) p unresolved.

Surface probe.

χDC χDC =

∫
dω
πω
χ′′(q = 0, ω) M χ ∼ 1

T local moments.

Uniform Susceptibility χ ∼ cons paramagnet

Inelastic Neutron
Scattering What is the background?
d2σ

dΩdω
S (q, ω) =

1
1 − e−βω

χ′′(q, ω) S (q, t) Quality of crystal?

NMR
Knight Shift Kcontact ∝ χlocal S (x, t) How is the orbital part subtracted?

1
T1

T
∫

q
F(q)

χ′′(q, ω)
ω

∣∣∣∣∣∣
ω=ωN

How does powdering affect sample?

What is the resistance ratio?

Resistivity ρ ρ =
1
σ(0)

%j(q = 0) (R300/R0)

Reflectivity:

Optical σ(ω) =
1
−iω

[
〈 j(ω′) j(−ω′)〉

]ω
0 %j(ω) How was the Kramer’s Krönig done?

Conductivity Spectral weight transfer?
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Fundamentally, each measurement is related to a given correlation function. This is seen most
explicity in scattering experiments. Here, one is sending in one a beam of particles, and measuring
the flux of outgoing particles at a given energy transfer E and momentum transfer q. The ratio of
outgoing to incoming particle flux determines the differential scattering cross-section

d2σ

dΩdω
=

Outward particle flux
Inward particle flux

When the particles scatter, they couple to some microscopic variable A(x) within the matter, such as
the spin density in neutron scattering, or the particle field itself A(x) = ψ(x) in photo-emission. The
differential scattering cross-section this gives rise to what is, in essence a measure of the autocorre-
lation function of A(x) at the wavevector q and frequency ω = E/! inside the material,

d2σ

dΩdω
∼

∫
d4x〈A(x, t)A(0)〉e−i(q·x−ωt) = S (q, ω)

Remarkably scattering probes matter at two points in space! How can this be? To understand it,
recall that the differential scattering rate is actually an (imaginary) part of the forward scattering
amplitude of the incoming particle. The amplitude for the incoming particle to scatter in a forward
direction, contains the Feynman process where it omits a fluctuation of the quantity A at position
x′, travelling for a brief period of time as a scattered particle, before reabsorbing the fluctuation at
x. The amplitude for the intermediate process is nothing more than

k−q

k

k

A(x’)

A(x)

amplitude =

amplitude for fluctuation︷!!!!!!!!︸︸!!!!!!!!︷
〈A(x)A(x′)〉× ei[q·(x−x′)−ω(t−t′)]

︸!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!︸
amplitude for particle to scatter at x’,
and reabsorb fluctuation at x .

(10.25)

(In practice, since the whole process is translationally invariant, we can replace x by x − x′ and set
x′ = 0. )

The relationship between the correlation function and scattering rate is really a natural conse-
quence of Fermi’s Golden rule, according to which

d2σ

dΩdω
∼ Γi→ f =

2π
!

∑

f
pi|〈 f |V |i〉|2δ(E f − Ei)

where pi is the probability of being in the initial state |i〉. Typically, an incoming particle (photon,
electron, neutron) with momentum k scatters into an outgoing particle state (photon, electron, neu-
tron) with momentum k′ = k − q, and the system undergoes a transition from a state |λ〉 to a final
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state |λ′〉:
|i〉 = |λ〉|k〉, | f 〉 = |λ′〉|k′〉

If the scattering Hamiltonian with V ∼ g
∫

x ρ(x)A(x), where ρ(x) is the density of the particle beam,
then the scattering matrix element is

〈 f |V̂ |i〉 = g
∫

x′
〈k′|x′〉〈λ′|A(x′)|λ〉〈x′|k〉 = g

Vo

∫

x′
eiq·x

′
〈λ′|A(x′)|λ〉 (10.26)

so the scattering rate is

Γi→ f =
g2

V2
0

∫

x, x′
pλ〈λ|A(x)|λ′〉〈λ′|A(x′)|λ〉e−iq·(x−x′)2πδ(Eλ′ − Eλ − ω) (10.27)

where pλ = e−β(Eλ−F) is the Boltzmann probability. Now if we repeat the spectral decomposition of
the correlation function made in (10.9)

∫
dteiωt〈A(x, t)A(x′, 0)〉 = 2π

∑

λ,λ′

pλ〈λ|A(x)|λ′〉〈λ′|A(x′)|λ〉δ(Eλ′ − Eλ − ω),

we see that

Γi→ f ∼
g2

V2
0

∫

x,x′
dteiωt〈A(x, t)A(x′, 0)〉e−iq·(x−x′)

=
g2

V0

∫
d3xdte−i(q·x−ωt)〈A(x, t)A(0)〉

where the last simplification results from translational invariance. Finally, if we divide the transition
rate by the incoming flux of particles ∼ 1/V0, we obtain the differential scattering cross-section.

For example, in an inelastic neutron scattering (INS) experiment, the neutrons couple to the
electron spin density A = S (x) of the material, so that

d2σ

dΩdω
(q, ω) ∼

∫
d4x〈S −(x, t)S +(0)〉e−i(q·x−ωt) ∝

1
1 − e−βω

χ′′(q, ω)

where χ(q, ω) is the dynamic spin susceptibility which determines the magnetization M(q, ω) =
χ(q, ω)B(q, ω) by a modulated magnetic field of wavevector q, frequencyω. By contrast, in an angle
resolved photo-emission (ARPES) experiment, incoming X-rays eject electrons from the material,
leaving behind “holes”, so that A = ψ is the electron annihilation operator and the intensity of
emitted electrons measures the correlation function

I(k, ω) ∼
∫

d4x〈ψ†(x)ψ(0)〉e−i(k·x−ωt) =

f (−ω)︷!!!︸︸!!!︷
1

1 + eβω
A(k,−ω)

where the Fermi function replaces the Bose function in the fluctuation dissipation theorem.
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10.7 Electron Spectroscopy

10.7.1 Formal properties of the electron Green function

The spectral decomposition carried out for a bosonic variable A is simply generalized to a fermionic
variable such as ckσ. The basic electron “correlation” functions are

〈ckσ(t)c†kσ(0)〉 =
∫

dω
2π
G>(k, ω)e−iωt

〈c†kσ(0)ckσ(t)〉 =
∫

dω
2π
G<(k, ω)e−iωt (10.28)

called the “greater” and “lesser” Green functions. A spectral decomposition of these relations re-
veals that

G>(k, ω) =
∑

λ,ζ

pλ|〈ζ |c†kσ|λ〉|22πδ(Eζ − Eλ − ω)

G<(k, ω) =
∑

λ,ζ

pλ|〈ζ |ckσ|λ〉|22πδ(Eζ − Eλ + ω)

describe the positive energy distribution functions for particles (G>) and the negative energ distri-
bution function for holes (G<) respectively. By relabelling ζ ↔ λ in (10.29) it is straightforward to
show that

G<(k, ω) = e−βωG>(k, ω)

We also need to introduce the retarded electron Green function, given by

GR(k, t) = −i〈{ckσ(t), c†kσ(0)}〉θ(t) =
∫

dω
2π
GR(k, ω)e−iωt

(note the appearance of an anticommutator for fermions and the minus sign pre-factor) which is the
real-time analog of the imaginary time Green function

G(k, τ) = −〈Tckσ(τ)c†kσ(0)〉 = T
∑

n
G(k, iωn)e−iωnτ

A spectral decomposition of these two functions reveals that they share the same power-spectrum
and Kramer’s Krönig relation, and can both be related to the generalized Green function

G(k, z) =
∫

dω
π

1
z − ω

A(k, ω) (10.29)

where

GR(k, ω) = G(k, ω + iδ) =
∫

dω′

π

1
ω − ω′ + iδ

A(k, ω)
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G(k, iωn) = G(k, z)|z=iωn =
∫

dω
π

1
iωn − ω

A(k, ω′), (10.30)

and the spectral function

A(k, ω) = (1 + e−βω)
∑

λ,ζ

pλ|〈ζ |c†kσ|λ〉|2πδ(Eζ − Eλ − ω)

=
1
2

[G>(k, ω) +G<(k, ω)] (10.31)

is the sum of the particle and hole energy distribution functions. From the second of (10.31) and
(10.28), it follows that A(k, ω) is the Fourier transform of the anticommutator

〈{ckσ(t), c†kσ(0)}〉 =
∫

dω
π
A(k, ω)e−iωt (10.32)

At equal times, the commutator is equal to unity, {ckσ, c†kσ} = 1, from which we deduce the
normalization ∫

dω
π
A(k, ω) = 1.

For non-interacting fermions, the spectral function is a pure delta-function, but in Fermi liquids the
delta-function is renormalized by a factor Z and the remainder of the spectral weight is transfered
to an incoherent background.

A(k, ω)
π

= Zkδ(ω − Ek) + background

The relations

G>(k, ω) =
2

1 + e−βω
A(k, ω) = 2(1 − f (ω))A(k, ω) (particles)

G<(k, ω) =
2

1 + eβω
A(k, ω) = 2 f (ω)A(k, ω) (holes) (10.33)

are the fermion analog of the fluctuation dissipation theorem.

10.7.2 Tunneling spectroscopy

Tunneling spectroscopy is one of the most direct ways of probing the electron spectral function. The
basic idea behind tunneling spectroscopy, is that a tunneling probe is close enough to the surface
that electrons can tunnel through the forbidden region between the probe and surface material.
Traditionally, tunneling was carried out using point contact spectroscopy, whereby a sharp probe is
brought into contact with the surface, and tunneling takes place through the oxide layer separating
probe and surface. With the invention of the Scanning Tunneling Microscope, by Gerd Binnig
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Figure 10.2: Showing the redistribution of the quasiparticle weight into an incoherent background
in a Fermi liquid.

and Heinrich Rohrer in the 80’s has revolutionized the field. In recent times, Seamus Davis has
developed this tool into a method that permits the spectral function of electrons to be mapped out
with Angstrom level precision across the surface of a conductor.

In the WKB approximation, the amplitude for an electron to tunnel between probe and surface
is

t(x1, x2) ∼ exp
[
−

1
!

∫ x2

x1

√
2m[U(x) − E]ds

]
(10.34)

where the integral is evaluated along the saddle-point path between probe and surface. The expo-
nential dependence of this quantity on distance means that tunneling is dominated by the extremal
path from a single atom at the end of a scanning probe, giving rise to Angström - level spatial
resolution.

The Hamiltonian governing the interaction between the probe and the sample can be written

V̂ =
∑

k,k′
tk,k′

[
c†kσpk′σ + H.c.

]
.

where tk,k′ is the tunnelling matrix element between the probe and substrate, c†kσ and p†kσ create
electrons in the sample and the probe respectively. The tunneling current of electrons from probe to
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sample is given by

iP→S = 2π
∑

k,k′,ζ,ζ′,λ,λ′,σ
pλpλ′ |tk,k′ |2|〈ζ, ζ′|c†kσpk′σ|λ, λ′〉|2δ(Eζ + Eζ′ − Eλ − Eλ′)

where |λ, λ′〉 ≡ |λ〉|λ′〉 and |ζ, ζ′〉 ≡ |ζ〉|ζ′〉 refer to the joint many body states of the sample (un-
primed) and probe (primed), and we have dropped ! from the equation. This term creates electrons
in the sample, leaving behind holes in the probe.

Now if we rewrite this expression in terms of the spectral functions of the probe and sample,
after a little work, we obtain

iP→S = 4π
∑

k,k′
|tk,k′ |2

∫
dω

AS (k, ω)
π

ÃP(k, ω)
π

(1 − f (ω)) fP(ω),

where ÃP(k, ω) and fP(ω) are the spectral function and distribution function of the voltage-biased
probe. We have doubled the expression to account for spin. You can check the validity of these
expressions by expanding the spectral functions using (10.31), but the expression is simply recog-
nized as a product of matrix element, density of states and Fermi-Dirac electron and hole occupancy
factors.

Similarly, the tunneling current of electrons from sample to probe is

iS→P = 2π
∑

k,k′,ζ,ζ′,λ,λ′,σ
pλpλ′ |tk,k′ |2|〈ζ, ζ′|p†k′σckσ|λ, λ′〉|2δ(Eζ + Eζ′ − Eλ − Eλ′)

= 4π
∑

k,k′
|tk,k′ |2

∫
dω

AS (k, ω)
π

ÃP(k, ω)
π

[1 − fP(ω)] f (ω). (10.35)

Subtracting these two expressions, the total charge current I = −|e|(iP→S − iS→P) from probe to
sample is

I = 4π|e|
∑

k,k′
|tk,k′ |2

∫
dω

AS (k, ω)
π

ÃP(k, ω)
π

[ f (ω) − fP(ω)]. (10.36)

The effect of applying a voltage bias V > 0 to the probe is to lower the energy of the electrons in
the probe, so that both the energy distribution function fP(ω) and the spectral function of electrons
in the probe ÃP(k, ω) are shifted down in energy by an amount |e|V with respect to their unbiased
values, in other words fP(ω) = f (ω + |e|V) and ÃP(k, ω) = AP(k, ω + |e|V), so that

I = 4π|e|
∑

k,k′
|tk,k′ |2

∫
dω

AS (k, ω)
π

AP(k, ω + |e|V)
π

[ f (ω) − f (ω + |e|V)]. (10.37)

We shall ignore the momentum dependence of the tunneling matrix elements, writing |t|2 =
|tk,k′ |2, we obtain

I(V) = 2|e|

Γ︷!!!!!!︸︸!!!!!!︷
2π|t|2N(0)

∫
dω
π

AS (ω)
π

[ f (ω) − f (ω + |e|V)]. (10.38)
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and

AS (ω) =
∑

k
AS (k, ω)

N(ω + |e|V) =
∑

k
AP(k, ω + |e|V) ∼ N(0) (10.39)

are the local spectral functions for the sample and probe, respectively. Typically, the probe is a
metal with a featureless density of states, and this justifies the replacement N(ω) ∼ N(0) in the
above expression. The quantity 2πt2N(0) = Γ is the characteristic resonance broadening width
created by the tunnelling out of the probe. If we now differentiate the current with respect to the
applied voltage, we see that the differential conductivity

G(V) =
dI
dV
=

(
2e2

!

)
Γ

∫
dω
π
A(S )(ω)

∼δ(ω+|e|V)︷!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!︷(
−
d f (ω + |e|V)

dω

)

At low temperatures, the derivative of the Fermi function gives a delta function in energy, so that

G(V) =
(
4e2Γ

h

)
AS (ω)|ω=−|e|V

Thus by mapping out the differential conductance as a function of position, it becomes possible to
obtain a complete spatial map of the spectral function on the surface of the sample.

10.7.3 ARPES, AIPES and inverse PES

ARPES (angle resolved photoemission spectroscopy), AIPES (angle integrated photoemision spec-
troscopy) and inverse PES (inverse photo-electron spectrosopy) are the alternative ways of probing
the hole and electron spectra in matter. The first two involve “photon in, electron out”, the second
“electron in, photon out”. The coupling of radiation to light involves the dipole coupling term

HI = −
∫

d3x%j(x) · %A(x)

where %j(x) = i e!2mψσ
†(x)%∇ψσ(x) is the paramagnetic electron current operator. Unlike STM or

neutron scattering, this is a strongly coupled interaction, and the assumption that we can use the
Golden Rule to relate the absorption to a correlation function is on much shakier ground. ARPES
spectroscopy involves the absorption of a photon, and the emission of a photo-electron from the
material. The interpretation of ARPES spectra is based on the “sudden approximation”, whereby it
is assumed that the dipole matrix element between the intial and final states has a slow dependence
on the incoming photon energy and momentum, so that the matrix element is i.e

〈ζ,k + q| − %j · %A|λ,q〉 ∼ Λ(q, êλ)〈ζ |ckσ|λ〉
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On the assumption that Λ is weakly energy and momentum dependent, we are able to directly relate
the absorption intensity to the spectral density beneath the Fermi energy,

IARPES (k, ω) ∝ f (−ω)A(k,−ω)

inγ e out

(10.40)

The appearance of the Fermi function masks states above the Fermi energy, and sometimes causes
problems for the interpretation of ARPES spectra near the Fermi energy - particularly for the es-
timation of anisotropic, superconducting gaps. There is a large caveat to go with this equation:
when photo-electrons escape from a surface, the component of their momentum perpendicular to
the surface is modified by interactions with the surface. Consequently, ARPES spectroscopy can not
resolve the momenta of the spectral function perpendicular to the surface. The other consideration
about ARPES, is that it is essentially a surface probe - X-ray radiation has only the smallest ability
to penetrate samples, so that the information obtained by these methods provides strictly a surface
probe of the system.

In recent years, tremendous strides in the resolution of ARPES have taken place, in large part
because of the interest in probing the electron spectrum of the quasi- two-dimensional cuprate super-
conductors. These methods have, for example, played an important role in exhibiting the anisotropic
d-wave gap of these materials.

Inverse photo-electron spectroscopy probes the spectral function above the Fermi energy. At
present, angle resolved IPES is not a as well developed, and most IPES work involves unresolved
momenta, i.e

IIPES (ω) ∝
∑

k
[1 − f (ω)]A(k, ω)

outγe in

(10.41)

In certain materials, both PES and IPES spectra are available. A classic example is in the spec-
troscopy of mixed valent cerium compounds. In these materials, the Ce atoms have a singly occu-
pied f-level, in the 4 f 1 configuration. PES spectroscopy is able to resolve the energy for the hole
excitation

4 f1 → 4 f 0 + e−, ∆EI = −E f

where E f is the energy of a single occupied 4 f level. By contrast, inverse PES reveals the energy to
add an electron to the 4 f 1 state,

e− + 4 f1 → 4 f 2, ∆EII = E f + U

where U is the size of the Coulomb interaction between two electrons in an f-state. By comparing
these two absorption energies, it is possible to determine the size of the Coulomb interaction energy
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10.8 Spin Spectroscopy

10.8.1 D.C. magnetic susceptibility

If one measures the static D. C. magnetization of a medium, one is measuring the magnetic response
at zero wavevector q = 0 and zero frequency ω = 0. By the Kramer’s Krönig relation encountered
in (10.12), we know that

χDC =

∫
dω
π

χ′′(q = 0, ω)
ω

So the static magnetic susceptibility is an economy-class measurement of the magnetic fluctuation
power spectrum at zero wavevector. Indeed, this link between the two measurements sometimes
provides an important consistency check of neutron scattering experiments.

In static susceptibility measurements, there are two important limiting classes of behavior, Pauli
paramagnetism, in which the susceptibility is derived from the polarization of a Fermi surface, and
is weakly temperature dependent,

χ ∼
µ2
B
εF
∼ constant. (Pauli paramagnetism)

and Curie paramagnetism, produced by unpaired electrons localized inside atoms, commonly known
as “local moments”. where the magnetic susceptibilty is inversely proportional to the temperature,
or more generally

χ(T ) ∼ ni

M2
e f f︷!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!︷


g2µ2

B j( j + 1)
3


×

1
T + T ∗

(local moment paramagnetism)

where ni is the concentration of local moments and M2
e f f is the effective moment produced by a

moment of total angular momentum j, with gyromagnetic ratio, g. T ∗ is a measure of the interaction
between local moments. For Ferromagnets, T ∗ = −Tc < 0, and ferromagnetic magnetic order sets
in at T = Tc, where the uniform magnetic susceptibility diverges. For antiferromagnetis, T ∗ > 0
gives a measure of the strength of interaction between the local moments.

10.8.2 Neutron scattering

Neutrons interact weakly with matter, so that unlike electrons or photons, they provide an ideal
probe of the bulk properties of matter. Neutrons interact with atomic nucleii via an interaction of
the form

ĤI = α

∫
d3xψ†N(x)ψN(x)ρ(x),

where ρ(x) is the density of nucleii and ψN(x) is the field of the neutrons. This interaction produces
unpolarized scattering of the neutrons, with an inelastic scattering cross-section of the form (see
example below),

d2σ̃

dΩdE
=
k f
ki

(αmN

2π!2

)2 S (q, E)
2π
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where S (q, E) is the autocorrelation function of nuclear density fluctuations in the medium. Where
do these come from? They are of course produced by phonons in the crystal. The neutrons transfer
energy to the nucleii by exciting phonons, and we expect that

S (q, E) ∼ (1 + nB(E))δ(E − !ωq)

where ωqλ is the phonon dispersion spectrum inside the medium.
The second important interaction between neutrons and matter, is produced by the interaction

between the nuclear moment and the magnetic fields inside the material. The magnetic moment of
the neutron is given by

%M = γµN
%σ

2
where γ = −1.91 is the gyromagnetic ratio of the neutron and µN = e!

2mN
is the neutron Bohr

magneton. The interaction with the fields inside the material is then given by

ĤI =
γµN

2

∫
d3xψ†N(x)%σψN(x) · %B(x),

The magnetic field inside matter is produced by two sources- the dipole field generated by the
electron spins, and the orbital field produced by the motion of electrons. We will only discuss the
spin component here. The dipole magnetic field produced by spins is given by

B(x) =
∫

d3x′V(x − x′) · M̃(x′)

where %M(x) = µBψ
†(x)σ̃ψ(x) is the electron spin density and

V(x) = −∇̃ × ∇̃ ×
(
µ0

4π|x|

)

We can readily Fourier transform this expression, by making the replacements

%∇ → i%q,
1

(4π|x|)
→

1
q2 (10.42)

so that in Fourier space,

[
V(q)

]
ab
= µ0

[
%q × %q ×

(
1
q2

)]

ab
= µ0

[
q̂ × q̂×

]
ab

= µ0

Pab(q̂)︷!!!!!!!!︸︸!!!!!!!!︷[
δab − q̂aq̂b

]
. (10.43)

The only effect of the complicated dipole interaction, is to remove the component of the spin parallel
to the q-vector. The interaction between the neutron and electron spin density is simply written

HI = g
∫

q
σN(−q)P(q̂) · %S e(q), g = µ0γµNµB
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Apart from the projector term, this is essentially, a “point interaction” between the neutron and
electron spin density. Using this result, we can easily generalize our earlier expression for the
nuclear differential scattering to the case of unpolarized neutron scattering by replacing α→ g, and
identifying

S⊥(q, E) = Pab(q̂)S ab(q, E)

as the projection of the spin-spin correlation function perpendicular to the q-vector. For unpolarized
neutrons, the differential scattering cross-section is then

d2σ̃

dΩdE
=
k f
ki
r2
oS⊥(q, E)

where

r0 =

( gmN

2π!2

)
=
γ

2

1
4πε0c2︷︸︸︷(µ0
4π

) e2

m

=

(γ
2

) e2
cgs

mc2 (10.44)

is, apart from the prefactor, the classical radius of the electron.

Example 10.2: Calculate, in the imaginary time formalism, the self-energy of a neutron inter-
acting with matter and use this to compute the differential scattering cross-section. Assume the
interaction between the neutron and matter is given by

ĤI = α

∫
d3xψ†N(x)ψN(x)ρ(x)

where ψN(x) is the neutron field and ρ(x) is the density of nuclear matter.

Solution:
We begin by noting that the the real-space self-energy of the neutron is given by

Σ(x − x′) = α2〈δρ(x)δρ(x′)〉G(x − x′)

where 〈δρ(x)δρ(x′)〉 = χ(x− x′) is the real-time density response function of the nuclear matter.
(Note that the minus sign in −α2 associated with the vertices is absent because the propaga-
tor used here 〈δρ(x)δρ(0)〉 contains no minus sign pre-factor. ) If we Fourier transform this
expression, we obtain

Σ(k) =
α2

βV

∑

q
G(k − q)χ(q)

= α2
∫

q
T

∑

iνn

G(k − q)χ(q) (10.45)
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Carrying out the Matsubara summation, we obtain

Σ(k, z) = α2
∫

q

dE′

π

1 + n(E′) − fk−q

z − (Ek−q + E′)
χ′′(q, E′)

where Ek is the kinetic energy of the neutron and the Fermi function fk of the neutron can be
ultimately set to zero (there is no Fermi sea of neutrons), fk → 0, so that

Σ(k, z) = α2
∫

q

dE′

π

1
z − (Ek−q + E′)

S (q,E)︷!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!︷
(1 + n(E′))χ′′(q, E′)

From the imaginary part of the self-energy, we deduce that the lifetime τ of the neutron is given
by

1
τ
=

2
!
ImΣ(k, Ek − iδ) =

2α2

!

∫

k′
S (k − k′, Ek − Ek′)

where we have changed the momentum integration variable from q to k′ = k − q. Splitting the
momentum integration up into an integral over solid angle and an integral over energy, we have

∫

k′
=

∫ (mNkf
8π2!2

)
dE′dΩ′

from which we deduce that the mean-free path l of the neutron is given by

1
l
=

1
vNτ
=

1
vN

2ImΣ(k, Ek − iδ) =
∫

dΩk′dEk′ ×
[k f
ki

(αmN

2π!2

)2
S (q, E)

]

where q = k − k′ and E = Ek − Ek′ and vN = !ki/mN is the incoming neutron velocity.
Normally we write l = 1/(niσ) , where σ is the cross-section of each scatterer and ni is the
concentration of scattering centers. Suppose σ̃ = niσ is the scattering cross-section per unit
volume, then σ̃ = 1/l, so it follows that

σ̃ =
1
vN

2ImΣ(k, Ek − iδ) =
∫

dΩk′dEk′ ×
[k f
ki

(αmN

2π!2

)2
S (q, E)

]

from which we may identify the differential scattering cross-section as

d2σ̃

dΩdE
=
k f
ki

(αmN

2π!2

)2
S (q, E)

10.8.3 NMR

Knight Shift K

Nuclear Magnetic resonance, or “Magnetic resonance imaging” (MRI), as it is more commonly
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referred to in medical usage, is the use of nuclear magnetic absorption lines to probe the local spin
environment in a material. The basic idea, is that the Zeeman interaction of a nuclear spin in a
magnetic field gives rise to a resonant absorption line in the microwave domain. The interaction of
the nucleus with surrounding spins and orbital moments produces a “Knight shift” this line and it
also broadens the line, giving it a width that is associated with the nuclear spin relaxation rate 1/T1.

The basic Hamiltonian describing a nuclear spin is

H = −µn%I · %B + Hhf

where %I is the nuclear spin, µn is the nuclear magnetic moment. The term Hhf describes the “hyper-
fine” interaction between the nuclear spin and surrounding spin degrees of freedom. The hyperfine
interaction between a nucleus at site i and the nearby spins can be written

Hhf = −%Ii · %Bh f (i)
%Bh f (i) = Acontact · %S i + Aorbital · %Li +

∑

j
Atrans(i − j) · S j. (10.46)

where Bh f (i) is an effective field induced by the hyperfine couplings. The three terms in this Hamil-
tonian are derived from a local contact interaction, with s-electrons at the same site, an orbital in-
teraction, and lastly, a transfered hyperfine interaction with spins at neighboring sites. The various
tensors A are not generally isotropic, but for pedagogical purposes, let us ignore the anisotropy.

The Knight shift - the shift in the magnetic resonance line, is basically the expectation value of
the hyperfine field Bh f In a magnetic field, the electronic spins inside the material become polarized,
with 〈S j〉 ∼ χB, where χ is the magnetic susceptibility, so in the simplest situation, the Knight shift
is simply a measure of the local magnetic susceptibility of the medium. n turn, a measure of the
electron density of states 〈N(ε)〉, thermally averaged around the Fermi energy, so

K ∼ Bh f ∼ χB ∼ 〈N(ε)〉B.

One of the classic indications of the development of a gap in the electron excitation spectrum of
an electronic system, is the sudden reduction in the Knight shift. In more complex systems, where
there are different spin sites, the dependence of the Knight shift can depart from the global spin
susceptibility.

Another application of the Knight shift, is as a method to detect magnetic, or antiferromagnetic
order. If the electrons inside a metal develop magnetic order, then this produces a large, field-
independent Knight shift that can be directly related to the size of the ordered magnetic moment

K ∼ 〈S local〉

Unlike neutron scattering, NMR is able to distinguish between homogeneous and inhomogeneous
magnetic order.

Relaxation rate 1/T1

The second aspect to NMR, is the broadening of the nuclear resonance. If we ignore all but the
contact interaction, then the spin-flip decay rate of the local spin is determined by the Golden Rule,

1
T1
=

2π
!
I2A2

contactS +−(ω)
∣∣∣∣∣
ω=ωN
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where ωN is the nuclear resonance frequency and

S +−(ω) =
∫

q
[1 + nB(ω)]χ′′+−(q, ω)

∼ T
∫

d3q
(2π)3

1
ω
χ′′+−(q, ω) (10.47)

at frequencies ω ∼ ωN , so for a contact interaction, the net nuclear relaxation rate is then

1
T1
=

2π
!
I2A2

contact × T
∫

d3q
(2π)3

1
ω
χ′′+−(q, ω)

∣∣∣∣∣∣
ω=ωN

In a classical metal, χ′′(ω)/ω ∼ N(0)2 is determined by the square of the density of states. This
leads to an NMR relaxation rate

1
T1
∝ TN(0)2 ∼

kBT
ε2F

Korringa relaxation

This linear dependence of the nuclear relaxation rate on temperature is name a “Korringa relaxation”
law, after the Japanese theorist who first discovered it. Korringa relaxation occurs because the Pauli
principle allows only a fraction fraction TN(0) ∼ T/εF of the electrons to relax the nuclear moment.
In a more general Fermi system, the NMR relaxation rate is determined by the thermally averaged
square density of states.

1
T1
∼ T

∫ (
−
d f (ω)
dω

)
N(ω)2 ∼ T × [N(ω ∼ kBT )]2

In a wide class of anisotropic superconductors with lines of nodes along the Fermi surface, the
density of states is a linear function of energy. One of the classic signatures of these line nodes
across the Fermi surface is then a cubic dependence of 1/T1 on the temperature

line nodes in gap ⇒ N(ε) ∝ ε, ⇒
1
T1
∝ T 3

In cases where the transferred hyperfine couplings are important, the non-locality introduces a
momentum dependence into A(k) =

∑
%R A(%Rj)e−ik·%Rj these couplings. In this case,

1
T1
=

2π
!
I2 × T

∫
d3q

(2π)3A(q)2 1
ω
χ′′+−(q, ω)

∣∣∣∣∣∣
ω=ωN

These momentum dependences can lead to radically different temperature dependences in the
relaxation rate at different sites. One of the classic examples of this behavior occurs in the normal
state of the high temperature superconductors. The active physics of these materials takes place in
quasi-two dimensional layers of copper oxide, and the NMR relaxation rate can be measured at both
the oxygen (O17) and copper sites.

(
1
T1

)

Cu
∼ constant,

(
1
T1

)

O
∼ T,
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The appearance of two qualitatively different relaxation rates is surprising, because the physics of
the copper-oxide layers is thought to be described by a single-band model, with a single Fermi
surface that can be seen in ARPES measurements. Why then are there two relaxation rates?

One explanation for this behavior has been advanced by Mila and Rice, who argue that there
is indeed a single spin fluid, located at the copper sites. They noticed that whereas the copper
relaxation involves spins at the same site, so that

ACu(q) ∼ constant,

the spin relaxation rate on the oxygen sites involves a transfered hyperfine coupling between the
oxygen px or py orbitals and the neigboring copper spins. The odd-parity of a px or py orbital
means that the corresponding form factors have the form

Apx(q) ∼ sin(qxa/2).

Now high temperature superconductors are doped insulators. In the insulating state, cuprate
superconductors are “Mott insulators”, in which the spins on the Copper sites are antiferromagnet-
ically ordered. In the doped metallic state, the spin fluctuations on the copper sites still contain
strong antiferromagnetic correlations, and they are strongly peaked around %Q0 ∼ (π/a, π/a), where
a is the unit cell size. But this is precisely the point in momentum space where the transfered hy-
perfine couplings for the Oxygen sites vanish. The absence of the Korringa relaxation at the cupper
sites is then taken as a sign that the copper relaxation rate is driven by strong antiferromagnetic spin
fluctuations which do not couple to oxygen nucleii.

10.9 Electron Transport spectroscopy

10.9.1 Resistivity and the transport relaxation rate

One of the remarkable things about electron transport, is that one of the simplest possible measure-
ments - the measurement of electrical resistivity, requires quite a sophisticated understanding of
the interaction between matter and radiation for its microscopic understanding. We shall cover this
relationship in more detail in the next chapter, however, at basic level, DC electrical resistivity can
be interpreted in terms of the basic Drude formula

σ =
ne2

m
τtr

where 1/τtr is the transport relaxation rate. In Drude theory, the electron scattering rate τtr is related
to the electron mean-free path l via the relation

l = vFτ

where vF is the Fermi velocity. We need to sharpen this understanding, for 1/τtr is not the actual
electron scattering rate, it is the rate at which currents decay in the material. For example, if we
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consider impurity scattering of electrons with a scattering amplitude u(θ) which depends on the
scattering angle θ, the electron scattering rate is

1
τ
= 2πniN(0)|u(θ)|2

where

|u(θ)|2 =
∫ 1

−1

d cos θ
2
|u(θ)|2.

denotes the angular average of the scattering rate. However, as we shall see shortly, the transport
scattering rate which governs the decay of electrical current contains an extra weighting factor:

1
τtr

= 2πniN(0)|u(θ)|2(1 − cos θ)

|u(θ)|2(1 − cos θ) =
∫ 1

−1

d cos θ
2
|u(θ)|2(1 − cos θ). (10.48)

The angular weighting factor (1 − cos θ) derives from the fact that the change in the current carried
by an electron upon scattering through an angle θe is evF(1−cos θ). In other words, only large angle
scattering causes current decay. For impurity scattering, this distinction is not very important but in
systems where the scattering is concentrated near q = 0, such as scattering off ferromagnetic spin
fluctuations, the (1 − cos θ) term substantially reduces the effectiveness of scattering as a source of
resistance.

At zero temperature, the electron scattering is purely elastic, and the zero temperature resistance
R0 is then a measure of the elastic scattering rate off impurities. At finite temperatures, electrons
also experience inelastic scattering, which can be strongly temperature dependent. One of the most
important diagnostic quantities to characterize the quality of a metal is the resistance ratio - the ratio
of resistance at room temperature to the resistance at absolute zero

RR = Resistance Ratio =
R(300K)
R(0)

The higher this ratio, the lower the amount of impurities and the higher the quality of sample. Hard-
ware quality copper piping already has a resistance ratio of order a thousand! A high resistance
ratio is vital for the observation of properties which depend on the coherent balistic motion of Bloch
waves, such as de-Haas van Alphen oscillations or the development of anisotropic superconductiv-
ity, which is ultra-sensitive to impurity scattering.

With the small caveat of distinction between transport and scattering relaxation rates, the tem-
perature dependent resistivity is an excellent diagnostic tool for understanding the inelastic scatter-
ing rates of electrons:

ρ(T ) =
m
ne2 ×

(
1
τtr(T )

)

There are three classic dependences that you should be familiar with:
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• Electron phonon scattering above the Debye temperature
1
τtr
= 2πλkBT

Linear resistivity is produced by electron-phonon scattering at temperatures above the Debye
temperature, where the coefficient λ is the electron-phonon coupling constant defined in the
previous chapter. In practice, this type of scattering always tends to saturate once the electron
mean-free path starts to become comparable with the electron wavelength. It is this type of
scattering that is responsible for the weak linear temperature dependence of resistivity in many
metals. A note of caution - for linear resistivity does not necessarily imply electron phonon
scattering! The most well-known example of linear resitivity occurs in the normal state of the
cuprate superconductors, but here the resistance does not saturate at high temperatures, and
the scattering mechanism is almost certainly a consequence of electron-electron scattering.

• Electron-electron or Baber scattering

1
τtr
=
π

!
|UN(0)|2N(0)(πkBT )2

where
|UN(0)|2 = N(0)2

∫ dΩk̂′
4π
|U(k − k′)|2(1 − cos(θk,k′))

is the weighted average of the electron-electron interaction U(q). This quadratic temperature
dependence of the inelastic scattering rate can be derived from the Golden rule scattering rate

1
τtr
=

4π
!

∑

k′,k′′
|U(k − k′)|2(1 − cos θk,k′)(1 − fk′)(1 − fk′′) fk′+k′′−kδ(εk′ + εk′′ − εk′′′)

where the 4π = 2 × 2π prefactor is derived from the sum over internal spin indices If we ne-
glect the momentum dependence of the scattering amplitude, then this quantity is determined
entirely by the three-particle phase space

1
τtr

∝
∫

dε′dε′′(1 − f (ε′))(1 − f (ε′′)) f (−ε′ − ε′′)

= T 2
∫

dxdy
(

1
1 − e−x

) (
1

1 − e−y

) (
1

1 − e−(x+y)

)
=
π2

4
T 2 (10.49)

In practice, this type of resistivity is only easily observed in strongly interacting electron
materials, where it is generally seen to develop at low temperatures when a Landau Fermi
liquid develops. The T 2 resistivity is a classic hallmark of Fermi liquid behavior.

• Kondo spin-flip scattering
In metals containing a dilute concentration of magnetic impurities, the spin-flip scattering
generated by the impurities gives rise to a temperature dependent scattering rate of the form

1
τtr
∼ ni

1
ln2

(
T
TK

)
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where TK is the “Kondo temperature”, which characterizes the characteristic spin fluctuation
rate of magnetic impurity. This scattering is unusual, because it becomes stronger at lower
temperatures, giving rise to a “ resistance minimum” in the resistivity.

In heavy electron materials, the Kondo spin-flip scattering is seen at high temperatures, but once a
coherent Fermi liquid is formed, the resistivity drops down again at low temperatures, ultimately
following a T 2 behavior.

10.9.2 Optical conductivity

Probing the electrical properties of matter at finite frequencies requires the use of optical spec-
troscopy. In principle, optical spectroscopy provides a direct probe of the frequency dependent
conductivity inside a conductor. The frequency dependent conductivity is defined by the relation

%j(ω) = σ(ω)%E(ω)

Modern optical conductivity measurements can be made from frequencies in the infra -red of order
ω ∼ 10cm−1 ∼ 1meV up to frequencies in the optical, of order 50, 000cm−1 ∼ 5eV . The most direct
way of obtaining the optical conductivity is from the reflectivity, which is given by

r(ω) =
1 − n(ω)
1 + n(ω)

=
1 −
√
ε(ω)

1 +
√
ε(ω)
,

where n(ω) =
√
ε(ω) is the diffractive index and ε(ω) is the frequency dependent dielectric constant.

Now ε(ω) = 1 + χ(ω) where χ(ω) is the frequency dependent dielectric susceptibility. Now since
the polarization P(ω) = χ(ω)E(ω), and since the current is given by j = ∂tP, it follows that j(ω) =
−iωP(ω) = −iωχ(ω)E(ω), so that χ(ω) = σ(ω)/(−iω) and hence

ε(ω) = 1 +
σ(ω)
−iω
.

Thus in principle, knowledge of the complex reflectivity determines the opical conductivity.
In the simplest measurements, it is only possible to measure the intensity of reflected radiation,

giving |r(ω)|2. More sophisticated “ elipsometry” techniques which measure the reflectivity as a
function of angle and polarization, are able to provide both the amplitude and phase of the reflectiv-
ity, but here we shall discuss the simplest case where only the amplitude |r(ω)| is available. In this
situation, experimentalists use the “Kramers’ Kronig” relationship which determines the imaginary
part σ2(ω) of the optical conductivity in terms of the real part, σ1(ω), (Appendix A)

σ2(ω) = ω
∫ ∞

0

dω′

π

σ1(ω′)
ω2 − ω′2

This is a very general relationship that relies on the retarded nature of the optical response. In
principle, this uniquely determines the dielectric function and reflectivity. However, since the range
of measurement is limited below about 5eV , an assumption has to be made about the high frequency
behavior of the optical conductivity where normally, a Lorentzian form is assumed.
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With these provisos, it becomes possible to invert the frequency dependent reflectivity in terms
of the frequency dependent conductivity. We shall return in the next chapter for a consideration of
the detailed relationship between the optical conductivity and the microscopic correlation functions.
We will see shortly that the interaction of an electromagnetic field with matter involves the trans-
verse vector potential, which couples to the currents in the material without changing the charge
density. The optical conductivity can be related to the following response function

σ(ω) =
1
−iω

[
ne2

m
− 〈 j(ω) j(−ω)〉

]

This expression contains two parts - a leading diamagnetic part, which describes the high frequency,
short-time response of the medium to the vector potential, and a second, “paramagnetic” part, which
describes the slow recovery of the current towards zero. We have used the shorthand

〈 j(ω) j(−ω)〉 = i
∫ ∞

0
dtd3x〈[ j(x, t), j(0)]〉eiωt

to denote the retarded response function for the “paramagnetic” part of the electron current density
j(x) = −i !mψ

†%∇ψ(x).

10.9.3 The f-sum rule.

One of the most valuable relations for the analysis of optical conductivity data, is the so-called
“f-sum rule”, according to which the total integrated weight under the conductivity spectrum is
constrained to equal the plasma frequency of the medium,

∫ ∞

0

dω
π
σ(ω) =

ne2

m
= ω2

Pε0 (10.50)

where n is the density of electronic charge and ωP is the Plasma frequency. To understand this
relation, suppose we apply a sudden pulse of electric field to a conductor

E(t) = E0δ(t), (10.51)

then immediately after the pulse, the net drift velocity of the electrons is changed to v = eE0/m, so
the instantaneous charge current after the field pulse is

j(0+) = nev =
ne2

m
E0, (10.52)

where n is the density of carriers. After the current pulse, the electric current will decay. For
example, in the Drude theory, there is a single current relaxation time rate τtr, so that

j(t) =
ne2

m
e−t/τtr E0 (10.53)

and thus
σ(t − t′) =

ne2

m
e−(t−t′)/τtrθ(t − t′) (10.54)
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and by Fourier transforming we deduce that

σ(ω) =
∫ ∞

0
dteiωtσ(t) =

ne2

m
1

τ−1
tr − iω

(10.55)

Actually, the f-sum rule does not depend on the detailed form of the curent relaxation. Using the
instantaneous response in (10.52) we obtain

J(t = 0+) = Eoσ(t = 0+) = Eo
∫ ∞

−∞

dω
2π

e−i0
+

σ(ω) =
ne2

m
E0 (10.56)

is a consequence of Newton’s law. It follows that (independently of how the current subsequently
decays),

∫ ∞

0

dω
π
σ(ω) =

ne2

m
= ε0ω

2
p (10.57)

where we have identified ε0ω2
p =

ne2

m with the plasma frequency ωp of the gas. This relationship is
called the f-sum rule, and it is important because it holds, independently of the details of how the
current decays.

The important point about the f-sum rule, is that in principle, the total weight under the optical
spectrum, is a constant, providing one integrates up to a high-enough energy. When the temperature
changes however, it is possible for the spectral weight to redistribute. In a simple metal, the optical
conductivity forms a simple “Drude peak” - Lorentzian of width 1/τtr around zero frequency. In a
semi-conductor, the weight inside this peak decays as e−∆/T , where ∆ is the semi-conducting gap.
In a simple insulator, the balance of spectral weight must then reappear at energies above the direct
gap energy ∆g. By contrast, in a superconductor, the formation of a superconducting condensate
causes the spectral weight in the optical conductivity to collapse into a delta-function peak.

ω

σ(ω)

0ω

σ(ω)

ω0

σ(ω)

2
m
ne

π

INSULATOR

τtr
2

m
neArea

π =
τtr

2
m
ne

2
m
ne

π

SUPERCONDUCTOR METAL

(a) (b) (c)

Figure 10.3: The f-sum rule. Illustrating (a ) the spectral weight transfer down to the condensate in
a superconductor (b) the Drude weight in a simple metal and (c) The spectral weight transfer up to
the conduction band in an insulator. )
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Appendix A: Kramer’s Krönig relation

The Kramer’s Krönig relation applies to any retarded linear response function, but we shall
derive it here in special reference to the conductivity. In time, the current and electric field are
related by the retarded response function

j(t) =
∫ t

−∞
dt′σ(t − t′)E(t′) (10.58)

which becomes j(ω) = σ(ω)E(ω) in Fourier space, where σ(ω) is the Fourier transform of the
real-time response function σ(t − t′)

σ(ω) =
∫ ∞

0
dteiωtσ(t).

This function can be analytically extended into the upper-half complex plain ,

σ(z) = σ(x + iy) =
∫ ∞

0
dteiztσ(t) = .

∫ ∞

0
dteixt−ytσ(t).

So long as z lies above the real axis, the real part −yt of the exponent is negative, guaranteeing that
the integral σ(z) is both convergent and analytic. Provided Imz0 > 0, then the conductivity can be
written down using Cauchy’s theorem

σ(z0) =
∫

C′

dz
2πi
σ(z)
z − zo

where C′ runs anti-clockwise around the point z0. By distorting the contour onto the real axis, and
neglecting the contour at infinity, it follows that

σ(z0) =
∫ ∞

−∞

dω′

2πi
σ(ω′)
ω′ − z0

Taking z0 = ω + iδ, and writing σ(ω + iδ) = σ1(ω) + iσ2(ω) on the real axis, we arrive at the
“Kramer’s Krönig” relations

σ2(ω) = −
∫ ∞

−∞

dω′

2π
σ1(ω′)
ω′ − ω

= ω

∫ ∞

0

dω′

π

σ1(ω′)
ω2 − ω′2

σ1(ω) =
∫ ∞

−∞

dω′

2π
σ2(ω′)
ω′ − ω

=

∫ ∞

0

dω′

π

ω′σ2(ω′)
ω2 − ω′2

(10.59)

10.10 Exercises
1. Spectral decomposition. The dynamic spin susceptibility of a magnetic system, is defined as

χ(q, t1 − t2) = i〈[S −(q, t1), S +(−q, t2)] > θ(t1 − t2) (10.60)
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where S ±(q) = S x(q) ± iS y(q) are the spin raising and lowering operators at wavevector q, i.e

S ±(q) =
∫

d3e−iq·xS ±(x) (10.61)

so that S −(q) = [S +(−q)]†. The dynamic spin susceptibility determines the response of the magneti-
zation at wavevector q in response to an applied magnetic field at this wavevector

M(q, t) = (gµB)2
∫

dt′χ(q, t − t′)B(t′). (10.62)

(i)Make a spectral decomposition, and show that

χ(q, t) = iθ(t)
∫

dω
π
χ′′(q, ω)eiωt (10.63)

where χ′′(q, ω) ( often called the “power-spectrum” of spin fluctuations) is given by

χ′′(q, ω) = (1 − e−βω)
∑

λ,ζ

e−β(Eλ−F)|〈ζ |S +(−q)|λ〉|2πδ[ω − (Eζ − Eλ)] (10.64)

and F is the Free energy.
(ii)Fourier transform the above result to obtain a simple integral transform which relates χ(q, ω) and
χ′′(q, ω). The correct result is a “Kramers Kronig” transformation.
(iii)In neutron scattering experiments, the inelastic scattering cross-section is directly proportional to
a spectral function called S (q, ω),

d2σ

dΩdω
∝ S (q, ω) (10.65)

where S (q, ω) is the Fourier transform of a correlation function:

S (q, ω) =
∫ ∞

−∞
dteiωt〈S −(q, t)S +(−q, 0)〉 (10.66)

By carrying out a spectral decomposition, show that

S (q, ω) = (1 + n(ω))χ′′ (q, ω) (10.67)

This relationship, plus the one you derived in part (i) can be used to completely measure the dynamical
spin susceptibility via inelastic neutron scattering.
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Chapter 11

Electron transport Theory

11.1 Introduction
Resistivity is one of the most basic properties of conductors. Surprisingly, Ohm’s law

V = IR

requires quite a sophisticated understanding of the quantum many body physics for its understand-
ing. In the classical electron gas, the electron current density

%j(x) = −ne%v(x)

is a simple c-number related to the average drift velocity %v(x) of the negatively charged electron
fluid. This is the basis of the Drude model of electricity, which Paul Drude introduced shortly after
the discovery of the electron. Fortunately, many of the key concepts evolved in the Drude model
extend to the a quantum description of electrons, where %j(x) is an operator. To derive the current
operator, we may appeal to the continuity equation, or alternatively, we can take the derivative of
the Hamiltonian with respect to the vector potential,

%j(x) = −
δH
δ%A(x)

where

H =
∫

d3x



1
2m
ψ†(x)

(
− i!%∇ − e%A(x)

)2
ψ(x) − eφ(x)ψ†(x)ψ(x)


 + VINT

where the Hamiltonian is written out for electrons of charge q = e = −|e|. Now only the Kinetic
term depends on %A, so that

%j(x) = −
ie!
2m
ψ†(x)

↔
∇ ψ(x) −

(
e2

m

)
%A(x)ρ(x), (11.1)

where
↔
∇= 1

2

(→
∇ −

←
∇
)

is the symmetrized derivative.
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The discussion we shall follow dates back to pioneering work by Fritz London[1]. London
noticed in connection with his research on superconductivity, that the current operator splits up into
components, which he identified with the paramagnetic and diamagnetic response of the electron
fluid:

%j(x) = %jP(x) + %jD(x) (11.2)

where
%jP(x) = −

ie!
m
ψ†(x)

↔
∇ ψ(x) (11.3)

and
%jD(x) = −

(
e2

m

)
%A(x)ρ(x). (11.4)

Although the complete expression for the current density is invariant under gauge transformations
ψ(x) → eiφ(x)ψ(x), %A(x) → %A − !e %∇φ(x) the separate parts are not. However, in a specific gauge,
such as the London or Coulomb gauge, where %∇ · A = 0, they do have physical meaning. We shall
identify this last term as the term responsible for the diamagnetic response of a conductor, and the
first term, the “paramagnetic current”, is responsible for the decay of the current a metal.

In a non-interacting system, the current operator commutes with the Kinetic energy operator H0
and is formally a constant of the motion. In a periodic crystal, electron momentum is replaced by
the lattice momentum k, which is, in the absence of lattice vibrations, a constant of the motion, with
the result that the electron current still does not decay. What is the origin of electrical resistance?

There are then two basic sources of current decay inside a conductor:

• Disorder - which destroys the translational invariance of the crystal,

• Interactions - between the electrons and phonons, and between the electrons themselves,
which cause the electron momenta and currents to decay.

The key response function which determines electron current is the conductivity, relating the Fourier
component of current density at frequency ω, to the corresponding frequency dependent electric
field,

%j(ω) = σ(ω)%E(ω)

We should like to understand how to calculate this response function in terms of microscopic corre-
lation functions.

The classical picture of electron conductivity was developed by Paul Drude, shortly after the
discovery of the electron. Although his model was introduced before the advent of quantum me-
chanics, many of the basic concepts he introduced carry over to the quantum theory of conductivity.
Drude introduced the the concept of the electron mean-free path l - the mean distance between
scattering events. The characteristic timescale between scattering events is called the transport scat-
tering time τtr. ( We use the “tr” subscript to delineate this quantity from the quasiparticle scattering
time τ, because not all scattering events decay the electric current.) In a Fermi gas, the characteristic
velocity of electrons is the Fermi velocity and the mean-free path and transport scattering time are
related by the simple relation

l = vFτtr
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ω

σ(ω)

l

τtr
2

m
neArea

π =
τtr

2
m
ne

Figure 11.1: (a) Illustrating the diffusion of electrons on length-scales large compared with the
mean-free path l, (b) The Drude frequency dependent conductivity. The short-time behavior of
the current is determined by Newton’s law, which constrains the area under the curve to equal∫
dωσ(ω) = πne2

m , a relation known as the f-sum rule.

The ratio of the mean-free path to the electron wavelength is the same order of magnitude as the
ratio of the scattering time to the characteristic timescale associated with the Fermi energy !/εF is
determined by the product of the Fermi wavevector and the mean-free path

l
λF
=
kFl
2π
∼
τtr
!/εF

=
ετtr
!

In very pure metals , the mean-free path of Bloch wave electrons l can be tens, even hundreds of
microns, l ∼ 10−6m, so that this ratio can become as large as 104 or even 106. From this perspective,
the rate at which current decays in a good metal is very slow on atomic time-scales.

There are two important aspects to the Drude model:

• the diffusive nature of density fluctuations,
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• the Lorentzian line-shape of the optical conductivity

σ(ω) =
ne2

m
1

τ−1
tr − iω

Drude recognized that on length scales much larger than the mean-free path multiple scattering
events induce diffusion into the electron motion. On large length scales, the current and density will
be related by he diffusion equation,

%j(x) = −D%∇ρ(x),

where D = 1
3
l2
τtr
= 1

3v
2
Fτtr, which together with the continuity equation

%∇ · %j = −
∂ρ

∂t
gives rise to the diffusion equation [

−
∂

∂t
+ D∇2

]
ρ = 0.

The response function χ(q, ν) of the density to small changes in potential must be the Green’s
function for this equation, so that in Fourier space

[iν − Dq2]χ(q, ν) = 1

from which we expect the response function and density-density correlation functions to contain a
diffusive pole

〈δρ(q, ν)δρ(−q,−ν)〉 ∼
1

iν − Dq2

The second aspect of the Drude theory concerns the slow decay of current on the typical time-
scale τtr, so that in response to an electric field pulse E = E0δ(t), the current decays as

j(t) = e−
t
τtr

In the last chapter, we discussed how, from a quantum perspective, this current is made up of two
components, a diamagnetic component

jDIA = −
ne2

m
A =

ne2

m
E0, (t > 0)

and a paramagnetic part associated with the relax9ation of the electron wavefunction, which grows
to cancel this component,

jPARA =
ne2

m
E0(e−t/τtr − 1), (t > 0)

We should now like to see how each of these heuristic features emerges from a microscopic
treatment of the conductivity and charge response functions. To do this, we need to relate the
conductivity to a response fucntion - and this brings us to the Kubo formula.
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11.2 The Kubo Formula

Lets now look again at the form of the current density operator. According to (11.1), it can divided
into two parts

%j(x) = %jP + %jD (11.5)

where

%jP = −
i!
2m
ψ†(x)

↔
∇ ψ(x) paramagnetic current

%jD = −
e2

m

∫
d3x ρ(x)%A(x) diamagnetic current (11.6)

are the “paramagnetic” and “ diamagnetic” parts of the current. The total current operator is in-
variant under gauge transformations ψ(x) → eiφ(x)ψ(x), %A(x) → %A + !e %∇φ(x) and speaking, the two
terms in this expression for the current can’t be separated in a gauge invariant fashion. However, in
a specific gauge. We shall work in the London gauge

%∇ · %A = 0 “London Gauge” .

In this gauge, the vector potential is completely transverse, %q · %A(%q) = 0. The equations of the
electromagnetic field in the London Gauge are

(
1
c2 ∂

2
t − ∇

2
)
%A(x) = µ0%j(x)

−∇2φ(x) =
ρ(x)
ε0

(11.7)

so that the potential field ρ(x) is entirely determined by the distribution of charges inside the mate-
rial, and the only independent external dynamic field coupling to the material is the vector potential.
We shall then regard the vector potential as the only external field coupling to the material.

We shall now follow Fritz London’s argument for the interpretation of these two terms. Let us
carry out a thought experiment, in which we imagine a toroidal piece of metal, as in Fig. 11.2 in
which a magnetic flux is turned on at t = 0, passing up through the conducting ring, creating a
vector potential around the ring given by A = A0θ(t) = φ0

2πrθ(t), where r is the radius of the ring. The
Electric field is related to the external vector potential via the relation

%E = −
∂%A
∂t
= −A0δ(t)

so %E = −%Aoδ(t) is a sudden inductively induced electrical pulse.
Suppose the system is described in the Schrödinger representation by the wavefunction |ψ(t)〉,

then the current flowing after time t is given by

〈%j(t)〉 = 〈ψ(t)|%jP|ψ(t)〉 −
ne2

m
Aoθ(t) (11.8)
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Figure 11.2: Schematic diagram to illustrate diamagnetic current pulse produced by a sudden change
of flux through the conducting loop.

where we have assumed that 〈ρ(x)〉 = n is the equilibrium density of electrons in the material. We
see that the second “diamagnetic” term switches on immediately after the pulse. This is nothing
more than the diamagnetic response - the effect of the field induced by Faraday’s effect. What is so
interesting, is that this component of the current remains indefinitely, after the initial step in the flux
through the toroid. But the current must decay! How?

The answer is that the initial “paramagnetic” contribution to the current starts to develop after
the flux is turned on. Once the vector potential is present, the wavefunction |ψ(t)〉 starts to evolve,
producing a paramagnetic current that rises and in a regular conductor, ultimately exactly cancels
the time-independent diamagnetic current. From this point of view, the only difference between an
insulator and a metal, is the timescale required for the paramagnetic current to cancel the diamag-
netic component. In an insulator, this time-scale is of order the inverse (direct) gap ∆g, τ ∼ !/∆g,
whereas in a metal, it is the transport relaxation time τ ∼ τtr.

These arguments were first advanced by Fritz London. He noticed that if, for some unknown
reason the wavefunction of the material could become “rigid”, so that it would not respond to the
applied vector potential. In this special case, the paramagnetic current would never build up, and
one would then have a perfect diamagnet - a superconductor. Lets now look at this in more detail.
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We need to compute
%j(%x, t) = 〈%jP(x, t)〉 −

ne2

m
%A(x, t)

Now if we are to compute the response of the current to the applied field, we need to compute
the build up of the paramagnetic part of the current. Here we can use linear response theory. The
coupling of the vector potential to the paramagnetic current is simply −

∫
d3x%j(x) · %A(x), so the

response of this current is given by

〈 jαP(t)〉 =
∫

t′<t
d3x′dt′i〈[ jαP(x), jβP(x′)]〉Aβ(x′) (11.9)

In other words, we may write

%j(1) = −
∫

d2Q(1 − 2)%A(2)

Qαβ(1 − 2) =
ne2

m
δαβδ(1 − 2) − i〈[ jαP(1), jβP(2)]〉θ(t1 − t2). (11.10)

The quantity Q(1 − 2) is the “London response” Kernel. In the most general case, this response
is non-local in both space and time. In a metal, this response is non-local over a distance given by
the electron mean-free path l = vFτtr. In a superconductor the response to the vector potential is
non-local over the “Pippard coherence length”, ξ = vF/∆, where ∆ is the superconducting gap. We
can write the above result in Fourier space as

%j(q) = −Q(q)%A(q)

where
Qαβ(q) =

ne2

m
δαβ − i〈[ jα(q), jβ(−q)〉

and we have used the cavalier notation,

〈[ jα(q), jβ(−q)〉 =
∫

d3x
∫ ∞

0
dt〈[ jα(x, t), jβ(0)〉e−i(%q·%x−νt).

Finally, if we write %E = −∂A∂t , or A(q) = 1
iνE(q), we deduce that

%j(q) = σ(q)%E(q) Kubo formula

σαβ(q) = −
1
iν
Qαβ(q) =

1
−iν

{
ne2

m
δαβ − i〈[ jα(q), jβ(−q)〉

}
(11.11)
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Now in practice, the high velocity of light means that q = ν/c << kF is much shorter than an
electronic wavevector, so that in electronic condensed matter physics, we may consider the limit
%q = 0, writing σ(ν) = σ(%q = 0, ν). This is the quantity that is measured in optical conductivity mea-
surements. The D.C. conductivity is given by the zero-frequency limit of the uniform conductivity,
i.e. σDC = Ltν→0σ(ν).

In a regular conductor, σDC is finite, which implies that Q(ν = 0) = 0, so that in a conductor

i〈[ jα(q), jβ(−q)〉|q=0 =
ne2

m
δαβ

We shall see that this identity breaks down in a system with broken gauge invariance - and this is
the origin of superconductivity. In a normal fluid however, we can use this identity to rewrite the
expression for the conductivity as

σαβ(ν) =
1
−iν

[
− i〈[ jα(ν′), jβ(−ν′)〉

]ν′=ν

ν′=0
(11.12)

A practical calculation of conductivity depends on our ability to extract this quantity from the
imaginary time response function. We can quickly generalize expression (11.10) to imaginary time,
by replacing i〈[A(1), B(2)]〉 → 〈TA(1)B(2)〉, so that in imaginary time,

%j(1) = −
∫

d2Q(1 − 2)%A(2), (1 ≡ (%x1, τ1))

Qαβ(1 − 2) =
ne2

m
δαβδ(1 − 2) − 〈T jαP(1) jβP(2)〉 (11.13)

so that in Fourier space, our expression for the optical conductivity is given by

σαβ(iνn) = −
1
νn

[
〈T jα(ν′) jβ(−ν′)〉

]ν′=iνn

ν′=0
(11.14)

where we have used the short-hand notation

〈T jα(iνn) jβ(−iνn)〉 =
∫ β

0
dτeiνnτ〈T jα(τ) jβ(0)〉

11.3 Drude conductivity: diagramatic derivation
In the last section we showed how the fluctuations of the electrical current can be related to the op-
tical conductivity. Let us now see how these fluctuations can be computed using Feynman diagrams
in a disordered electron gas with dispersion εk = k2

2m . First, let us review the Feynman rules. We
shall assume that we have taken the leading order effects of disorder into account in the electron
propagator, denoted by

= G(k) =
1

iωn − εk + isgnωn 1
2τ
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The current operator is jα(q) =
∑
ekαm ψ

†
k−q/2σψk+q/2σ, which we denote by the vertex

α ≡ e
kα

m

The set of diagrams that represent the current fluctuations can then be written

〈 jα(q) jβ(−q)〉 = α β

k+q

k

+ +α β α β + . . .

+ +βα βα + . . . (11.15)

In the above expansion, we have identified three classes of diagrams. The first diagram, denotes the
simplest contribution to the current fluctuation: we shall see shortly that this is already sufficient
to capture the Drude conductivity. The second set of diagrams represent the leading impurity cor-
rections to the current vertex: these terms take account of the fact that low-angle scattering does
not affect the electric current, and it is these terms that are responsible for the replacement of the
electron scattering rate τ by the transport relaxation rate τtr. We shall see that these terms vanish for
isotropicaly scattering impurities, and justifying our neglect of these contributions in our warm-up
calculation of the conductivity.

The last set of diagrams involve crossed impurity scattering lines - we have already encountered
these types of diagrams in passing, and the momentum restrictions associated with crossed diagrams
lead to a reduction factor of orderO( 1

kFl ) ∼
λ
l , or the ratio of the electron wavelength to the mean-free

path. These are the “quantum corrections” to the conductivity. These maximally crossed diagrams
were first investigated by Langer and Neal in 1966, during the early years of research into electron
transport , but it was not until the late 1970’s that they became associated with the physics of electron
localization - more on this later.

Using the Feynman rules, the first contribution to the current fluctuations is given by

i rω  

βα

ω   +    νii r n

= 〈 jα(iνn) jβ(−iνn)〉

= −2e2T
∑

k,iωr

kαkβ

m2 G(k, iωr + iνn)G(k, iωr) (11.16)
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where the minus sign derives from the fermion loop and the factor of two derives from the sum over
spin components. The difference between the fluctuations at finite and zero frequencies is then

[
〈 jα(ν) jβ(−ν)〉

]iνn
0
= −2e2T

∑

k,iωr

kαkβ

m2

[
G(k, iωr + iνn)G(k, iωr) − {iνn → 0}

]
(11.17)

Now the amplitude at current fluctuations at any one frequency involves electron states far from
the Fermi surface. However, the difference between the current fluctuations at two low frequencies
cancels out most of these contributions, and the only important remaining contributions involve
electrons with near the Fermi surface. This observation means that we can replace the momentum
summation in (11.17) by an energy integral in which the density of states is approximated by a
constant, and the limits are extended to infinity, as follows

∑

k

kαkβ

m2

[
. . .

]
→

∫
4πk2dk
(2π)3

∫ dΩk̂
4π

kαkβ

m2

[
. . .

]

→ δαβ
v2
FN(0)

3

∫ ∞

−∞
dε

[
. . .

]
(11.18)

The London Kernel then becomes

Qαβ(iνn) = 2δαβ
e2v2

FN(0)
3

T
∑

ωr

×

2
∫ ∞

−∞
dε




Poles on opposite side if ω+r > ωr︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷(
1

iω+r − ε + isgnω+r /2τ

) (
1

iωr − ε + isgnωr/2τ

)
−

Poles on same side︷!!!!!!!!!︸︸!!!!!!!!!︷(
iνn → 0

)



We can now carry out the energy integral by contour methods. We shall assume that νn > 0. Now,
provided that iω+r > 0 and iωr < 0, the first term inside this summation has poles on opposite sides
of the real axis, at ε = iωr + i/2τ and ε = iωr −1/2τ, whereas the second term has poles on the same
side of the real axis. Thus, when we complete the energy integral we only pick up contributions
from the first term. (It doesn’t matter which side of the real axis we complete the contour, but if
we choose the contour to lie on the side where there are no poles in the second term, we are able to
immediately see that this term gives no contribution. ) The result of the integrals is then

Qαβ(iνn) = δαβ

ne2
m︷!!!!!!!︸︸!!!!!!!︷

2e2v2
FN(0)
3

T
∑

0>ωr>−νn,

2πi
iνn + iτ−1

= δαβ
ne2

m
νn

τ−1 + νn
(11.19)

Converting the London Kernel into the optical conductivity,

σαβ(iνn) =
1
νn
Qαβ(iνn) = δαβ

ne2

m
1

τ−1 − i(iνn)
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Finally, analytically continuing onto the real axis, we obtain

σαβ(ν + iδ) =
ne2

m
1

τ−1 − iν
Transverse conductivity

There are a number of important points to make about this result

• Our result ignores the effects of anisotropic scattering. To obtain these we need to include the
“ladder” vertex corrections, which we will shortly see, replace

1
τ
→

1
τtr
= 2πniN(0)(1 − cos θ)|u(θ)|2, (11.20)

where the (1 − cos θ) term takes into account that small angle scattering does not relax the
electrical current.

• Our result ignores localization effects that become important when 1
kFl ∼ 1. In one or two

dimensions, the effects of these scattering events accumulates at long distances, ultimately
localizing electrons, no matter how weak the impurity scattering.

• Transverse current fluctuations are not diffusive - this is not surprising, since transverse cur-
rent fluctuations do not involve any fluctuation in the charge density.

To improve our calculation, let us now examine the vertex corrections that we have so far ne-
glected. Let us now re-introduce the “ladder” vertex corrections shown in (11.15). We shall write
the current-current correlator as

〈 jα(q) jβ(−q)〉 = α β

k+q

k

(11.21)

where the vertex correction is approximated by a sum of ladder diagrams, as follows

β = β + +β β+ · · · = ΛevβF

(11.22)

We shall re-write the vertex part as a self-consistent Dyson equation, as follows:
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eΛvβF = β + β

p’

p’+q

(11.23)

where q = (0, iνn) and p′ = (%p ′, iωr). The equation for the vertex part is then

evβFΛ(ωr, νn) = evβF + ni
∑

%p ′
|u(%p − %p ′)|2G(%p ′, iω+r )G(%p ′, iωr)Λ(ωr, νn)ev′βF . (11.24)

Assuming that the vertex part only depends on frequencies, and has no momentum dependence, we
may then write

Λ = 1 + Λni
∫

d cos θ
2
|u(θ)|2 cos θ

∫
d3p′

(2π)3G(%p ′, iω+r )G(%p ′, iωr)

We can now carry out the integral over %p ′ as an energy integral, writing

N(0)
∫

dεG(ε, iω+r )G(ε, iωr) = N(0)
∫

dε
1

iω̃+n − ε
1

iω̃n − ε

where we use the short-hand
ω̃n = ωn + signωn(

1
2τ

). (11.25)

Carrying out this integral, we obtain

N(0)
∫

dεG(ε, iω+r )G(ε, iωr) =
{
πN(0) 1

νn+τ−1 −νn < ωr < 0
0 otherwise

so that
Λ = 1 +

(
τ̃−1

νn + τ−1

)
Λθνn,ωr

where τ̃−1 = 2πniN(0)cos θ|u(θ)|2 and θνn,ωr = 1 if −νn < ωr < 0 and zero otherwise, so that

Λ =




νn+τ
−1

νn+τ−1
tr
−νn < ωr < 0

1 otherwise
(11.26)

where
τ−1
tr = τ

−1 − τ̃−1 = 2πniN(0)(1 − cos θ)|u(θ)|2.

when we now repeat the calculation, we obtain

Qαβ(iωn) =
ne2

m
δαβT

∑

iωr

∫ ∞

−∞
dε

[
G(ε, iω+r )G(ε, iωr) − (iνn → 0)

]
Λ(iωr, iνn)

=
ne2

m
δαβT

∑

iωr

2πi
iνn + iτ−1

νn + τ
−1

νn + τ−1
tr
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=
ne2

m

(
νn

νn + τ−1
tr

)
δαβ (11.27)

So making the analytic continuation to real frequencies, we obtain

σ(ν + iδ) =
ne2

m
1

τ−1
tr − iν

Note that

• We see that transverse current fluctuations decay at a rate τ−1
tr < τ. By renormalizing τ→ τtr,

we take into account the fact that only backwards scattering relaxes the current. τtr and τtr are
only identical in the special case of isotropic scattering. This distinction between scattering
rates becomes particularly marked when the scattering is dominated by low angle scattering,
which contributes to τ−1, but does not contribute to the decay of current fluctuations.

• There is no diffusive pole in the transverse current fluctuations. This is not surprising, since
transverse current fluctuations do not change the charge density.

11.4 Electron Diffusion

To display the presence of diffusion, we need to examine the density response function. Remember
that a change in density is given by

〈δρ(q)〉 = i〈[ρ(q), ρ(−q)]〉
−eV(q)︷︸︸︷
δµ(q)

where V is the change in the electrical potential and

i〈[ρ(q), ρ(−q)]〉 =
∫

d3xdti〈[ρ(x, t), ρ(0)]〉e−i%q·%x+iωt

We shall calculate this using the same set of ladder diagrams, but now using the charge vertex.
Working with Matsubara frequencies, we have

〈ρ(q, iνn)ρ(−q,−iνn)〉 =
k

k+q

+ + + . . .

=

k+q

k
(11.28)
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where the current vertex

k+q

k

= +
k

k+q k’+q

k’
= −eΛc(k, q).

(11.29)

Let us now rewrite (11.28) and (11.29) as equations. From (11.28) the density-density response
function is given by

〈ρ(q, iνn)ρ(−q,−iνn)〉 = −2T
∑

k
G(k + q)G(k)Λc(k, q).

From (11.29), the Dyson equation for the vertex is

Λc(k, q) = 1 + ni
∑

k′
|u(k − k′)|2G(k′ + q)G(k′)Λc(k′, q) (11.30)

For convenience, we will assume point scattering, so that u = u0 is momentum independent so that
Λc(k, q) only depends on k through its frequency component iωr, so Λ(k, q) = Λ(iωr, q)

Λc(iωr, q) = 1 + niu2
0

∑

k′
G(k′ + q)G(k′)Λc(iωr, q)

= 1 + Π(iωr, q)Λc(iωr, q) (11.31)

or
Λc(iωr, q) =

1
1 − Π(iωr, q)

where the polarization bubble is given by

Π(iωr, q) = niu2
0

∑

p′
G(k′ + q)G(k′)

= niu2
0N(0)

∫
dΩ
4π

∫
dε

1
iω̃+r − (ε + %q · %vF)

1
iω̃r − ε

. (11.32)

(Note the use of the tilde frequencies, as defined in (11.25).) Now if iνn > 0, then the energy integral
in π(iωr, q) will only give a finite result if −νn < ωr < 0. Outside this frequency range, π(iωr, q) = 0
and Λc = 1. Inside this frequency range, Π(iωr, q) = Π(q) is frequency independent, and given by

Π(q) =

τ−1/(2π)︷!!!!︸︸!!!!︷
niu2

0N(0)
∫

dΩ
4π

2πi
iνn + iτ−1 + %q · %vF

=

∫
dΩ
4π

1
1 + νnτ − i%q · %vFτ

(11.33)

Now we would like to examine the slow, very long wavelength charge flucations, which means we
are interested in q small compared with the inverse mean-free path, q << l−1 = 1/(vFτ), and in
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frequencies that are much smaller than the inverse scattering length νnτ << 1. This permits us to
expand Π in powers of %q. We shall take the first non-zero contribution, which comes in at order q2.
With these considerations in mind, we may expand Π as follows

Π(q) =
∫

dΩ
4π

(
1 − νnτ + i%q · %vFτ + i2(vF · q)2τ2 + . . .

)

=


1 − νnτ −

v2
Fτ

3
q2τ + . . .


 (11.34)

where we neglect terms of order O(q2νn). We may identify the combination v2
f τ/3 = D in the

second term with the diffusion constant D. Note that had we done this integral in d dimensions, the
“3” in the denominator of the second term above would be replaced by d, but the general form for
the diffusion constant in d dimensions is D = v2

f τ/d, so that in any dimension, we obtain

Π(q) =
(
1 − νnτ − Dq2τ + . . .

)
(11.35)

We then obtain

Λc(q) =
1

1 − Π(q)
=

τ−1

νn + Dq2 , (−νn < ωr < 0). (11.36)

Summarizing then, the long-wavelength, low frequency charge vertex has the form

Λc(iωr, q) =



iτ−1

νn+Dq2 , (−|νn| < sgn(νn)ωr < 0)
1 otherwise

and thus the dynamic charge correlation function is given by

〈ρ(q)ρ(−q)〉 =

k+q

k
= −2N(0)T

∑

iωr

∫
dεG(ε, iω+r )G(ε, iωr)Λc(iωr, q)

(11.37)

Now if we evaluate this quantity at zero frequency, νn = 0, where Λc = 1, we obtain the static
susceptibility

χ0 = −2T
∑

r,k

!
(iω̃r − εk)2

= 2
∫

dεN(ε)
∫

dω
2πi

f (ω)
{

1
(ω + i/(2τ) − ε)2 −

1
(ω − i/(2τ) − ε)2

}

= 2
∫

dεN(ε)
∫

dω
2πi

d f (ω)
dω

−2iA(ε,ω)︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷{
1

(ω + i/(2τ) − ε)
−

1
(ω − i/(2τ) − ε)

}
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= 2
∫

dω
(
−
d f (ω)
dω

)
=N(ω)︷!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!︷∫

dε
N(ε)
π

A(ε, ω) = 2N(0) unrenormalized (11.38)

so that the static charge susceptibility is unaffected by the disorder. This enables us to write

〈ρ(q)ρ(−q)〉 = χ0 − 2T
∑

iωr

∫
N(ε)dε

[
G(ε, iω+r )G(ε, iωr)Λc(ωr, νn) − {νn → 0}

]

Since this intgeral is dominated by contributions near the Fermi energy, we can extend the energy
integral over the whole real axis, replacing

∫
N(ε)dε → N(0)

∫ ∞

−∞
dε

enabling the energy integral to be carried out by contour methods, whereupon,

〈ρ(q)ρ(−q)〉 = χ0 − 2TN(0)
∑

iωr

∫ ∞

−∞
dε

[
G(ε, iω+r )G(ε, iωr)Λc(ωr, νn) − {νn → 0}

]

= χ0 − χ0

→νnτ︷!!!!!!︸︸!!!!!!︷(
νn

νn + τ−1

) [
τ−1

νn + Dq2

]

where, again, in the last step we have assumed |νn|τ << 1. The Matsubara form for the charge
susceptibility is then

χo(%q, iνn) = χ0
Dq2

|νn| + Dq2

Analytically continuing this result, we finally obtain

χ(%q, ν + iδ) = χ0

(
Dq2

Dq2 − iν

)
(11.39)

. Note that:

• Density fluctuations are diffusive. Indeed, we could have anticipated the above form on
heuristic grounds. The solution of the diffusion equation D∇2ρ = ∂ρ∂t is, in Fourier space,

ρ(%q, ν) =
1

Dq2 − iν
ρ(q)

where ρ(q) is the Fourier transform of the initial charge distribution. If we require ρ(%q, ν =
0) = χ0U(%q), where U(%q) is the Fourier transform of the applied potential, then this implies
(11.39)
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• The order of limits is important, for whereas

lim
q→0

lim
ν→0
χ(q, ν) = χ0

which is the response to a static potential of large, but finite wavelength,

lim
ν→0

lim
q→0
χ(q, ν) = 0

which states that the response to a uniform potential of vanishingly small frequency is zero.
The difference in these two response functions is due to the conservation of charge - if one
wants to change the charge density in one place, it can only be done by redistributing the
charge. If one applies a static uniform potential, the charge density does not change.

• We can use these results to deduce the longitudinal conductivity - the current response to
a longitudinal electric field for which %q · %E ! 0. Let φ(q) be the electric potential, then
δρ(q) = χ(q)eφ(q), so that

δρ(q) = χ0
Dq2

Dq2 − iν
eφ(q) = −χ0

Di%q ·

%∇φ=−%E(q)︷!!!︸︸!!!︷
(i%qφ(q))

Dq2 − iν

= χ0

(
Di%q

Dq2 − iν

)
· %E(q) (11.40)

Now since ∂ρ∂t ≡ −iνρ(q), it follows that

ρ̇(q) = eχ0

(
Dν%q

Dq2 − iν

)
· %E(q). (11.41)

Now by continuity, e∂ρ∂t = −%∇·%j(q) = −i%q·%j(q), where %j is the charge current, so by comparing
with (11.41) we deduce that the longitudinal current is

jL(q) = e2χ0D
(

iν
iν − Dq2

)
%E(q),

so the longitudinal conductivity contains a diffusive pole

σLONG(q) = e2χ0D
(

iν
iν − Dq2

)
.

Note also that at q = 0, σ = e2χ0D, which can be written as the Einstein relation

σ = e2χ0D =
ne2

m
τ Einstein Relation
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11.5 Weak Localization
We should like to finish our brief introduction to electron transport by touching on the concept of
electron localization. The disorder that has been considered in this chapter is weak and the electron
states we have considered are delocalized. We have remarked on a few occasions that disorder is
like a kind of “attractive” but infinitely retarded interaction, and like other attractive interactions, it
has the capacity to induce new kinds of collective behavior amongst the electrons. Infact, disorder
actually gives rise to collective interference effects within the electron gas, which ultimately lead
to the localization of the electron wavefunction. This idea was first proposed by Anderson in the
late 1950’s, but it took two decades for the idea to gain acceptance in the physics community. Our
modern understanding of electron localization was greatly aided by a conceptual break-through on
this problem made by Thouless who proposed that the resistance of a material, or rather, the inverse
resistance, the conducance G = 1/R is a function of scale. Thouless’s idea, initially proposed for
one dimension, was taken up by the so called “Gang of Four”, Abrahams, Anderson Licciardello
and Ramakrishnan and extended to higher dimensions leading to the modern “scaling theory” of
localization. One of the ideas that emerged from this break-through, is that electron localization
results from the coherent interference between electron waves, which at long-distances ultimately
builds up to produce a disorder-drive metal-insulator transition - a kind of phase transition in which
the order parameter is the conductance. Like all phase transitions, localization is sensitive to the
dimensionality. Whereas in three dimensions, electron localization requires that the disorder exceed
a critical value, in two and one dimension, an arbitrarily small amount of disorder is sufficient
to localize electrons, and the leading order effects of localization can already be seen in weakly
disordered materials. These ideas can all be developed for weakly disordered conductors by a
simple extention of the Feynman diagram methods we have been using.

To develop a rudimentary conceptual understanding of electron localization, we shall follow
a heuristic argument by Altshuler, Aronov, Larkin and Khmelnitskii[??], (see also Bergman [??])
who pointed out that weak localization results from the constructive interference between electrons
passing along time-reversed paths. Consider the amplitude for an electron to return to its starting
point. In general, it can do this by passing around a a sequence of scattering sites labelled 1 through
n, as shown in Fig. 11.3, where we identify n ≡ 1 as the same scattering site. The amplitude for
scattering around this loop is

AP = GR(n, n − 1)GR(n − 1, n − 2) . . .GR(2, 1)

where
GR(%x1, %x2) =

∫
ddk

(2π)d
1

ω − εk + iδ
ei%k·(%x1−%x2)

is the retarded propagator describing the amplitude for an electron of frequency ω to propagate be-
tween two sites. Now for each path P, there is a corresponding time-reversed path P̃. The amplitude
for the same electron to follow P̃ starting at 1 ≡ n, is

AP̃ = GR(1, 2)GR(2, 3) . . .GR(n − 1, n)

The total propability associated with passage along both paths is given by

P = |AP + AP̃|
2 = |AP|2 + |AP̃|

2 + 2Re[A∗P̃AP]
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P

P

n−1

1

2

3n−2

Figure 11.3: Scattering of an electron around two time-reversed paths

Now if AP =
√p1eiφ1 and AP̃ =

√p2eiφ2 then total probability to scatter back to the starting point
via the two paths,

pTOT = p1 + p2 + 2√p1p2 cos(φ2 − φ1).
contains an interference term 2√p1p2 cos(φ2−φ1). If the two paths were unrelated, then the impurity
average of interference term would be zero, and we would expect P = p1 + p2. However! The two
paths are related by time-reversal, so that AP̃ = AP, with precisely the same magnitude and phase,
and so the two processes always constructively interfere,

pTOT = 4p1

Without the interference term pTOT = 2p1, so we see that constructive interference between time-
reversed paths doubles the return probabilty.

This means that an electron that enters into a random medium has an quantum-mechanically
enhanced probability of returning to its starting point - quantum electrons “bounce back” twice as
often as classical electrons in a a random medium! The same phenomenon causes the light from a
car’s headlamps to reflect backwards in a Fog. These effects tend to localize waves - causing light
localization in the case of fog - and electron localization in disordered conductors. We shall see that
the return probability is enhanced in lower dimensions, and in one, or two dimensions, these effects
innevitably lead to the localization of electrons, for arbitrarily small amounts of disorder.

Let us now make a diagramatic identification of these interference terms. The complex conju-
gate of the retarded propagator is the advanced propagator

GR(2 − 1, ω)∗ = G(2 − 1, ω + iδ)∗ = G(2 − 1, ω − iδ) == GA(2 − 1, ω)

so the interference term

A∗P̃AP =
n−1∏

j=1
GR( j + 1, j;ω)GA( j + 1, j;ω)
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which is represented by a “ladder diagram” for repeated scattering of electron pairs. The sum

ωi +

ωi
r

r 2 n−1 n

j j+1

1

Figure 11.4: n-th order contribution to the “Cooperon”

of all such diagrams is called a “Cooperon”, because of its similarity to the pair susceptibility in
superconductivity. Notice that the lower electron line involves the advanced propagatorGA, whereas
the upper involves the retarded propagator GR. In the Matsubara approach the distinction between
these two propagators is enforced by running a frequency iω+r ≡ iωr + iνn along the top line, and a
frequency iωr along the bottom. When νn is analytically continued and ultimately set to zero, this
enforces the distinction betwen the two propagators. Now if we twist the Cooperon around, we see
that it is equivalent to a maximally crossed, or “Langer-Neal” diagram

ωi r

ωi +
r

21 n−1 n

n n−1 2 1

Figure 11.5: A twisted cooper diagram forms a maximally crossed diagram.

Let us now compute the amplitudes associated with these localization corrections to the con-
ductivity. We begin by denoting the Cooperon by a sum of ladder diagrams

C(q) =
q

= + + ...+

k’kk

−k+q −k+q −k’+q

=
niu2

0

1 − Π̃(q)
(11.42)

where
Π̃(q) = niu2

0

∑

k
GR(k)GA(−k + q)

where we have denoted GR(k) ≡ G(k, iω+r ) and GA(k) ≡ G(k, iωr), implicitly assuming that ω+r and
ωr are of opposite sign. Now if we look carefully at Π̃, we see that it is identical to the particle hole
bubble Π that we encountered when computing diffusive charge fluctuations in (11.32 ), excepting
that in the hole line has been replaced by a particle line, and in so doing, we replace k+q→ −k+q
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in the momentum of the propagator. However, thanks to time-reversal symmetry holds, this this
does not change the value of the polarization bubble, and we conclude that

Π̃(q) =
(
1 − νnτ − Dq2τ + . . .

)

and thus

C(q) = niu2
0
τ−1

Dq2 + |νn|
=

1
2πN(0)τ2

1
Dq2 + |νn|

We shall redraw the maximally crossed contributions to the conductivity as follows

∆Qab = + +

=

k −k+q

k −k+q

+

k −k+q

k −k+q

+

k −k+q

k −k+q

= q

k −k+q

k −k+q

(11.43)

Written out explicitly, this gives

∆σab(iνn) =
∆Qab

νn

=
2e2T
νn

∑

k=(k,iωr)q

vakv
b
−k+q

[
C(q)G+(k)G−(k)G+(−k + q)G−(−k + q) − {iνn → 0}

]

At this point, we can simplify the diagram by observing that to extract the most singular, long-
distance effects of localization, we can ignore the smooth q dependence of the conduction electron
lines. By setting q = 0 along the conduction lines, we decouple ∆σ into a product of two terms

∆σab(iνn) =
2e2T
νn

∑

q
C(q)

− νn2πT
ne2
m δ

ab
∫
dε

︷!!!!!︸︸!!!!!︷∑

k
vakv

b
−k

[
(G+(k))2(G−(k))2 − {iνn → 0}

]

= −
ne2

m
δab

1
2πN(0)τ2

∫
ddq

(2π)d
1

Dq2 + |νn|

∫
dε
2π
G2
R(ε)G2

A(ε) (11.44)
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The energy integral in the second term yields
∫

dε
2π
G2
R(ε)G2

A(ε) = 2τ3.

We need to consider the upper and lower bounds to the momentum integral. The upper bound is set
by the condition that Dq2 = τ−1, the elastic scattering rate. The lower bound is set either by the size
of the system L, in which case q = L−1, or by the inelastic scattering rate τ−1

i . We may define

τ−1
0 = max(

D
L2 , τ

−1
i )

as the inverse time-scale associated with the lower cutoff. The quantity

Eth = !
D
L2

is called the “Thouless” energy, and corresponds to the energy scale associated with the phase-
coherent diffusion of electrons from one side of the sample, to the other. In an ultra-pure, or small
system, it is this scale that provides the infra-red cut-off to localization effects. We may then write

∆σab(ν) = −δab
(
ne2τ

m

)
1

2πN(0)

∫ (Dτ)−1/2

(Dτo)−1/2

ddq
(2π)d

1
Dq2 − iν

(11.45)

If we apply a sudden pulse of electric field E = E0δ(t), giving rise to a white noise field spectrum,
E(ν) = E0, the current induced by localization effects has a frequency spectrum

j(ν) = ∆σ(ν)E(ν) = ∆σ(ν)E0 ∝
∫ (Dτ)−1/2

(Dτ0)−1/2

ddq
(2π)d

1
Dq2 − iν

In highly phase-coherent systems, the characteristic time scale of the localization back-scattering
response in the current pulse is given by t ∼ D/L2 which we recongnize as the time for elec-
trons to diffuse across the entire sample. This is a kind of backscattering “echo” produced by the
phase-coherent diffusion of electrons along time-reversed paths that cross the entire sample. The
momentum integral in ∆σ is strongly dependent on dimensionality. in three and higher dimensions,
this term is finite, so that the weak-localization effects are a perturbation to the Drude conductivity.
However, if the dimension d ≤ 2, this integral becomes divergent, and in a non-interacting system,
it is cut off only by the frequency, or the finite size L of the system. In two dimensions,

∫ (Dτ)−1/2

(Dτo)−1/2

ddq
(2π)d

1
Dq2 − iν

=
1

4πD
ln(
τ

τ0
)

giving rise to a localization correction to the static conductivity that is

∆σ = −
(
ne2τ

m

)
1

8π2N(0)D
ln(
τ0
τ

) (11.46)
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Replacing nτ/m→ 2N(0)D, we obtain

∆σ = −
(
e2

2π2

)
ln(
τ

τ0
)→ −

1
2π2

(
e2

!

)
ln(
τ0
τ

) (11.47)

where we have restored ! into the expression. The quantity g0 =
e2

!
∼ 1

10 (kΩ)−1 is known as the
universal conductance.

There are a number of interesting consequences of these results

• By replacing 2πN(0)D = 1
2kFl, the total conductivity can be written

σ = σ0

[
1 −

1
2πkFl

ln(
τ0
τ

)
]

(11.48)

We see that the quantum-interference correction to the conductivity is of order O(1/(kFl)),
justifying their neglect in our earlier calculations.

• If we consider the case where inelastic scattering is negligible, the localization correction to
the conductivity in two dimensions is

σ = σ0

[
1 −

1
2πkFl

ln(
1

EThτ
)
]

∼ σ0

[
1 −

1
πkFl

ln(
L
l

)
]

(11.49)

so that the conductivity drops gradually to zero as the size of the sample increases. The
conductivity becomes of order e2

!
at the “localization length”

Lc ∼ lekFl

independently of the strength of the interaction. In two dimensions, resistivity and resistance
have the same dimension, so we expect that when the size of the system is equal to the local-
ization length, the resistivity is always of order 10kΩ! At longer length-scales, the material
evolves into insulator.

• The weak localization corrections are not divergent for dimensions greater than 2, but become
much stronger in dimensions below d = 2. It was this observation that led the the “Gang of
Four”, Abrahams, Anderson, Licciardello and Ramakrishnan, to propose the scaling theory
for localization, in which dc = 2 is the critical dimensionality.

We shall end this section by making a brief remark about the scaling theory of localization.
Stimulated by the results in two dimensions, and earlier work on one dimensional wires, by Thou-
less, Abrahams et al. were led to propose that in any dimension, conductance, or inverse resistance,
G = 1/R could always be normalized to form a dimensionless parameter

g(L) =
G(L)
e2

!
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−(L / L   )cg(L) ~ e

g(L) ~ L
(d−2)

d ln (g)

d ln L
β(    ) = g

gc

d−2

d>2

d=2

d<2

ln g

Insulator

Metal

Figure 11.6: The scaling function β(g) deduced by Abrahams et al. for a non-interacting metal. For
d > 2 there is critical conductance gc which gives rise to a disorder-driven metal-insulator transition.
In d ≤ 2, disorder always gives rise to localization and the formation of an insulator.

which satisfies a one-parameter scaling equation

d ln g(L)
d ln L

= β(g)

When this quantity is large, we may use the Drude model, so that g(L) = ne2τ
m Ld−2, and

β(g) = (d − 2), (g→ ∞)

is independent of g. When the conductance was small g → 0, on scales longer than the localiza-
tion length Lc, they argued that g(L) would decay exponentially g(L) ∼ e−L/Lc , so that for small
conductance,

β(g) ∼ − ln g, (g→ 0)

By connecting up these two asymptotic limits, Abrahams et al reasoned that the beta function for
conductance would take the form shown in Fig. 11.6. In dimensions d ≤ 2, the β(g) is always
negative, so the conductance always scales to zero and electrons are always localized. However in
dimensions d > 2, there is a disorder-driven metal-insulator transition at the critical conductance
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g = gc. As the amount of disorder is increased, when the short-distance conductance g passes
below gc, the material becomes an insulator in the thermodynamic limit. These heuristic arguments
stimulated the development of a whole new field of research into the collective effects of disorder on
conductors, and the basic results of the scaling theory of localization are well-established in metals
where the effects of interactions between electrons are negligible. Interest in this field continues
actively today, with the surprise discovery in the late 1990s that two dimensional electron gases
formed within heterojunctions appear to exhibit a metal insulator transition - a result that confounds
the one-parameter scaling theory, and is thought in some circles to result from electron-electron
interaction effects.

11.6 Exercises
1. (Alternative derivation of the electrical conductivity. )

In our treatment of the electrical conductivity, we derived

σab(iνn) = e2 T
νn

∑

k,iωr

vakv
b
k

[
G(k, iωr + iνn)G(k, iωr) −G(k, iωr)2

]

This integral was carried out by first integrating over momentum, then integrating over frequency. This
techique is hard to generalize and it is often more convenient to integrate the expression in the opposite
order. This is the topic of this question. Consider the case where

G(k, iωr) =
1

iωr − εk − Σ(iωr)

and Σ(iωr) is any momentum-independent self-energy.

(a) By rewriting the momentum integral as an integral over kinetic energy ε and, angle show that
the conductivity can be rewritten as σab(iνn) = δabσ(iνn), where

σ(iωn) =
ne2

m
1
νn

∫ ∞

−∞
dε T

∑

iωr

[
G(ε, iωr + iνn)G(ε, iωr) −G(ε, iωr)2

]
.

and
G(ε, z) ≡

1
z − ε − Σ(z)

(b) Carry out the Matsubara sum in the above expression to obtain

σ(iωn) =
ne2

m
1
νn

∫ ∞

−∞

dω
π

∫ ∞

−∞
dε f (ω) [G(ε, ω + iνn) +G(ε, ω − iνn)] A(ε, ω),

where A(ε, ω) = ImG(ε, ω−iδ). (Hint - replace T
∑
n → −

∫
dz
2πi f (z), and notice that whileG(ε, z)

has a branch cut along z = ω with discontinuity given byG(ε, ω− iδ)−G(ε, ω+ iδ) = 2iA(ε, ω),
while while G(ε, z + iνn) has a similar branch cut along z = ω − iνn. Wrap the contour around
these branch cuts and evaluate the result).
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(c) Carry out the energy integral in the above expression to obtain

σ(iωn) =
ne2

m
1
νn

∫ ∞

−∞

dω
π
f (ω)

×
[

1
iνn − (Σ(ω + iνn) − Σ(ω − iδ))

−
1

iνn − (Σ(ω + iδ) − Σ(ω − iνn))

]
. (11.50)

(d) Carry out the analytic continuation in the above expression to finally obtain

σ(ν + iδ) =
ne2

m

∫ ∞

−∞
dω

[
f (ω − ν/2) − f (ω + ν/2)

ν

]
×

1
−iν + i(Σ(ω + ν/2 + iδ) − Σ(ω − ν/2 − iδ))

. (11.51)

(e) Show that your expression for the optical conductivity can be rewritten in the form

σ(ν + iδ) =
ne2

m

∫ ∞

−∞
dω

[
f (ω − ν/2) − f (ω + ν/2)

ν

]
1

τ−1(ω, ν) − iνZ(ω, ν)
. (11.52)

where

τ−1(ω, ν) = Im [Σ(ω − nu/2 − iδ) + Σ(ω + ν/2 − iδ)] (11.53)

is the average of the scattering rate at frequencies ω ± ν/2 and

Z−1(ω, ν) − 1 = −
1
ν

Re [Σ(ω − ν/2) − Σ(ω + ν/2)]

is a kind of “wavefunction renormalization”.
(f) Show that if the ω dependence of Z and τ−1 can be neglected, one arrives at the phenomenolog-

ical form
σ(ν) =

ne2

m

[
1

τ−1(ν) − iνZ−1(ν)

]

This form is often used to analyze optical spectra.
(g) Show that the zero temperature conductivity is given by the thermal average

σ(ν + iδ) =
ne2τ

m
(11.54)

where τ−1 = 2ImΣ(0 − iδ).
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Chapter 12

Phase Transitions and broken symmetry

12.1 Order parameter concept

The idea that phase transitions involve the development of an order parameter which lowers, or
“breaks” the symmetry is one of the most beautiful ideas of many body physics. In this chapter,
we introduce this new concept, which plays a central role in our understanding of the way complex
systems transform themselves into new states of matter at low temperatures.

Landau introduced the order parameter concept in 1937[1] as a means to quantify the dra-
matic transformation of matter at a phase transition. Examples of such transformations abound:
a snowflake forms when water freezes; iron becomes magnetic when electron spins align into a
single direction; superfluidity and superconductivity develop when quantum fluids are cooled and
bosons or pairs of fermions condense into a single quantum state with a well-defined phase. Phase
transitions can even take place in very fabric of space, and there is very good evidence that we are
living in a broken symmetry universe, which underwent one, or more phase transitions which broke
the degeneracy between the fundamental forces[2], shortly after the big bang. Indeed, when the sun
shines on our faces, we are experiencing the consequences of this broken symmetry. Remarkably,
while the microscopic physics of each case is different, they are unified by a single concept.

Landau’s theory associates each phase transition with the development of an “order parameter”
ψ once the temperature drops below the transition temperature Tc:

|ψ| =

{
0 (T > Tc)

|ψ0| > 0 (T < Tc)

The order parameter can be a real or complex number, a vector or a spinor that can, in general, be
related to an n-component real vector ψ(x) = (ψ1, ψ2 . . . ψn). For example:
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Order parameter Realization Microscopic origin
m = ψ1 Ising ferromagnet 〈σ̂z〉
ψ = ψ1 + iψ2 Superfluid, Superconductor 〈ψ̂B〉, 〈ψ̂↑ψ̂↓〉
%M = (ψ1, ψ2, ψ3) Heisenberg Ferromagnet 〈%σ〉

Φ =

([
ψ1 + iψ2
ψ3 + iψ4

])
Higg’s Field

(
〈φ̂+〉
〈φ̂−〉

)

Figure 12.1: “Broken symmetry”. The development of crystalline order within a spherical water-
droplet leads to the formation of a snowflake, reducing the symmetry from spherical symmetry, to
six-fold symmetry. (Snowflake picture reproduced with permission from K. G. Librrecht.)

Microscopically, each order parameter is directly related to the expectation value of a quantum
operator. Thus, in an Ising ferromagnet “m = 〈σz(x)〉” is the expectation value of the spin density
along a particular anisotropic axis, while in a Heisenberg ferromagnet, the magnetization can point
in any direction, so that the order parameter is a vector pointing in the direction of the spin density
%m = 〈%σ(x)〉. In a superconductor or superfluid, the order parameter is a complex number related to
the expectation value a bosonic field in the condensate.

The emergence of an order parameter often has dramatic macroscopic consequences in a ma-
terial. In zero gravity, water droplets are perfectly spherical, yet if cooled through their freezing
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(c)(b)

(a)
ψ = 0

ψFM '= 0 ψSC '= 0

Figure 12.2: (a) In a normal metal, there is no long-range order. (b) Below the Curie temperature
Tc of a ferromagnet, electron spins align to develop a ferromagnetic order parameter. The resulting
metal has a finite magnetic moment. (c) Below the transitition temperature of a superconductor,
electrons pair together to develop a superconducting order parameter. The resulting metal exhibits
the Meissner effect, excluding magnetic fields from its interior.

point they form crystals of ice with the classic six-fold symmetry of a snowflake. We say that the
symmetry of the water has “broken the symmetry”, because the symmetry of the ice crystal no
longer enjoys the continuous rotational symmetry of the original water droplet. Equally dramatic
effects occur within quantum fluids. Thus, when a metal develops a ferromagnetic order parameter,
it spontaneously develops an internal magnetic field. By contrast, when a metal develops supercon-
ducting order, it behaves as a perfect diamagnet, and will spontaneously expel magnetic fields from
its interior even when cooled in a magnetic field, giving rise to what is called the “Meissner effect”.

Part of the beauty of Landau theory, is that the precise microscopic expression for the order
parameter is not required to development a theory of the macroscopic consequences of broken sym-
metry. The Ginzburg-Landau theory of superconductivity pre-dated the microscopic theory by seven
years. Landau theory provides a “coarse grained” description of the properties of matter. In general,
the order parameter description is good on length scales larger than

ξ0 = “coherence length”. (12.1)
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On length-scales longer than coherence length, the internal structure of the order parameter is irrel-
evant and it behaves as a smootly varying function that has forgotten about its microscopic origins.
However, physics on scales smaller than ξ0 requires a microscopic description. For example, in
a superconductor, the coherence length is a measure of the size of a Cooper pair - a number that
can be hundred or thousands of atom spacings, while in superfluid He − 4, the coherence length is
basically an atom spacing.

12.2 Landau Theory

12.2.1 Field cooling and the development of order

The basic idea of Landau theory, is to write the free energy as a function F[ψ] of the order pa-
rameter. To keep things simple, we will begin our discussion with the simpest case when ψ is a
one-component Ising order parameter representing, for example, the magnetization of an Ising Fer-
romagnet. We begin by considering the meaning of an order parameter, and the relationship of the
the free energy to the microscopic physics.

We can always induce the order parameter to develop by cooling in the presence of an external
field h that couples to the order parameter. In general, the inverse dependence of the field on the
order parameter, h[ψ] will be highly non-linear, but once we know it, we can convert the dependence
of the energy on h to a function of ψ. Broken symmetry develops if ψ remains finite once the external
field is removed.

Mathematically, an external field introduces a “source term” into the microscopic Hamiltonian:

H → H − h
∫

d3xψ̂(x).

The field h that couples linearly to the order parameter is called the conjugate field. For an magnet,
where ψ ≡ M is the magnetization, h ≡ B is the external magnetic field. For a ferro-electric,
where ψ ≡ P is the electric polarization, the conjugate field h ≡ E is the external electric field.
For many classes of order parameter, such as the pair density of a superconductor, or the staggered
magnetization of an antiferromagnet, although there is no naturally occuring external field that
couples linearly to the order parameter, but the idea of a conjugate field is still a very useful concept.

The free energy of the system in the presence of an external field is a Gibb’s free energy which
takes account of the coupling to the field G[h] = F[ψ] − Vψh. G[h] is given by

G[h] = −kBT ln
(
Z[h]

)
= −kBT ln

(
Tr

[
e−β(Ĥ−h

∫
ψ̂d3x)

])
(12.2)

where the partition function Z[h] involves the trace over the many body system. If we differentiate
(12.2) with respect to h we recover the expectation value of the induced order parameter ψ[h] = 〈ψ̂〉

ψ(h,V) =
1

Z[h]
Tr

[
e−β(H−h

∫
ψd3x)ψ̂(x)

]
= −

1
V
∂G[h]
∂h
, (12.3)

It follows that −δG = ψVδh.

372



bk.pdf June 28, 2011 187

c©2011 Piers Coleman Chapter 12.

In a finite system, the order parameter will generally disappear once we remove the finite field.
For example, if we take a molecular spin cluster and field-cool it below its bulk Curie temperature
it will develop a finite magnetization. However, once we remove the external field, thermal fluc-
tuations will generate domains with reversed order. Each time a domain wall crosses the system,
the magnetization reverses, so that on long enough time scales, the magnetization will average to
zero. But as the size of the system grows beyond the nano-scale, two things will happen - first in-
finitesimal fields will prevent the thermal excitation of macroscopic domains - and second - even in
a truly zero field, the probability to form these large domains becomes astronomically small. (See
example Ex. 12.2.1) In this way, broken symmetry “freezes into” the system and becomes stable in
the thermodynamic limit.

From this line of reasoning, it becomes clear that the development of a thermally stable order
parameter requires that we take the thermodynamic limit V → ∞ before we remove the external
field. When we “field cool” an infinitely large system below a second-order phase transition, the
order parameter remains after the external field is removed. The equilibrium order parameter is then
defined as

ψ = lim
h→0

lim
V→∞
ψ(h,V).

To obtain the Landau function, F[ψ], must write G[h] in terms of ψ and then,

F[ψ] = G[h] + Vhψ = G[h] − h
∂G[h]
∂h
.

This expression for F[ψ] is a Legendre transformation of G[h]. Since δG = −Vψδh, δF = δG +
Vδ(hψ) = Vhδψ, so the inverse transformation is h = V−1 ∂F

∂ψ . If h = 0, then

hV =
∂F
∂ψ
= 0

which states the intuitively obvious fact that when h = 0, the equilibrium value of ψ is determined
by a stationary point of F[ψ].

Example 12.1: Consider a cubic nanomagnet of N = L3 Ising spins interacting via a nearest
neighbor ferromagnetic interaction of strength J. Suppose the dynamics can be approximated
by Monte Carlo dynamics, in which each spin is “updated” after a a time τ0. At T = 2J, (the
bulk Tc = 4.52J) estimate the time, in units of τ0 required to form a domain that will cross
the entire sample. If τ0 = 1ns, estimate the minimum size L for the decay time of the total
magnetization to become comparable with the time span of a Ph. D. degree.
Solution: To form a domain wall of area A ∼ L2 costs an free energy ∆F ∼ 2JL2, occuring with
probability p ∼ e−(∆F/T ). The time required for formation may be estimated to be

τ ∼ τ0p−1 ∼ τ0e2JL2/T .

where the most important aspect of the estimate, is that the exponent grows with L2. Our
naive estimate does not take into account the configurational entropy (the number of ways of
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arranging a domain wall), but it will give a rough idea of the required size. Putting τ0 ∼ 10−9s
and τ = 5y ∼ 108s for a typical Ph. D, this requires τ/τ0 = 1019 ∼ e40, thus L ∼

√
40 ∼ 6.

Already by about L3 = 403/2 ∼250 spins the time for the magnetization to decay is of the order
of years. By N ∼ 500, this same timescale has stretched to the age of the universe.

TTc

ψ

h>0

ψ

(a) (b)F(   )ψ
cT>T

T<T

T=T

c

c

Figure 12.3: (a) The Landau free energy F(ψ) as a function of temperature for an Ising order param-
eter. Curves are displaced vertically for clarity. (b) Order parameter ψ as a function of temperature
for a finite field h > 0 and an infinitesimal field h = 0+.

12.2.2 The Landau Free energy

Landau theory concentrates on the region of small ψ, audaciously expanding the free energy of the
many body system as a simple polynomial:

fL[ψ] =
1
V
F[ψ] =

r
2
ψ2 +

u
4
ψ4. (12.4)

• The Landau free energy describes the leading dependence of the total free energy on ψ. The
full free energy is given by ftot = fn(T )+ f [ψ]+O[ψ4], where fn is the energy of the “normal”
state without long range order.

• For an Ising order parameter, both the Hamiltonian and the free energy are an even function
of ψ: H[ψ] = H[−ψ]. We say that the system possesses a “global Z2 symmetry”, because the
Hamiltonian is invariant under transformations of the Z2 group that takes ψ→ ±ψ.
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Provided r and u are greater than zero, the minimum of fL[ψ] lies at ψ = 0. Landau theory
assumes that the phase transition temperuture, r changes sign, so that

r = a(T − Tc)

as illustrated in Fig. 12.3 (a). The minimum of the free energy occurs when

d f
dψ
= 0 = rψ + uψ3 ⇒ ψ =




0 (T > Tc)

±
√

a(Tc−T )
u (T < Tc)

(12.5)

so that for T < Tc, there are two minima of the free energy function (Fig. 12.3 (a)). Note that:

• if we cool the system in a tiny external field, the sign of the order parameter reflects the sign
of the field (Fig. 12.3 (b)):

ψ = sgn(h)
√
a(Tc − T )

u
, (T < Tc). (12.6)

This branch-cut along the temperature axis of the phase diagram, is an example of a first-order
phase boundary. The point T = Tc, h = 0 where the line ends is a “critical point”.

• If u < 0 the free energy becomes unbounded below. To cure this problem, the Landau free
energy must be expanded to sixth order in ψ:

f [ψ] =
1
V
F[ψ] =

r
2
ψ2 +

u
4
ψ4 +

u6
6
ψ6

When u < 0 the free energy curve develops three minima and the phase transition becomes
first order; the special point at r = h = u = 0 is a convergence of three critical points called a
tri-critical point (see exercise 3).

12.2.3 Singularities at the critical point.

At a second order phase transition, the second derivatives of the Free energy develop singularities.
If we plug (12.6) back into the Free energy fL[ψ] (12.4), we find that

fL =
{

0 (T > Tc)
− a

2

4u (Tc − T )2 (T < Tc)

In this way, the free energy and the entropy S = −∂F∂T are continuous at the phase transition, but the
specific heat

CV = −T
∂2F
∂T 2 = C0(T ) +

{
0 (T > Tc)
a2T
2u (T < Tc)

(12.7)
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f

ψ < 0 ψ > 0

T

h
Tc

Tc

(b)(a)

ψ

T

Figure 12.4: Phase diagram in an applied field. A first order line stretches along the zero field
axis, h = 0 up to the critical point. The equilibrium order parameter changes sign when this phase
boundary is crossed. (a) Three dimensional plot showing discontinuity in order parameter as a
function of field ψ. (b) Two dimensional phase boundary showing first order line.

whereC0 is the background component of the specific heat not associated with the ordering process.
We see that CV “jumps” by an amount

∆CV =
a2Tc
2u

below the transition. The jump size ∆CV has the dimensions of entropy per unit volume, and sets a
characteristic size of the entropy lost per unit volume once long-range order sets in.

At a second-order transition, matter also becomes infinitely susceptible to the applied field h, as
signalled by a divergence in susceptibility χ = ∂ψ∂h . To see this in Landau theory, let us introduce a
field by replacing

f (ψ)→ f (ψ) − hψ =
r
2
ψ2 +

u
4
ψ4 − hψ (12.8)

A finite field h > 0 has the effect of “tipping” the free energy contour to the right, preferentially
lowering the energy of the right-hand minimum, as illustrated in Fig. (12.4). For h ! 0, equilibrium
requires ∂ f /∂ψ = rψ + uψ3 − h = 0, which we can solve for r = h

ψ − 4uψ2. Above and below Tc,
we can solve for ψ by linearizing ψ[h] = δψ + ψ0 around the h = 0 value given in (12.6), to obtain
δψ = χ(T )h + O(h3), (See Fig. 12.3(b)) where

χ(T ) =
dψ
dh
=

1
a|T − Tc|

×
{

1 (T > Tc)
1
2 (T < Tc)

(12.9)
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describes the divergence of the “susceptibility” at the critical point. When we are actually at the
critical point (r = 0), the induced order parameter is a non-linear function of field,

ψ =

(
h
u

)1/3
(T = Tc) (12.10)

The divergence of the susceptibility at the critical point means that if cool through the critical point
in the absence of a field, the tiniest stray field will produce a huge effect, tipping the system into
either an up or down state. Once this happens, we say that the system has “spontaneously broken
the Z2 inversion symmetry” of the original Hamiltonian.

The singular powerlaw dependences of the order parameter, specific heat and susceptibility
near a second order transition described by Landau theory are preserved at real second-order phase
transitions, but the critical exponents are changed by the effects of spatial fluctuations of the order
parameter. In general, we write

CV ∝ (|T − Tc|)−α (Specific heat),

ψ ∝
{

(Tc − T )β

h 1
δ

(Order parameter),

χ ∝ (T − Tc)−γ (Susceptibility),

(12.11)

which Landau theory estimates as α = 0, β = 1/2, δ = 3 and γ = 1. Remarkably, this simple predic-
tion of Landau theory continues to hold once the full-fledged effects of order parameter fluctuations
are included, and still more remarkably, the exponents that emerge are found to be universal for
each class of phase transition, independently of the microscopic physics[3].

12.2.4 Broken Continuous symmetries : the Mexican Hat Potential

We now take the leap from a one, to an n-component order parameter. We shall be particularly in-
terested in a particularly important class of multi-component order in which the underlying physics
involves a continous symmetry that is broken by the phase transition. In this case, the n−component
order parameter %ψ = (ψ1 . . . ψn) acquires both magnitude and direction, and the discrete Z2 inversion
symmetry of the Ising model is now replaced by a continuous “O(N)” rotational symmetry. At a
phase transition the breaking of such continous symmetries has remarkable consequences.

The O(N) symmetric Landau theory is simply constructed by replacing ψ2 → |ψ|2 = (ψ2
1 +

. . . ψ2
n) = %ψ · %ψ, taking the form

fL[%ψ] =
r
2

(%ψ · %ψ) +
u
4

[(%ψ · %ψ)]2, O(N) invariant Landau theory

where as before r = a(T − Tc). This Landau function is invariant under O(N) rotations %ψ → R%ψ
that preserve the magnitude of the order parameter. Such symmetries do not occur by accident, but
owe their origin to conservation laws which protect them in both the microscopic Hamiltonian and
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the macroscopic Landau theory. For example, in a Heisenberg magnet, the corresponding Landau
theory has O(3) symmetry associated with the underlying conservation of the total spin magnetiza-
tion.

Once T < Tc, the order parameter acquires a definite magnitude and direction given by

%ψ =

√
|r|
u
n̂

where n̂ is a unit (n-component) vector. By acquiring a definite direction, the order parameter
breaks the O(N) symmetry. In a magnet, this would correspond to the spontaneous development of
a uniform magnetization. In a superconductor or superfluid, it corresponds to the development of a
macroscopic phase.

ψ = ψ1

ψ

ψ1

ψ2

(b) ψ = ψ1 + iψ2(a)

ψ1

f(ψ)

f(ψ)
|ψ|

φ

Figure 12.5: Dependence of Free energy on order parameter for (a) an Ising order parameter ψ = ψ1,
showing two degenerate minima and (b) complex order parameter ψ = ψ1 + iψ2 = |ψ|eiφ, where the
the Landau free energy forms a “Mexican Hat Potential” in which the free energy minimum forms
a rim of degenerate states with energy that is independent of the phase φ of the uniform order
parameter.

A particularly important example of a broken continuous symmetry occurs in superfluids and
superconductors, where the the order parameter is a single complex order parameter composed from
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two real order parameters ψ = ψ1+ iψ2 = |ψ|eiφ. In this case, the Landau free energy takes the form1

f [ψ] = r(ψ∗ψ) +
u
2

(ψ∗ψ)2, U(1) invariant Landau theory
ψ ≡ ψ1 + iψ2 ≡ |ψ|eiφ. (12.12)

Fig. (12.5) shows the Landau free energy as a function of ψ, where the magnitude of the order
parameter |ψ| is represented in polar co-ordinates. The free energy surface displays a striking rota-
tional invariance, associated with the fact that the free energy is independent of the global phase of
the order parameter

f [ψ] = f [eiαψ]. U(1) gauge invariance

This is a direct consequence of the global U(1) invariance of the particle fields that have condensed
to develop the complex order parameter. For T < Tc, the negative curvature of the free energy
surface at ψ = 0 causes the free energy surface to develops the profile of a “Mexican Hat”, with a
continuous rim of equivalent minima where

ψ =

√
|r|
u
eiφ

The appearance of a well-defined phase breaks the continuous U(1) symmetry.
The “Mexican hat” potential illustrates a special property of phases with broken continuous

symmetry: it becomes possible to continuously rotate the order parameter from one broken sym-
metry state to another. Notice however, that if the order parameter is to maintain a well-defined
phase, or direction then it is clear that there must be an energy cost for deforming or “twisting” the
direction of the order parameter. This rigidity is an essential component of broken continuous sym-
metry. In superfluids, the emergence of a well-defined phase associated with the order parameter is
intimately related to persistent currents, or superflow. We shall shortly see that when we “twist” the
phase, a superflow develops.

%j ∝ %∇φ.

To describe this rigidity, we need to take the next step, introducing a term into energy functional
that keeps track of the energy cost of a non-uniform order parameter. This leads us onto Landau
Ginzburg theory.

12.3 Ginzburg Landau theory I: Ising order
Landau theory describes the energy cost of a uniform order parameter: a more general theory needs
to account for inhomogenious order parameters in which the amplitude varies or the direction of
the order parameter is “twisted”. This development of Landau theory is called “Ginzburg Landau”

1For complex fields, it is more convenient to work without the factor of 1/2 in front of the quadratic terms. To keep
the numerology simple, the interaction term is also multiplied by two.
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theory2, after Ginzburg and Landau[5], who developed this formalism as part of their macroscopic
theory of superconductivity. We will begin our discussion of Landau Ginzburg theory with the
simplest case a one-component “Ising” order parameter.

Ginzburg Landau theory[5] introduces an addition energy cost δ f ∝ |∇ψ|2 associated with gra-
dients in the order parameter: fGL[ψ,∇ψ] = s

2 |∇ψ|
2 + fL[ψ(x)]. For a single, Ising order parameter,

the Free energy (in “d” dimensions) is given by

FGL[ψ] =
∫

ddx fGL[ψ(x),∇ψ(x), h(x)]

fGL[ψ,∇ψ, h] =
s
2

(∇ψ)2 +
r
2
ψ2 +

u
4
ψ4 − hψ (12.13)

Ginzburg Landau Free energy: one component order

There are two points to be made here:

• Ginzburg Landau (GL) theory is only valid near the critical point, where the order parameter
is small enough to permit a leading order expansion.

• Dimensional analysis shows that [c]/[r] = L2 has the dimensions of length-squared. The new
length-scale introduced by the gradient term, called the “correlation length”

ξ(T ) =
√

s
|r(T )|

= ξ0

∣∣∣∣∣1 −
T
Tc

∣∣∣∣∣
− 1

2
correlation length (12.14)

sets the characteristic length-scale of order-parameter fluctuations, where

ξ0 = ξ(T = 0) =
√

s
aTc

coherence length

is a measure of the microscopic coherence length. Near the transition, ξ(T ) diverges, but far
from the transition, it becomes comparable with the coherence length.

The traditional use of Ginzburg Landau theory, is as a as a variational principle, using the condi-
tion of stationarity δF/δψ = 0 to determine non-equilibrium configurations of the order parameter.
Landau Ginzburg theory is also the starting point for a more general analysis of thermal fluctuations
around the mean-field theory. We shall return at the end of this chapter.

12.3.1 Non-uniform solutions of Ginzburg Landau theory

There are two kinds of non-uniform solutions we will consider:
2The idea of using a gradient expansion of the free energy first appears in print in the work of Ginzburg and Landau.

However, germs of this theory are contained in the work of Ornstein and Zernicke, who in 1914 developed a theory to
describe critical opalescence[4].
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1. The linear, but non-local response to a small external field.

2. “Soliton” or domain wall solutions, in which the order parameter changes sign, passing
through the maximum in the free energy at ψ = 0. (Such domain walls are particular to
Ising order ).

To obtain the equation governing non-uniform solutions, we write

δFGL =
∫

ddx δψ(x)
[
−s∇2ψ(x) +

∂ fL[ψ]
∂ψ(x)

]
. (12.15)

Since the Ginzburg Landau free energy must be stationary with respect to small variations in the
field:

δFGL
δψ(x)

= −s∇2ψ +
∂ fL[ψ]
∂ψ

= 0 (12.16)

or more explicitly

[
(−s∇2 + r) + uψ2

]
ψ(x) − h(x) = 0 (12.17)

Susceptibility and linear response

The simplest application of GL theory, is to calculate the linear response to a non-uniform applied
field. For T > Tc, for a small linear response we can neglect the cubic term so that (−c∇2+ r)ψ(x) =
h(x). If we Fourier transform this equation, we obtain

(sq2 + r)ψq = hq (12.18)

or ψq = χqhq, where

χq =
1

sq2 + r
=

1
s(q2 + ξ−2)

(12.19)

is the momentum-dependent susceptibility and ξ =
√
s/r is the correlation length defined in (12.14).

Notice that χq=0 = 1/[a(T − Tc)] = r−1 is the uniform susceptibility obtained in (12.9) earlier. For
large q >> ξ−1, χ(q) ∼ 1/q2 becomes strongly momentum dependent: in otherwords, the response
to an applied field is non-local up to a the correlation length.

Example 12.2:
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(a) Show that in d = 3 dimensions, for T > Tc, the response of the order parameter field to
an applied field is non-local, and given by

ψ(x) =

∫
d3x′χ(x − x′)h(x′)

χ(x − x′) =
χ

4πξ2
e−|x−x′ |/ξ

|x − x′|
(12.20)

(b) Show that provided h(x) is slowly varying on scales of order ξ, the linear response can be
approximated by

ψ(x) = χh(x)

Solution:

(a) If we carry out the inverse Fourier transform of the response ψ(q) = χ(q)h(q), we obtain

ψ(x) =
∫

x′
χ(x − x′)h(x′)

In example (4.6) we showed that under a Fourier transform

e−λ|x|

|x|
FT
−→

4π
q2 + λ2

so the (inverse) Fourier transform of the non-local susceptibility is

χ(q) =
c−1

q2 + ξ−2
FT−1
−→

1
4πs

e−|x|/ξ

|x|
=
χ

4πξ2
e−|x|/ξ

|x|

(b) At small q, we may replace χ(q) ≈ χ, so that for slowly varying h in real space we can
replace χ(x− x′)→ χδ(d)(x− x′). So that provided h is slowly varying over lengths longer
than the correlation length, ψ(x) = χh(x).

Domain Walls

Once T < Tc, it is energetically costly for the order parameter to deviate seriously from the equi-
librium values ψ0. Major deviations from these “stable vacua” can however take place at “domain
walls” or “solitons”, which are narrow walls of space which separate the two stable “vacua” of op-
posite sign, where ψ = ±ψ0. To change sign, and Ising order parameter must pass through zero at
the center of the domain wall, passing over the “hump” in the free energy.

We now solve for the soliton in one dimension, where the Ginzburg Landau equation becomes

cψ′′ =
d fL[ψ]
dψ

. (12.21)

This formula has an intriguing interpretation as Newton’s law of motion for a particle of mass c
moving in an inverted potential V[ψ] = − fL[ψ]. This observation permits an analogy between a
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(b)

x

(a)

ψ
ψ

V [ψ] = −f(ψ)
f(ψ)

−ψ0 ψ0

+ψ0

−ψ0 ψ0

−ψ0

ψ

ξ

≡ψ(x)

ψ(t)

Figure 12.6: Soliton solution of Ginzburg Landau equations. (a) The evolution of ψ in one dimen-
sion is equivalent to a particle at position ψ, moving in an inverted potential V[ψ] = − fL[ψ]. A
soliton is equivalent to a “bounce” between maxima at ψ = ±ψ0 of V[ψ]. (b) The “path” that the
particle traces out in time “t” ≡ x defines the spatial dependence of the order parameter ψ[x].

soliton and and motion in one dimension which enables us to to quickly develop a solution for the
soliton. In this analogy, ψ plays the role of displacement while x plays the role of time. It follows
that s

2 (ψ′)2 is an effective “kinetic energy” 3 and the effective “energy”

E =
s
2

(ψ′)2 − fL[ψ]

is conserved and independent of x. With our simple analogy, we can map a soliton onto the problem
of a particle rolling off one maxima of the inverted potential V[ψ] = − fL[ψ], “bouncing” through
ψ = 0 out to the other maxima (Fig12.6). Fixing the conserved initial energy to be E = − fL[ψ0], we
deduce the “velocity”

ψ′ =
dψ
dx
=

√
2
s

(E + fL[ψ]) =
ψ0√
2ξ


1 −

ψ2

ψ2
0


 ,

To make the last step we have replaced ψ2
0 =

|r|
u and ξ =

√
s
|r| . Solving for dx = (

√
2ξ/ψ0)[1 −

3This can be derived by multiplying (12.21) by the integrating factor ψ′ then

c(ψ′ψ′′) − ψ′
d fL[ψ]
dψ

=
d
dx

[ s
2

(ψ′)2 − fL[ψ]
]
= 0.
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(ψ̃/ψ0)2]− 1
2 dψ and integrating both sides yields

x − x0 =

√
2ξ
ψ0

∫ ψ

0

dψ̃
1 − (ψ̃/ψ0)2 =

√
2ξ tanh−1(ψ/ψ0),

where x = x0 is the point where the order parameter passes through zero, so that

ψ(x) = ψ0 tanh(
x − x0√

2ξ
). “soliton”

This describes a “soliton” solution to the Ginzburg Landau located at x = x0.

Example 12.3: Show that the Ginzburg Landau free energy of a Domain wall can be written

∆F = A
u
4

∫
dx[ψ4

0 − ψ
4(x)]

where A = Ld−1 is the area of the domain wall. Using this result, show that surface tension
σ = ∆F/A is given by

σ =

√
8

3
ξuψ4

0.

Solution: First, let us integrate by parts to write the total energy of the domain in the form

F = A
∫

dx
[
−
s
2
ψψ′′ + fL[ψ]

]
(12.22)

where for r < 0, fL[ψ] = − |r|2 ψ
4 + u

4ψ
4 Using the GL equation (12.21)

sψ′′ =
d fL
dψ
= −|r|ψ + uψ3.

Subsituting into (12.22), we obtain

F = −A
∫

dx
[
−

1
2
ψ

(
−!!|r|ψ + uψ

3
)
−
"

""|r|
2
ψ2 +

u
4
ψ4

]

= −uA
∫

dxψ4(x) (12.23)

Subtracting off the energy of the uniform configuration, we then obtain

∆F = A
u
4

∫
dx(ψ4

0 − ψ
4(x))

To calculate the surface tension, substitute ψ(x) = ψ0 tanh[x/(
√

2ξ)], which gives

σ =
∆F
A

=
u
4
ψ4

0

∫ ∞

−∞
dx(1 − tanh[x/(

√
2ξ)4)
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=
ξu
√

8
ψ4

0

8/3︷!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!︷∫ ∞

−∞
du(1 − tanh[u]4) =

√
8

3
ξuψ4

0. (12.24)

12.4 Landau Ginzburg II: Complex order and Superflow

12.4.1 “A macroscopic wavefunction”

We now turn to discuss the Ginzburg Landau theory of complex, or two component order param-
eters. Here, we shall focus on the use of Ginzburg Landau theory to understand superfluids and
superconductors. At the heart of our discussion, is the emergence of a kind of “macroscopic wave-
function” in which the microscopic field operators of the quantum fluid ψ̂(x) acquire an expectation
value

〈ψ̂(x)〉 ≡ ψ(x) = |ψ(x)|eiφ(x) “Macroscopic wavefunction”

complete with phase. The magnitude of this order parameter determines the density of particles in
the superfluid

|ψ(x)|2 = ns(x)

while the twist, or gradient of the phase determines the superfluid velocity.

vs(x) =
!

m
∇φ(x).

The idea that the wavefunction can acquire a kind of Newtonian reality in a superfluid or super-
conductor goes deeply against our training in quantum physics: at first sight, it appears to defy the
Copenhagen interpretation of quantum mechanics, in which ψ(x) is an unobservable variable. The
bold idea suggested by Ginzburg Landau is that ψ(x) is a macroscopic manifestation of quintillions
of particles - bosons - all condensed into precisely the same quantum state. Even the great figures of
the field - Landau himself - found this hard to absort, and debate continues today. Yet on his issue,
history and discovery appear to consistently have sided with the bold, if perhaps naive, interpreta-
tion of the superconducting and superfluid order parameter as a essentially real, observable property
of quantum fluids 4. It is the classic example of an “emergent phenomenon” - one of the many
collective properties of matter that we are still discovering today which is a not a priori self-evident
from the microscopic physics.

4On more than one occasion, senior physicists advised their students and younger colleagues against such a brash
interpretation. One such story took place in Moscow in 1953. Shortly after Ginzburg Landau theory was introduced, a
young student of Landau, Alexei Abrikosov showed that a naive classical interpretation of the order parameter field led
naturally to the predication of quantized vortices and superconducting vortex lattices. Landau himself could not bring
himself to make this leap and persuaded his student to shelve the theory. It was only after Feynman published a theory of
vortices in superfluid helium, that Landau accepted the idea, clearing the way for Abrikosov to finally publish his paper.
[6]
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Vitalii Ginzburg and Lev Landau introduced their theory in 1950, as a phenomenological theory
of superconductivity, in which ψ(x) played the role of a macroscopic wavefunction whose micro-
scopic origin was, at the time, unknown. We shall begin by illustrating the application of with an
application of this method to superfluids. For a superfluid, the GL free energy density is

fGL[ψ,∇ψ] =
!2

2m
|∇ψ|2 + r|ψ|2 +

u
2
|ψ|4, (12.25)

GL free energy: superfluid

Before continuing, let us make a few heuristic remarks about the GL free energy:

• The the GL free energy is to be interpreted as the energy density of a condensate of bosons in
which the field operator behaves as a complex order parameter. This leads us to identify the
coefficient of the gradient term

s|∇ψ|2 ≡
!2

2m
〈
∇ψ̂†∇ψ̂

〉
(12.26)

as the kinetic energy, so that s = !2

2m .

• As in the case of Ising order, the correlation length, or “Ginzburg Landau coherence length”
governing the characteristic range of amplitude fluctuations of the order parameter is given
by

ξ =

√
s
|r|
=

√
!2

2M|r|
= ξ0

(
1 −

T
Tc

)−1/2
(12.27)

where ξ0 = ξ(T = 0) =
√

!2

2maTc is the coherence length. Beyond this length-scale, only phase
fluctuations survive.

• If we freeze out fluctuations in amplitude, writing ψ(x) = √nseiφ(x), then ∇ψ = i∇φ ψ and
|∇ψ|2 = ns(∇φ)2, the residual dependence of the kinetic energy on the twist in the phase is

!2ns
2m

(∇φ)2 =
mns

2

v2
s︷!!!︸︸!!!︷(

!

m
∇φ

)2
.

Since mns is the mass density, we see that a twist of the phase results in an increase in the
kinetic energy that we may associate with a “superfluid” velocity

vs =
!

m
∇φ.
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12.4.2 Off-diagonal long range order and coherent states

What then, is the meaning of the complex order parameter ψ? It is tempting to associate it with the
expectation value of the field operator

〈ψ̂(x, t)〉 = ψ(x, t)

Yet, paradoxically, a field operator, links states with different particle numbers, so such an expec-
tation value can never develop in a state in a state with a definite number of particles. One way to
avoid this problem, proposed by Penrose and Onsager, is to define the order parameter in terms of
correlation functions[7, 8]. The authors noted that even in a state with a definite particle number,
broken symmetry manifests itself as a long-distance factorization [9] of the correlation function
〈ψ†(x)ψ(x)〉:

〈ψ†(x′)ψ(x)〉
|x′−x|;ξ
−−−−−−−→ ψ∗(x′) ψ(x) + small terms (12.28)

Off-diagonal long range order.

in terms of the order parameter. This property is called “off-diagonal long range order” [10](ODLRO).
However, a more modern view is that in macroscopic systems, we don’t need to restrict our

attention to to states of definite particle number, and indeed, once we bring a system into contact
with a bath of particles, quantum states of indefinite particle number do arise. This issue also arises
in a ferromagnet where, the analog of particle number is the conserved magnetization S z along the
z-axis. A ferromagnet of N spins polarized in the z direction has wavefunction

|Z〉 =
∏

⊗
i=1,N

| ↑〉i

However, if we cool the magnet in a field aligned along the x-axis, coupled via the Hamiltonian
H = −2BS x = −B(S + + S −), then once we remove the field at low temperatures, the magnet
remains polarized in the x direction:

|X〉 =
∏

⊗
i=1,N

| →〉i =
∏

⊗
i=1,N

(
| ↑〉 + | ↓〉
√

2

)

i
.

Thus the coherent exchange of spin with the environment leads to a state that contains an admixture
of states of different S z. In a similar way, we may consider cooling a quantum fluid in a field that
couples to the superfluid order parameter. Such a field is created by a “proximity effect” of the
exchange of particles with a pre-cooled superfluid in close vicinity, giving rise to a field term in the
Hamiltonian such as

H′ = −∆
∫

ddx[ψ†(x) + ψ(x)]

When we cool below the superfluid transition temperature Tc in the presence of this pairing field,
removing the proximity field at low temperatures, then like a magnet, the resulting state acquires

387

Chapter 12. c©Piers Coleman 2011

an order parameter forming a stable state of indefinite particle number. 5 To describe such states
requires the many body equivalent of wave-packets: a type of state called a “coherent state”.

Coherent states are eigenstates of the field operator

ψ̂(x)|ψ〉 = ψ(x)|ψ〉. (12.29)

These states form an invaluable basis for describing superfluid states of matter. A coherent state can
be simply written as

|ψ〉 ∼ e
√
Nsb† |0〉 coherent state. (12.30)

where
b† =

1
√
Ns

∫
ddx ψ(x)ψ̂†(x),

coherently adds a boson to a condensate with with wavefunction ψ(x). Here, Ns =
∫
ddx|ψ(x)|2 is

the average number of bosons in the superfluid and the normalization is chosen so that [b, b†] = 1.
(See example 13.4 and exercise 13.6.)

Similarly, the conjugate state 〈ψ| = 〈0|e
√
Nsb̂ diagonalizes the creation operator:

〈ψ|ψ̂†(x) = ψ∗(x)〈ψ|. (12.31)

However, it not possible to simultaneously diagonalize both creation and annihilation operators
because they don’t commute. Thus |ψ〉 only diagonalizes the destruction operator and 〈ψ∗| only
diagonalizes the creation operator.

Coherent states are really the many body analog of “wave-packets”, with the roles of momentum
and position replaced by N and φ respectively. Just as p̂ generates spatial translations ,e−iPa/!|x〉 =
|x + a〉, N̂ translates the phase (see exercise 1), so that eiαN̂ |φ〉 = |φ + α〉. (Notice the difference
in the sign in the exponent). For an infinitesimal phase translation 〈φ + δφ| = 〈φ|(1 − iδφN̂), so
i ddφ〈φ| = 〈φ|N̂, implying

N̂ = i
d
dφ
.

This is the many body analog of the identity p̂ ≡ −i! ddx . Just as periodic boundary conditions in
space give rise to discrete quantized values of momentum, the periodic nature of phase, gives rise
to a quantized particle number. It follows that

[N̂, φ̂] = i

implying phase and particle number are conjugate variables which obey an uncertainty relation 6

∆φ∆N >
˜

1

5One might well object to this line of reasoning - for clearly, creating a state with a definite phase requires we have
another pre-cooled superfluid prepared in a state of definite phase. But what happens if we have none to start with? It
turns out that what we really can do, is to control the relative phase of two superfluids. By field-cooling, and it is the
relative phase that we can actually measure.

6The strict relation is ∆φ∆N ≥ 1
2 |[φ̂, N̂]| = 1

2 . As in the case of wavepackets, in heuristic discussion, we drop the
factor of one half.
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A coherent state trades in a small fractional uncertainty in particle number to gain a high degree
of precision in its phase. For small quantum systems where the uncertainty in particle number is
small, phase becomes ill-defined. If we write the uncertainty principle in terms of the relative error
∆ε = ∆N/N, then ∆φ∆ε >

˜
1/N we see that once N ∼ 1023, the fractional uncertaintly in particle

number and the phase can be known to an accuracy of order 10−11. In the thermodynamic limit
this means we can localize and measuring both the phase and the particle density with Newtonian
precision.

Example 12.4: The coherent state (12.30) is not normalized. Show that the properly normal-
ized coherent state

|ψ〉 = e−Ns/2e
√
Nsb̂† |0〉,

b† =
1
√
Ns

∫

x
ψ(x)ψ̂†(x) (12.32)

is an eigenstate of the annihilation operator ψ̂(x) with eigenvalue ψ(x), where Ns =
∫
ddx|ψ(x)|2.

Solution:

1. First, since [ψ̂(x), ψ̂†(x′)] = δ(d)(x − x′), we note that

[b, b†] =
1
Ns

∫

x,x′
ψ(x)ψ∗(x′)

δ(d)(x−x′)︷!!!!!!!!!!︸︸!!!!!!!!!!︷
[ψ̂(x), ψ̂†(x′)] =

1
Ns

∫

x
|ψ(x)|2 = 1,

so that b and b† are canonical bosons.
2. To obtain the normalization of a coherent state, let us expand the exponential in |z〉 =

ezb̂† |0〉 in terms of eigenstates of the boson number operator n̂ = b†b, |n〉, as follows:

|z〉 =
∞∑

n=0

(zb†)n

n!
|0〉 =

∞∑

n=0

zn
√
n!

|n〉︷!!!︸︸!!!︷
(b†)n
√
n!
|0〉 =

∞∑

n=0

zn
√
n!
|n〉

Since 〈n′|n〉 = δn,n′ , taking the norm, we obtain

〈z|z〉 =
∑

n

|z|n

n!
= e|z|2

Placing z =
√
Ns, it follows that the normalized coherent state is |ψ〉 = e−Ns/2e

√
Nsb† |0〉.

3. Since ψ̂(x)|0〉 = 0, the action of the field operator on the coherent state is

ψ̂(x)|ψ〉 = e−Ns/2[ψ̂(x), e
√
Nsb† ]|0〉 (12.33)

To simplify notation, let us denote α† =
√
Nsb†. The commutator

[ψ̂(x), α†] =
∫

x′
ψ(x′)

δ(d)(x−x′)︷!!!!!!!!!!︸︸!!!!!!!!!!︷
[ψ̂(x), ψ̂†(x′)] = ψ(x)
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which in turn implies that [ψ̂(x), (α†)r] = rψ(x)(α†)r−1. Now expanding

eα† =
∑

r

1
r!

(α†)r

we find that

[ψ̂(x), eα̂†] =
∞∑

r=0

1
r!

[ψ̂(x), (α̂†)r] = ψ(x)
∞∑

r=1

(α̂†)r−1

(r − 1)!
= ψ(x)eα̂†

so that finally,

ψ̂(x)|ψ〉 = e−Ns/2[ψ̂(x), e
√
Nsb†]|0〉 = ψ(x)e−Ns/2e

√
Nsb† |0〉 = ψ(x)|ψ〉. (12.34)

Ginzburg Landau energy for a coherent state

We shall now link the one-particle wavefunction of the condensate to the order parameter of Ginzburg
Landau theory. While coherent states are not perfect energy eigenstates, at high density they pro-
vide an increasingly accurate description of the ground-state wavefunction of a condensate. To take
the expectation value of normal ordered operators between coherent states, one simply replaces the
fields by the order parameter, so that if

Ĥ =
!2

2m
∇ψ̂†(x)∇ψ̂(x) + (U(x) − µ)ψ̂†(x)ψ̂(x) +

u
2

: (ψ̂†(x)ψ̂(x))2 : (12.35)

is the energy density of the microscopic fields, where U(x) is the one-particle potential, then the
energy density of the condensate is

〈ψ|H[ψ̂†, ψ̂]|ψ〉 = H[ψ∗, ψ] =
!2

2m
|∇ψ(x)|2 + (U(x) − µ)|ψ(x)|2 +

u
2
|ψ(x)|4.

which we recognize as a Ginzburg Landau energy density with

s =
!2

2m
, r(x) = U(x) − µ.

At a finite temperature, this analysis needs modification. For instance, µ will acquire a temperature
dependence that permits r(T ) to vanish at Tc, while the relevant functional becomes free energy F =
E−TS . Finally, note that at a finite temperature, ns(T ) only defines the superfluid component of the
total particle density n, which contains both a normal and a superfluid component n = ns(T )+nn(T ).
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12.4.3 Phase rigidity and superflow

In GL theory the energy is sensitive to a “twist” of the phase. If we substitute ψ = |ψ|eiφ into the GL
free energy, the gradient term becomes ∇ψ = (∇|ψ| + i∇φ|ψ|)eiφ, so that

fGL =

KE: phase rigidity
︷!!!!!!!!!!︸︸!!!!!!!!!!︷
!2

2m
|ψ|2(∇φ)2 +

amplitude flucts
︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷[
!2

2m
(∇|ψ|)2 + r|ψ|2 +

u
2
|ψ|4

]
(12.36)

The second term resembles the Ginzburg Landau functional for an Ising order parameter, and de-
scribes the energy cost of variations in the magnitude of the order parameter. The first term term
is new. This term describes the “phase rigidity”. As we learnt in the previous section, amplitude
fluctuations of the order parameter are confined to scales shorter than the correlation length ξ. On
longer length-scales the physics is entirely controlled by the phase degrees of freedom, so that

fGL =
ρφ

2
(∇φ)2 + constant (12.37)

The quantity ρφ = !
2

m ns is often called the “superfluid phase stiffness”.
From a microscopic point of view, the phase rigidity term is simply the kinetic energy of par-

ticles in the condensate, but from a macroscopic view, it is an elastic energy associated with the
twisted phase. The only way to reconcile these two viewpoints, is if a twist of the condensate
wavefunction results in a coherent flow of particles.

To see this explicitly, let us calculate the current in a coherent state. Microscopically, the current
operator is

%J = −i
!

2m
(
ψ̂†%∇ψ̂ − %∇ψ̂†ψ̂

)

so in a coherent state,

〈ψ| %J|ψ〉 = −i
!

2m
(
ψ∗%∇ψ − %∇ψ∗ψ

)
(12.38)

If we substitute ψ(x) =
√
ns(x)eiφ(x) into this expression, we find that

Js = ns
!

m
∇φ (12.39)

so that constant twist of the phase generates a flow of matter. Writing Js = nsvs, we can identify

vs =
!

m
∇φ.

as the “superfluid velocity” generated by the twisted phase of the condensate. Conventional particle
flow is acheived by the addition of excitations above the ground-state, but superflow occurs through
a deformation of the ground-state phase and every single particle moves in perfect synchrony.
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Example 12.5:

(a) Show that in a condensate, the quantum equations of motion for the phase and particle
number can be replaced by Hamiltonian dynamics[9]:

!
dN
dt

= i[N,H] =
∂H
∂φ

!
dφ
dt

= i[φ,H] = −
∂H
∂N

(12.40)

which are the analog of q̇ = ∂H∂p and ṗ = − ∂H∂q .
(b) Use the second of the above equations to show that in a superfluid at chemical potential
µ, the equilibrium order parameter will precess with time, according to

ψ(x, t) = ψ(x, 0)e−iµt/!

(c) If two superfluids with the same superfluid density, but at different chemical potentials µ1
and µ2 are connected by a tube of length L show that the superfluid velocity from 1 → 2
will “accelerate” according to the equation

dvs
dt
= −
!

m
µ2 − µ1

L

Solution:

(a) Since [φ, N̂] = i, there are two alternative representations of the operators:

N̂ = −i
d
dφ
, φ̂ = φ (12.41)

or, in the case that N is large enough to be considered a continuous variable,

φ̂ = i
d
dN
, N̂ = N (12.42)

Using (12.41), the Heisenberg equation of motion for N(t) is given by

dN
dt
=
i
!

[N,H] =
i
!

[−i
d
dφ
,H(N, φ)] =

1
!

∂H
∂φ

(12.43)

while using (12.42), the Heisenberg equation of motion for φ(t) is given by

dφ
dt
=
i
!

[φ,H] =
i
!

[i
d
dN
,H] = −

1
!

∂H
∂N
, (12.44)

(b) In a bulk superfluid, ∂H∂N = µ, so using (12.44 ), φ̇ = µ/!, and hence φ(t) = − µt
!
+ φ0, or

ψ(x, t) = ψ(x, 0)e−iµt/!
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(c) Assuming a constant gradient of phase along the tube connecting the two superfluids, the
superfluid velocity is given by

vs =
!

m
∇φ(t) =

!

m
(φ2(t) − φ1(t))/L

But φ(2) − φ(1) = −(µ2 − µ1)t + cons, hence

dvs
dt
= −
!

m
µ2 − µ1

L

Vortices and topological stability of superflow

Superflow is stable because of the underlying topology of a twisted order parameter. If we wrap
the system around on itself then the the single-valued nature of the order parameter implies that the
change in phase around the sample must be an integer multiple of 2π:

∆φ =

∮
dx · ∇φ = 2π × nφ

corresponding to nφ twists of the order parameter. But since vs = !

m∇φ, this implies that line-
integral, or “circulation” of the superflow around the sample is quantized

ω =

∮
dx · vs =

h
m
× nφ quantization of circulation

(note h without a slash). Assuming translational symmetry, this implies

vs =
h
mL

nφ quantization of velocity,

a phenomenon first predicted by Onsager and Feynman[11, 12]. The number of twists of the order
parameter nφ is a “topological invariant” of the superfluid condensate, since it can not be changed
by any continuous deformation of the phase. The only way to decay the superflow is to create high
energy domain walls: a process that is exponentially suppressed in the thermodyanmic limit. Thus
the topological stability of a twisted order parametery sustains a persistent superflow.

Another topologically stable configuration of a superfluid is a “vortex”. A vortex is a singular
line in the superfluid around which the phase of the order parameter precesses by an integer multiple
of 2π. If we take a circular path of radius r around the vortex then the quantization of circulation
implies

ω = nφ
(
h
m

)
=

∮
dx · vs(x) = 2πrvs

or
vs = nφ ×

(
!

m

)
1
r
, (r>

˜
ξ)
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This formula, where the superfluid velocity appears to diverge at short distances, is no longer reliable
for r<

˜
ξ, where amplitude variations in the order parameter become important.

Let us now calculate the energy of a vortex. Suppose the vortex is centered in the middle of a
large cylinder of radius R, then the energy per unit length is

F
L
=
ρφ

2

∫
d2x(∇φ)2 =

ρφ

2

∫ R

ξ
2πrdr

(2πnφ
2πr

)2
= πρφ ln

(
R
ξ

)
× n2
φ.

In this way, we see that the energy of nφ isolated vortices with unit circulation, is nφ times smaller
than one vortex with nφ-fold circulation. For this reason, vortices occur with single quanta of
circulation, and their interaction is repulsive.

12.5 Landau Ginzburg III: Charged fields

12.5.1 Gauge Invariance

In a neutral superfluid the emergence of a macrosopic wavefunction with a phase leads superfluidity.
When the corresponding fluid is charged, the superflow carries charge, forming a superconductor.
One of the key properties of superconductors, is their ability to actively exclude magnetic fields
from their interior, a phenomenon called the “Meissner effect”. Ginzburg Landau theory provides a
beautiful account of this effect.

The introduction of charge into a field theory brings with it the notion of gauge invariance. From
one-body Schrödinger equation,

i!
∂ψ

∂t
=

[
−
!2

2m

(
∇ − i

e
!

A
)2
+ eϕ(x)

]
ψ

where ϕ is the scalar electric potential, we learn that we can change the phase of a particle wavefunc-
tion by an arbitrary amount at each point in space and time, ψ(x, t) → eiα(t)ψ(x, t) without without
altering the equation of motion, so long as the change is compensated by a corresponding gauge
transformation of the electromagnetic field:

A→ A + !
e
∇α, ϕ→ ϕ −

!

e
∂α

∂t
. (12.45)

This intimate link between changes in the phase of the wavefunction and gauge transformations
of the electromagnetic field threads through all of many body physics and field theory. Once we
second-quantize quantum mechanics, the same rules of gauge invariance apply to the fields that cre-
ate charged particles, and when these fields, or combinations of them condense, the corresponding
charged order parameter also obeys the rules of gauge invariance, with the proviso that the charge e∗
is the charge of the condensate field. These kinds of arguments imply that in the Ginzburg Landau
theory of a charged quantum fluid, normal derivatives of the field are replaced by gauge invariant
derivatives

∇ → D = ∇ − ie
∗

!
A
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where e∗ is the charge of the condensing field. Thus the simple replacement

fGL[ψ,∇ψ]→ fGL[ψ,Dψ]

incorporates the coupling of the superfluid to the electromagnetic field. To this, we must add the
energy density of the magnetic field B2/(2µ0), to obtain

F[ψ,A] =
∫

ddx
[

fψ︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷
!2

2M

∣∣∣∣∣(∇ −
ie∗

!
A)ψ

∣∣∣∣∣
2
+ r|ψ|2 +

u
2
|ψ|4 +

(∇ × A)2

2µ0︸!!!!!︷︷!!!!!︸
fEM

]
(12.46)

GL Free energy: charged superfluid.

where M is mass of the condensed field and ∇ × A = B is the magnetic field.

Note that:
• So long as we are considering superconductors, where the condensing boson is a Cooper pair

of electrons, e∗ = 2e. Although there are cases of charged bosonic superfluids, such as a fluid
of deuterium nucleii, in which e∗ = e, for the rest of this book, we shall adopt

e∗ ≡ 2e (12.47)

as an equivalence.

• Under the gauge transformation

ψ(x)→ ψ(x)eiα(x), A→ A + !
e∗
∇α

Dψ→ eiα(x)Dψ, so that |Dψ|2 is unchanged and the GL free energy is gauge invariant.

• F[ψ, A] really contains two intertwined Ginzburg Landau theories for ψ and A respectively,
with two corresponding length scales: the coherence length ξ =

√
!2

2M|r| governing amplitude
fluctuations of ψ and and the “London penetration depth” λL, which sets the distance a mag-
netic field penetrates into the superconductor. In a uniform condensate ψ = √ns, the free
energy dependence on the vector potential is given by

f [A] ∼ cA
(∇ × A)2

2
+
rA
2

A2, (12.48)

where cA = 1
µ0

and rA =
e∗2ns
M . This is a Ginzburg Landau functional for the vector potential

with a characteristic London penetration depth

λL =

√
cA
rA
=

√
M

nse∗2µ0
, (12.49)
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12.5.2 Ginzburg Landau Equations

To obtain the equations of motion we need to take variations of the free with respect to the vector po-
tential and the order parameter ψ. Variations in the vector potential recover Ampères equation, while
variations in the order parameter lead to a generalization of the non-linear Schrodinger equation ob-
tained previously for non-uniform Ising fields. Each of these equations is of great importance -
non-uniform solutions determine the physics of the domain walls between “normal” and “supercon-
ducting” regions of a type II superconductor, while the Ginzburg Landau formulation of Ampère’s
equation provides an understanding of the Meissner effect.

If we vary the vector potential, then δF = δFψ + δFEM , where

δFψ = −
∫

x
δA(x) ·

J(x)︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷[
−
i!

2M
(
ψ∗%∇ψ − %∇ψ ψ

)
−
e∗2

M
|ψ|2

]

is the variation in the condensate energy and 7

δFEM =
1
µ0

∫
∇ × δA · B = 1

µ0

=0︷!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!︷∫

x
∇ · (δA × B)+

1
µ0

∫

x
δA(x) · (∇ × B)

is the variation in the magnetic field energy. Setting the total variation to zero, we obtain:

δF
δA(x)

= −J(x) +
∇ × B
µ0

= 0. (12.51)

where
J(x) = −

ie∗!
2M

(
ψ∗%∇ψ − %∇ψ∗ ψ

)
−
e∗2

M
|ψ|2A. (12.52)

is the supercurrent density. In this way, we have rederived Ampère’s equation, where the current
density takes the well-known form of a probability current in the Schrodinger equation. However,
ψ(x) now assumes a macroscopic, physical significance - it is literally, the “macroscopic wavefunc-
tion” of the superconducting condensate. We will shortly see how Eq. (12.51) leads to the Meissner
effect.

To take variations with respect to ψ, it is useful to first integrate by parts, writing

Fψ =
∫

x

!2

2M
ψ∗(−i∇ −

e∗

!
A)2ψ + rψ∗ψ +

u
2

(ψ∗ψ)2
]
. (12.53)

7The variation of FEM is tricky. We can carry it out using index notation to integrate δFEM by parts as follows:

δFEM =
1
µ0

∫

x
εabc(∇bδAc)Ba =

1
µ0

∫

x

=−εcba︷︸︸︷
εabc

[
∇b(δAcBa)︸!!!!!!︷︷!!!!!!︸

0

−δAc∇bBa
]

=
1
µ0

∫

x
δAc(x)εcba∇bBa =

1
µ0

∫

x
δA(x) · (∇ × B) (12.50)

where we have set total derivative terms to zero.
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If we now take variations with respect to ψ∗ and ψ, we obtain

δF =
∫

ddx
(
δψ∗(x)

[
!2

2M
(−i∇ −

e∗

!
A)2ψ(x) + rψ(x) + u|ψ(x)|2ψ(x)

]
+ H.c

)

implying that

−
!2

2M
(∇ − i

e∗

!
A)2ψ(x) + rψ(x) + u|ψ(x)|2ψ(x) = 0. (12.54)

This “non-linear Schroedinger equation” is almost identical to (12.17) obtained for an Ising order
parameter, but here ∇2 → (∇ − i q

!
A)2 to incorporate the gauge invariance and ψ3 → |ψ|2ψ takes

account of the complex order parameter. We will shortly see how this equation can be used to
determine the surface tension σsn of a drop of superconducting fluid.

12.5.3 The Meissner Effect

We now examine how a superconductor behaves in the presence of a magnetic field. It is useful to
write the supercurrent (12.52)

J(x) = −
ie∗!
2M

(
ψ∗%∇ψ − H.c

)
−
e∗2

M
|ψ|2A

in terms of the amplitude and phase of the order parameter ψ = |ψ|eiφ (c.f. 12.36). The derivative
term ψ∗∇ψ can be re-written

ψ∗∇ψ = |ψ|e−iφ%∇(|ψ|eiφ) = i|ψ|2%∇φ + |ψ|%∇|ψ|,

so that the term ψ∗∇ψ − H.c = 2i|ψ|2∇φ and hence

J(x) =
e∗!
M
|ψ|2∇φ −

e∗2

M
|ψ|2A

= e∗ns

vs︷!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!︷
!

M

(
%∇φ −

e∗

!
A

)
= e∗nsvs (12.55)

where we have replaced |ψ|2 = ns and identified

vs =
!

M

(
∇φ −

e∗

!
A

)
. (12.56)

as the superfluid velocity. Note that in contrast with (12.39), either a twist in the phase, or an external
vector potential can promote a superflow. Under a gauge transformation, φ→ φ+α, A→ A+ !e∗ ∇α,
this combination is gauge-invariant. Written out explicitly, Ampéres equation then becomes

∇ × B = −µ0
nse∗2

M

(
A − !

e∗
∇φ

)
(12.57)
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If we take the curl of this expression (assuming ns is constant), we obtain

∇ × (∇ × B) = µ0∇ × J = −µ0nse∗2

M
B (12.58)

where we have used the identity ∇ × ∇φ = 0 to eliminate the phase gradient. But ∇ × (∇ × B) =
∇(∇ · B) − ∇2B = −∇2B, since ∇ · B = 0, so that

∇2B =
1
λ2
L

B, Meissner Effect

1
λ2
L
=
µ0nse∗2

M
(12.59)

This equation, first derived by Fritz London on phenomenological grounds[13], expresses the aston-
ishing property that magnetic fields are actively expelled from superconductors. The only uniform
solutions that are possible are

B = 0, ns > 0, superconductor
B ! 0, ns = 0, normal state (12.60)

One dimensional solutions to the London equation ∇2B = B/λ2
L take the form B ∼ B0e

− x
λL , showing

that near the surface of a superconductor, magnetic fields only penetrate a distance depth λL into the
condensate. The persistent supercurrents that screen the field out of the superconductor lie within
this thin shell on the surface.

As we shall see however, in the class of type II superconductors, where the coherence length is
small compared with the penetration depth (ξ < λL/

√
2), magnetic fields can penetrate the super-

conductor in a non-uniform way as vortices.
Lastly, note that in a superconductor, where M = 2me and e∗ = 2e are the mass and charge of

the Cooper pair respectively, while ns = 1
2ne is half the concentration of electrons in the condensate,

nse∗2

M
=

1
2ne4e

2

2me
=
nee2

m
so the expression for the penetration depth has the same form when written in terms of the charge
and mass of the electron.

1
λ2
L
= µ0

nee2

m

The critical field Hc

In a medium that is immersed in an external field, we can divide the magnetic field into an “external”
magnetizing field H and the magnetization M. In SI units,

B = µ0(H +M)
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where jext = ∇×H is the current density in the external coils and jint = ∇×M are the internal currents
of the material: in a superconductor, these are the supercurrents. Now the ratio χ = M/H, is the
magnetic susceptibility. Since the magnetic field B = µ0(M +H) vanishes inside a superconductor,
this implies M = −H, so that 8

χSC = −1. Perfect diamagnet.

In other words, superconductors are perfect diamagnets, in which shielding supercurrents Jint =
∇ × M provide a perfect Faraday cage to screen out the magnetic field from the interior of the
superconductor.

In a superconductor, F = Fψ + FEM is a sum of two terms, where δFψ/δB(x) = −M(x) is the
magnetization induced by the supercurrents while δFEM/δB(x) = µ0

−1B(x) is the magnetic field.
Adding these terms together,

δF
δB(x)

= −M(x) +
1
µ0

B(x) = H

Now the magnetizing field H is determined by the external coils, and can be taken to be constant
over the scale of the coherence and penetration depth. Since it is the external field H that is fixed, it
is more convenient to use the Gibb’s free energy

G[H, ψ] = F[B, ψ] −
∫

d3xB(x) ·H

which is a functional of the external field H and independent of the B− field (δG/δB = 0). The
second term describes the work done by the coils in producing the constant external field. This is
analogous to settingG[P] = F[V]+ PV to include the work PV done by a piston to maintain a fluid
at constant pressure. In a uniform superconductor,

g =
G
V
= r|ψ|2 +

u
2
|ψ|4 +

B2

2µ0
− BH

In the normal state, ψ = 0, B = µ0H, so that

gn = −
B2

2µ0

whereas in the superconducting state, B = 0, and |ψ| = ψ0 =
√
−r/u, so that

gsc = rψ2
0 +

u
2
ψ4

0 = −
r2

2u
Clearly, if gsc < gn, i.e, if

B < Bc =
√

µ0
r2

u
critical field (12.61)

the superconductor is thermodynamically stable. The free energy density of the superconductor can
then be written

gsc = −
r2

2u
= −

1
2µ0

B2
c

8Most older texts use Gaussian units, for which χSC = − 1
4π in a superconductor. In Gaussian units B = H + 4πM =

(1 + 4πχ)H. If B = 0, this implies that χSC = − 1
4π in Gaussian units.
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Surface energy of a superconductor.

When B = Bc, the free energy density of the normal state and the superconductor are identical, and
so the two phases can co-exist. The interface between the degenerate superconductor and normal is
a domain wall, where the Gibb’s energy per unit energy defines the surface energy

∆G/A = σsn

where A is the area of the interface. At the interface the superconducting order parameter and the
magnetic field decay away to zero over length scales of order the coherence length ξ and penetration
depth λL, respectively, as illustrated below.

ξ

λL

ψ0

Bc

x

Figure 12.7: Schematic illustrating a superconductor-normal metal domain wall in a type I super-
conductor, where ξ >> λL.

The surface tension σsn (surface energy) σns of the domain wall between the superconductor
and normal phase has a profound influence on the macroscopic behavior of a superconductor. The
key parameter which controls the surface tension is the ratio of the magnetic penetration to the
coherence length,

κ =
λL
ξ
, Ginzburg Landau parameter.

There are two types of superconductor:

1. κ < 1√
2

Type I superconductors, with a positive domain wall energy. In type I supercon-
ductors, magnetic fields are vigorously excluded from the material by a thin surface layer of
screening currents (Fig 12.8(a)). At H = Hc there is a first order transition into the normal
state.

2. κ > 1√
2

Type II superconductors, with a negative surface tension (σsn < 0). In type II
superconductors, the surface layer of screening currents is smeared out on the scale of the
coherence length, and the magnetic field penetrates much further into the superonductor (Fig
12.8(b)). In type II superconductors, there are now two critical fields, an “upper” critical field
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Hc2 > Hc and a lower critical field Hc1 < Hc. Between these two fields, Hc1 < H < Hc2 the
magnetic field penetrates the bulk, forming vortices in which the high energy of the normal
core is offset by the negative surface energy of the layer of screening currents.

Figure 12.8: Superconductor-normal domain wall in type I and type II superconductors. (a) For
κ = λLξ <

1√
2
, the superconductor is a type I superconductor. In the limit κ → 0 illustrated here,

the magnetic field drops precipitously to zero at x = 0. In the extreme type I limit κ >> 1/
√

2, the
magnetic field and the screening currents extend a distance of λL >> ξ into the superconductor.

The domain wall energy between a superconductor and a metal at H = Hc is the excess energy
associated with a departure from uniformity:

σns =
1
A

∫
d3x

[
!2

2M

∣∣∣∣∣(∇ −
ie∗

!
A)ψ

∣∣∣∣∣
2
+ r|ψ|2 +

u
2
|ψ|4 +

B2

2µ0
− B ·Hc − gsc

]
(12.62)

Inserting Hc = Bc/µ0 and gsc = − B2
c

2µ0
, we see that the last three terms can be combined into one, to

obtain

σns =
1
A

∫
d3x

[
!2

2M

∣∣∣∣∣(∇ −
ie∗

!
A)ψ

∣∣∣∣∣
2
+ r|ψ|2 +

u
2
|ψ|4 +

(B − Bc)2

2µ0

]
(12.63)
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By imposing the condition of stationarity, it is straightforward to show (see example 12.6) that the
domain wall energy of a domain in the y-z plane can be cast into the compact form

σsn =
B2
c

2µ0

∫ ∞

−∞
dx




(
B(x)
Bc
− 1

)2
−

(
ψ(x)
ψ0

)4 . (12.64)

This compact form for the surface tension of a superconductor can be loosely interpreted as the
difference of field and condensation energy

σsn =

∫ ∞

−∞
dx

[
field energy − condensation energy

]

In the superconductor at the critical field, these two terms terms directly cancel one another whereas
in the normal metal both terms are zero. It is the imperfect balance of these two energy terms at the
interface that creates a non-zero surface tension. In a type I superconductor, the healing length ξ
for the order parameter is long so the condensation energy fails to compensate for the field energy
generating a positive surface tension. By contrast, in a type II superconductor, the healing length
for the magnetic field λL is large so the field energy fails to compensate for the condensation energy
leading to a negative surface tension. In fact, within Ginzburg Landau theory, the surface tension
vanishes at κ = 1/

√
2 (see example 12.7), so κ = 1/

√
2 is the dividing line between the two classes

of superconductor. Summarizing:

Type I: (κ < 1/
√

2) Interface condensation energy < field energy σsn > 0
Type II: (κ > 1/

√
2) Interface field energy < condensation energy σsn < 0

(12.65)

One of the most dramatic effects of a negative surface tension, is the stabilization of non-uniform
superconducting states at fields over a wide range of fields between Bc1 and Bc2, where Bc2 =

√
2κBc

is the “upper critical field”, and Bc1 ∼ Bc/(
√

2κ) is the “lower critical field”.
Let us estimate the surface tension in extreme type I and type II superconductors (Fig. 12.8).

In the former, where λL << ξ, the length scale over which the magnetic field varies is negligible
relative to the coherence length(see Fig. 12.8(a)), so that the magnetic field can be approximated by
a step function

B(x) = Bcθ(x), Extreme type I.

For x > 0, B(x) = Bc is constant, which implies that B′′ ∝ ψ2Bc = 0, so that ψ(x) = 0 for x ≥ 0.
For x < 0, on the superconducting side of the domain wall, B = A = 0 and in the absence of a field,
the evolution equation for ψ is identical to an Ising kink treated in section (12.3.1), for which the
solution is ψ/ψ0 = tanh(x/(

√
2ξ)). Substituting into (12.64), the surface tension is then

σI
sn =

B2
c

2µ0

∫ 0

−∞
dx

[
1 − tanh(x/(

√
2ξ))4

]
=

B2
c

2µ0
× 1.89ξ (12.66)

For an extreme type II superconductor, the situation is reversed: now the longest length-scale is
the penetration depth. Unfortunately, since the vector potential modifies the equilibrium magnitude
of the order parameter, λL sets the decay length of both the field and the order parameter. Let us
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nevertheless estimate the surface tension by treating the order parameter as a step function ψ(x) ∼
ψ0θ(−x). In this case, A′′ = 1

λ2
L
(ψ/ψ0)2A, so that

B(x) = Bc ×
{
ex/λL (x < 0)

1 (x > 0) (12.67)

Substituting into (12.76 ), this then gives

σII
sn ≈

B2
c

2µ0

∫ 0

−∞
dx[(ex/λL − 1)2 − 1] = −

B2
c

2µ0
×

3
2
λL (12.68)

showing that at large κ, the surface tension becomes negative. The result of a more detailed calcu-
lation (example 12.8) replaces the factor of 3/2 by (8/3)(

√
2 − 1) = 1.1045 [14].

Summarizing the results of a detailed Landau Ginzburg calculation,

σns =
B2
c

2µ0
×

{
1.89ξ (extreme type I)
−1.10λL (extreme type II)

Example 12.6: Calculate the domain wall energy per unit area σns of a superconducting-
normal interface lying in the y − z plane, and show that it can be written

σsn =
B2
c

2µ0

∫ ∞

−∞
dx




(
B(x)
Bc
− 1

)2

−
(
ψ(x)
ψ0

)4 . (12.69)

Solution: Consider a domain wall in the y − z plane separating a superconductor at x < 0 from
a metal at x > 0, immersed in a magnetic field along the z − axis. Let us take

A(x) = (0, A(x), 0), B(x) = (0, 0, A′(x)),

seeking a domain wall solution in which ψ(x) is real. Our boundary conditions are then

(ψ(x), A(x)) =
{

(ψ0, 0) (x→ −∞)
(0, xBc) (x→ +∞) (12.70)

The domain wall energy is then

σsn =
G
A
=

∫
dx

[
!2

2M




(
dψ
dx

)2

+
e∗2A2

!2 ψ
2


 + rψ

2 +
u
2
ψ4 +

(B − Bc)2

2µ0

]
(12.71)

Notice that there are no terms linear in dψ/dx, because the vector potential and the gradient of
the order parameter are orthgonal (∇ψ · A = 0). Let us rescale the x co-ordinate in units of
the penetration length, the order parameter in units of ψ0 and the magnetic field in units of the
critical field, as follows:

x̃ =
x
λL
, ψ̃ =

ψ

ψ0
, Ã =

A
BcλL

, B̃ =
B
Bc
=
dÃ
dx̃
≡ Ã′.
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In these rescaled variables, the Gibb’s free energy becomes

σsn =
B2
cλL

2µ0

∫
dx

[
2ψ′2

κ2
+ A2ψ2 +

(
(ψ2 − 1)2 − 1

)
+ (A′ − 1)2

]
. (12.72)

where for clarity, we have now dropped the tildes. The rescaled boundary conditions are
(ψ, A) → (1, 0) in the superconductor at x << 0, and (ψ, A) → (0, x) deep inside the metal
at x >> 0.
Taking variations with respect to ψ gives

−
ψ′′

κ2
+

1
2
A2ψ + (ψ2 − 1)ψ = 0 (12.73)

while taking variations with respect to A gives the dimensionless London equation

Aψ2 − A′′ = 0 (12.74)

Integrating by parts to replace (ψ′)2 → −ψψ′′ in (12.72 ), we obtain

σsn =
B2
cλL

2µ0

∫
dx

[
−A2ψ2−2(ψ2−1)ψ2

︷!!!︸︸!!!︷

−
2ψψ′′

κ2
+A2ψ2 +

(
(ψ2 − 1)2 − 1

)
+ (A′ − 1)2

]
(12.75)

where we have used (12.73) to elimiate ψ′′. Cancelling the A2ψ2 and ψ2 terms in (12.75), we
can then write the surface tension in the compact form

σsn =
B2
cλL

2µ0

∫ ∞

−∞
dx

[
(A′(x) − 1)2 − ψ(x)4

]
. (12.76)

Restoring x→ x
λL

, A′(x)→ B(x)
Bc and ψ(x)→ ψ(x)

ψ0
, we obtain (12.64).

Example 12.7: Show that the domain wall energy changes sign at κ = 1/
√

2.
Solution: Using equation (12.76), we see that in the special case where the surface tension
σsn = 0, is zero, it follows that

A′(x) = 1 ∓ ψ(x)2

where we select the upper choice of signs to give a physical solution where the field is reduced
inside the superconductor (A′ < 1). Taking the second derivative, gives A′′ = −2ψψ′. But since
A′′ = ψ2 A, it follows that ψ′ = − 1

2Aψ. Now we can derive an alternative expression for ψ′ by
integrating the second order equation (12.74). By multiplying (12.73) by 4ψ̃′, using (12.74) we
can rewrite (12.73) as a total derivative

d
dx

[
−

2
κ2

(ψ′)2 + A2ψ2 + (ψ2 − 1)2 − A′2
]
= 0
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from which we deduce that

−
2
κ2

(ψ′)2 + A2ψ2 + (ψ2 − 1)2 − A′2 = constant = 0 (12.77)

is constant across the domain, where the value of the constant is obtained by placing ψ = 1,
A = A′ = 0 on the superconducting side of the domain. Substituting A′ = (1 − ψ2), the last two
terms cancel. Finally, putting (ψ′)2 = 1

4 (Aψ)2, we obtain
(
1 −

1
2κ2

)
(Aψ)2 = 0, (12.78)

showing that κc = 1/
√

2 is the critical value where the surface tension drops to zero.

Example 12.8: Using the results of the example 13.6, show that within Landau Ginzburg
theory, the surface tension of an extreme type II superconductor is [14]

σns = −
B2
c

2µ0
×

8
3

(
√

2 − 1)λL ≈ −
B2
c

2µ0
× 1.10λL

Solution: We start with equations (12.73 ) and (12.74 )

ψ′′

κ2
+

1
2
A2ψ + (ψ2 − 1)ψ = 0 (12.79)

Aψ2 − A′′ = 0 (12.80)

For an extreme type II superconductor, κ >> 1 allowing us to neglect the derivative term in the
first equation. There are then two solutions:

ψ2 = 1 − 1
2A

2, (x < 0)
ψ = 0, A = x +

√
2 (x > 0) (12.81)

For (x < 0), substituting into (12.80), we then obtain

A(1 − A2/2) = A′′ (12.82)

Multiplying both sides by the integrating factor 2A′, we obtain

d
dx

(
A2(1 − A2/4)

)
=

d
dx

(A′)2

or A2(1 − A2/4) = (A′ )2 + cons, where the integration constant vanishes because A and A′ both
go to zero as x→ −∞, so that

A′ = A
√

1 − A2/4, (x < 0) (12.83)
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Now using (12.81) in (12.76), the surface tension is

σsn =
B2
cλL

2µ0
× I

I =
∫ 0

−∞

[
(A′ − 1)2 − (1 − A2/2)2

]
dx (12.84)

Substituting for A′ using (12.83) then gives

I =
∫ 0

−∞

[
(A

√
1 − A2/4 − 1)2 − (1 − A2/2)2

]
dx

=

∫ 0

−∞

[
2A2(1 − A2/4) − 2A

√
1 − A2/4

]
dx

=

∫ 0

−∞

[
2(A′ − 1)

]
A′dx

=

∫ √
2

0
2
[
(A

√
1 − A2/4 − 1)

]
dA = −

8
3

(√
2 − 1

)
≈ −1.1045 (12.85)

where we have used the fact that ψ = 0, A =
√

2 at x = 0. It follows that in the extreme type II
superconductor

σsn = −
B2
c

2µ0
× (1.10λL).

12.5.4 Vortices, Flux quanta and type-II superconductors.

Once H > Hc1, type II superconductors support the formation of superconducing vortices.
In a neutral superfluid, a superconducting vortex is a line defect around which the phase of the

order parameter precesses by 2π, or a multiple of 2π. In section (12.4.3), we saw that this gave rise
to a quantization of circulation. In a superconducting vortex, the rotating electric currents give rise
to a trapped magnetic flux, quantized in units of the superconducting flux quantum

Φ0 =
h
e∗
≡

h
2e
.

This quantization of magnetic flux we predicted by London and Onsager[13, 15].
To understand flux quantization, it is instructive to contrast a neutral superfluid with a supercon-

ducting vortex (see Fig. 12.9). In a neutral superfluid, the superfluid velocity is uniquely dictated
by the gradient of the phase, vs = !

M
%∇φ, so around a vortex, the superfluid velocity decays as 1/r

(vs = n × h
Mr ). Around a superconducting vortex, the superfluid velocity contains an additional

contribution from the vector potential

vs =
!

M
%∇φ −

e∗

M
A.

In the presence of a magnetic field, this term compensates for the phase gradient, lowering the
supercurrent velocity and reducing the overall kinetic energy of the vortex. On distances larger
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Figure 12.9: Contrasting (a) a vortex in a neutral superfluid with (b) a vortex in a superconductor,
where each unit of quantized circulation binds one quanta of magnetic flux.

than the penetration depth λL the vector potential and the phase gradient almost completely cancel
one-another, leading to a supercurrent that decays exponentially with radius vsc ∝ e−r/λL .

If we integrate the circulation around a vortex, we find

ω =

∮
dx · vs =

!

M

∆φ=2πn︷!!!!!!︸︸!!!!!!︷∮
dx · %∇φ− e

∗

M

Φ︷!!!!︸︸!!!!︷∮
dx · A (12.86)

where we have identified
∮
dx · %∇φ = 2π × n as the total change in phase around the vortex, while∮

dx · A =
∫

B · dS = Φ is the magnetic flux contained within the loop, so that

ω = n
h
M
−
e∗Φ
M
.

In this way, we see that the presence of bound magnetic flux reduces the total circulation. At large
distances, energetics favor a reduction of the circulation to zero, limR→∞ω = 0, so that around a
large loop

0 = n
h
M
−
e∗Φ
M
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or

Φ = n
(
h
e∗

)
= nΦ0 (12.87)

where Φ0 =
h
e∗ is the quantum of flux. In this way, each quantum of circulation generates a bound

quantum of magnetic flux. The lowest energy vortex contains a single flux, as illustrated in Fig. 12.9
A simple realization of this situation occurs in a hollow superconducting cylinder (Fig. 12.10). In
its lowest energy state, where no supercurrent flows around the cylinder, the magnetic flux trapped
inside the cylinder is quantized. If an external magnetic field is is applied to the cylinder, and then
later removed, the cylinder is found to trap flux in units of the flux quantum Φ0 =

h
2e , [16, 17],

providing a direct confirmation of the charge of the Cooper pair

∆φ = 2πn =
2e

h̄

∮

d'x · 'A

Φ =

∮

d'x · 'A = n
h

2e

Figure 12.10: Flux quantization inside a cylinder. In the lowest energy configuration, with no
supercurrent in the cylinder walls, the ∆φ = 2πn twist in the phase of the order parameter around the
cylinder is compensated by a quantized circulation of the vector potential, giving rise to a quantized
flux. The inset shows quantized flux measured in reference [16].

In thermodynamic equilibrium, vortices penetrate a type II superconductor provided the applied
field H lies between the upper and lower critical fields Hc2 and Hc1 respectively. In an extreme type
II superconductor, Hc2 and Hc1 differ from Hc by a factor of κ = λLξ :
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Hc1 ∼
Hc ln κ
√

2κ
(κ >> 1) (12.88)

Hc2 =
√

2κHc. (12.89)

Below Hc1 and above Hc2 the system is uniformly superconducting and normal respectively. In
between, fluxoids self-organize themselves into an ordered triangular lattice, called the Abrikosov
Flux Lattice. Thus Hc1 is the first field at which it becomes energetically advantageous to add
a vortex to the uniform super conductor, whereas Hc2 is the largest field at which a non-uniform
superconducting solution is still stable.

For an extreme type II superconductor, Hc1 can be made calculating the field at which the Gibb’s
Free energy of a vortex

∆GV = εVL −H ·
∫

d3xB(x)
= εVL − HΦ0L, (12.90)

becomes negative. Here L is the length of the vortex and εV is the vortex energy per unit length. For
an extreme type II superconductor, this energy is roughly equal to the lost condensation energy of
the core. Assuming the core to have a radius ξ, this is

εV ∼
r2

2u
× πξ2 =

B2
c

2µ0
πξ2.

Vortices will start to enter the condensate when ∆GV < 0, i.e when

Hc1Φ0 ∼
B2
c

2µ0
× πξ2.

Putting Hc1 = Bc1/µ0, and estimating the area over which the magnetic field is spread to be πλ2
L, so

that the total flux, Φ0 = Bc1 × πλ2
L, we obtain

Hc1
Hc
∼

1
κ

so that Hc1 << Hc for an extreme type II superconductor. A more detailed calculation gives the
answer quoted in (12.88).

To calculate Hc2, consider a metal in which the applied field is gradually reduced from a high
field. Hc2 will be the field at which the first non-uniform superconducting solution becomes pos-
sible. Non uniform solutions of the order parameter satisfy the non-linear Schroedinger equation
(12.54),

!2

2M
(−i∇ −

e∗

!
A)2ψ(x) + rψ(x) + u|ψ(x)|2ψ(x) = 0. (12.91)
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Since the developing superconducting instability will have a very small amplitude, we can ignore
the cubic term. Choosing A = (0, 0, Bx), let us now seek solutions of ψ that depend only on x, so
that

−
!2

2M
ψ′′ +

1
2
mω2

cψ = −rψ(x). (12.92)

where ωc = e∗B
M . This as the time-independent Schroedinger equation for a harmonic oscillator with

energy E = −r. Since the smallest energy eigenvalue is E = 1
2!ωc, it follows that −r = 1

2!ωc. Now
according to (12.27), the coherence length is given by ξ2 = !2

2M|r| , so that |r| = !2

2Mξ2 = !
e∗Bc2
M , so that

2πBc2ξ2 =
h
e∗
= Φ0 (12.93)

where Φ0 =
h
e∗ is the superconducting flux quantum. At the uppercritical field, a tube of radius ξ

contains half a flux quanta, Φ0/2.
Using (12.93), the upper critical field is given by

Bc2 =
!

e∗ξ2
=

1
e∗ξ

√
2M|r|.

By contrast, using (12.61) and (12.49) the critical field Bc is given by

Bc =
√
µ0r2

u
=

1
e∗λL

√
M|r|

so that the ratio
Bc2
Bc
=
√

2
λL
ξ
=
√

2κ

Thus provided κ > 1√
2
, the condition for type II superconductivity, the upper-critical field Bc2

exceeds the thermodynamic critical field, Bc2 > Bc.

12.6 Dynamical effects of broken symmetry: Anderson Higg’s mech-
anism

One of the most dramatic effects of broken symmetry lies in its influence on gauge fields that cou-
ple to the condensate. This effect, called the “Anderson Higg’s mechanism”. not only lies behind
the remarkable Meissner effect, but it is responsible for the short-range character of the weak nu-
clear force. When a gauge field couples to the long-wavelength phase modes of a charged order
parameter, it absorbs the phase modes to become a massive gauge field that mediates a short range
(screened) force:

gauge field + phase −→ massive gauge field.

Superconductivity is the simplest, and historically, the first working model of this mechanism, which
today bears the name of Anderson, who first recognized its more general significance for relativistic
Yang Mills theories[18], and Higg’s who formulated these ideas in an action formulation [19].
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In this section, we provide an introduction to the Anderson Higg’s mechanism, using a simple
time-dependent extension of Ginzburg Landau theory that in essence, applies the method used by
Higg’s[19] to the simpler case of a U(1) gauge field.

12.6.1 Goldstone mode in neutral superfluids

In the ground-state, Ginzburg Landau theory can be thought of as describing the “potential energy”
V[ψ] ≡ FGL[ψ]|T=0 associated with a static and slowly varying configuration of the order parameter.
At scales much longer than the coherent length, amplitude fluctuations of the order parameter can
be neglected, and all the physics is contained in the phase of the order parameter. For a neutral
superfluid V = 1

2ρs(∇φ)
2, where ρs is the superfluid stiffness, given in Ginzburg Landau theory by

ρs =
!2ns
2M . But to determine the dynamics, we need the Lagrangian L = T − V associated with

slowly varying configurations of the order parameter, where T is the “kinetic” energy associated
with a time-dependent field configurations. The kinetic energy can also be expanded to leading
order in the time-derivatives of the phase (see exercise 13.8), so that the action governing the slow
phase dynamics is

S =
ρs
2

∫
dtd3x

“ −∇µφ∇µφ ”
︷!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!︷[
(φ̇/c∗)2 − (∇φ)2

]
(12.94)

In relativistic field theory, c∗ = c is the speed of light, and Lorentz invariance permits the action
to be simplified using a 4-vector notation −(∇lµφ)2as shown in the brackets above. The relativistic
action and the Ginzburg Landau free energy can be viewed as Minkowskii and Euclidean versions
of the same energy functional:

Minkowski︷!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!︷

S = −
ρs
2

∫
d4x(∇µφ)2 ←−−→

Euclidean︷!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!︷

F =
ρs
2

∫
d3x(∇φ)2 (12.95)

However, in a non-relativistic superfluid, c∗ is a characteristic velocity of the condensate. For exam-
ple, in a paired fermionic superfluid, such as superfluid He − 3, c∗ =

√
3vF , where vF is the Fermi

velocity of the the underlying Fermi liquid. If we take variations with respect to φ, (integrating by
parts in space-time so that ∇δφ∇φ =→ −δφ∇2φ, and δφ̇φ̇→ −δφφ̈), we see that φ satisfies the wave
equation

∇2φ −
1
c∗2
∂2φ

∂t2
= 0 Boguilubov phase mode ω = c∗q

corresponding to a phase mode that propagates at a speed c∗. This mode, often called a “Boguilubov
mode” is actually a special example of a Goldstone mode. The infinite wavelength limit of this mode
corresponds to a simple uniform rotation of the phase, and is an example of naturally gapless mode
that appears when a continuous symmetry is broken in a system governed by short-range forces.
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Example 12.9: If density fluctuations δns(x) = ns(x) − ns are included into the Hamiltonian of
a superfluid, the ground-state energy is given by

H =
∫

d3x
[
(ns(x) − ns)2

2χ
+
ρs
2

(∇φ)2
]

where χ = ∂N/∂µ is the charge susceptibility. From (see Ex. 13.5) we learned that den-
sity and phase are conjugate variables, which in the continuum satisfy Hamiltons equation
that δH/δns(x) = µ(x) = −!φ̇(x). Using this result, show that that the Lagrangian L =∫
d3x δHδns(x)δns(x) − H can be written in the form

L =
ρs
2

∫
d3x

[
(φ̇/c∗)2 − (∇φ)2

]

where (c∗)2 = ρs/(χ!2).
Solution: By varying the Hamiltonian with respect to the local density, we obtain the local
chemical potential of the condensate

µ(x) =
δH
δns(x)

= χ−1δns(x). (12.96)

By writing the condensate order parameter as ψ(x, t) = ψeiφ(x,t) = ψe−i
µ(x)
!
t, we may identify

µ(x)
!
= −φ̇ as the rate of change of phase, thus from (12.96), we obtain

!φ̇ = −χ−1δns(x)

so that (δns)2/(2χ) = χ2 (φ̇)2 and the Lagrangian takes the form

L =
∫

d3x(−!φ̇δns) − H =
1
2

∫
d3x

[
χ(!φ̇/c∗)2 − ρs(∇φ)2

]

Replacing !2χ = ρs/c∗2, we obtain the result.

12.6.2 Anderson Higgs mechanism

The situation is subtlely different when we consider a charged superfluid. In this case, changes
in phase of the order parameter become coupled by the long-range electromagnetic forces, and this
has the effect of turning them into gapped “plasmon” modes of the superflow and condensate charge
density.

From Ginzburg Landau theory, we already learned that in a charge field, physical quantities,
such as the supercurrent and the Ginzburg Landau free energy , depend on the the gauge invariant
gradient of the phase ∇φ − e∗

!
A. Since the action involves time-dependent phase configurations, it

must be invariant under both space and time-dependent gauge transformations(12.45),

φ→ φ + α(x, t), A→ A + !
e∗
∇α, ϕ→ ϕ −

!

e∗
α̇. (12.97)
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which means that time derivatives of the phase must occur in the gauge-invariant combination φ̇ +
e∗
!
ϕ, where ϕ is the electric potential. The action of a charged superluid now involves two terms

S = S ψ + S EM

where

S ψ =
∫

dtd3x
ρs
2




1
c∗2

(
φ̇ +

e∗

!
ϕ

)2
− (∇φ −

e∗

!
A)2


 (12.98)

is the gauged condensate contribution to the action and

S EM =
1

2µ0

∫
dtd3x

[(E
c

)2
− B2

]
(12.99)

is the electromagnetic Lagrangian, where E = −∂A∂t −∇φ and B = ∇×A are the electric and magnetic
field respectively.

The remarkable thing, is that since the scalar and vector potential always occur in the same
gauge invariant combination with the phase gradients, we can redefine the electromagnetic fields to
completely absorb the phase gradients as follows:

A′ = A − !
e∗
∇φ, ϕ′ = ϕ +

!

e∗
φ̇, (Aµ →

!

e∗
∇µϕ).

Notice that in (12.98), the vector potential, which we associate with transverse electromagnetic
waves, becomes coupled to gradients of the phase, which are longitudinal in character. The sum
of the phase gradient and the vector potential creates a field with both longitudinal and transverse
character. In terms of the new fields, the action becomes

S =
∫

dtd3x
{

Lψ︷!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!︷
1

2µ0λ2
L

[( ϕ
c∗

)2
− A2

]
+

LEM︷!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!︷
1

2µ0

[(E
c

)2
− B2

]}
. (12.100)

where 1/(µ0λ
2
L) = (ρse∗2)/(!2) = nse∗2/M defines the London penetration depth and we have

dropped the primes on ϕ and A in subsequent equations.
Amazingly, by absorbing the phase of the order parameter, we arrive at a purely electromagnetic

action, but one in which the phase stiffness of the condensate Lψ imparts a new quadratic term in
the action of the electromagnetic field - a “mass term”. Like a python that has swallowed its prey
whole, the new gauge field is transformed into a much more sluggish object: it is heavy and weak.
To see this in detail, let us re-examine Maxwell’s in the presence of the mass term. Taking variations
with respect to the fields, we obtain

δS ψ =
∫

dtd3x (δA(x) · j(x) − δϕ(x)ρ(x)) (12.101)

where

j = − 1
µ0λ2

L
A, ρ = −

1
µ0c∗2λ2

L
ϕ, (12.102)

413

Chapter 12. c©Piers Coleman 2011

denote the superfluid velocity and the voltage-induced change in charge density, while

δS EM =
1
µ0

∫
dtd3x

[
δA ·

(
1
c2 Ė − ∇ × B

)
+ δϕ

1
c2∇ · E

]
. (12.103)

Setting δS = δS ψ + δS EM = 0, the vanishing of the coefficient of δϕ gives Gauss’ equation

δS
δϕ
= ε0∇ · E − ρ = 0, (12.104)

while the vanishing of the coefficient of δA gives us Amperes equation,

δS
δA =

1
µ0

(
1
c2 Ė − ∇ × B

)
+ j = 0. (12.105)

Since ∇ · (∇ × B) = 0, taking the divergence of (12.105) and using (12.104) to replace ∇ · E = ρ/ε,
leads to a continuity equation for the supercurrent

∇ · j + ∂ρ
∂t
= −

1
µ0λ2

L

(
∇ · A + 1

c∗2
∂ϕ

∂t

)
= 0, (12.106)

excepting now, continuity also implies a gauge condition that ties φ to the longitudinal part of A.
For the relativistic case ( c∗ = c) this is the well-known Lorentz gauge condition (∇µAµ = 0).

If we now expand Amperes equations in terms of A, we obtain

∇ × B = ∇(∇ · A) − ∇2A = − 1
λ2
L

A + 1
c2
∂

∂t

(
−
∂A
∂t
− ∇ϕ

)
, (12.107)

and using the continuity (12.106) to eliminate the potential term, we obtain

!2 −

1
λ2
L


 A =


1 −

(
c∗

c

)2∇(∇ · A), (12.108)

where !2 = ∇2 − 1
c2
∂2

∂t2 . In a superconductor, where c∗ ! c, the right-hand side of (12.108) becomes
active for longitudinal modes, where ∇ · A ! 0. If we substitute A = Aoei(p·x−Ept)/!ê into (12.108)
we find that the dispersion E(p) of the transverse and longitudinal photons are given by

E(p) =




[(mAc2)2 + (pc∗)2]1/2, (ê ⊥ p longitudinal)

[(mAc2)2 + (pc)2]1/2, (ê ‖ p transverse)
(12.109)

Remarks:

• Both photons share the same mass gap but they have widely differing velocities[18, 20]. The
slower longitudinal mode of the electromagnetic field couples to density fluctuations: this is
the mode associated with the exclusion of electric fields from within the superconductor, and
it continues to survive in the normal metal above Tc as a consequence of electric screening.
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• The rapidly moving transverse mode, which couples to currents: this is the new excitation of
the superconductor that gives rise to the Meissner screening of magnetic fields.

• For a relativistic case, the right-hand side of (12.108) vanishes and the longitudinal and trans-
verse photons merge into a single massive photon[19], described by a “Klein Gordon” equa-
tion [

!
2 −

(mAc
!

)2]
A = 0 (12.110)

for a vector field of mass mA = !/(λLc). The generation of a finite mass in a gauge field
through the absorption of the phase degrees of freedom of an order parameter into a gauge
field is the essence of the Anderson Higg’s mechanism.

12.6.3 Electroweak theory

The standard model for electroweak theory, developed by Glashow, Weinberg and Salam[21, 22, 2]
provides a beautiful example of how the idea of broken symmetry, developed for physics in the
laboratory, also provides insight into physics of the cosmos itself. This is not abstract physics, for
the sunshine we feel on our face is driven by the fusion of protons inside the sun. The rate limiting
process is the conversion of two protons to a deuteron according to the reaction

p + p→ (pn) + e+ + νe

where the νe is a neutrino. This process occurs very slowly, due to the Coulomb repulsion between
protons, and the weakness of the weak decay process that converts a proton into a neutron. Were it
not for the weakness of the weak force, fusion would burn too rapidly, and the sun would have burnt
out long before life could have formed on our planet. It is remarkable that the physics that makes
this possible, is the very same physics that gives rise to the levitation of superconductors.

Electroweak theory posits that the electromagnetic and weak force derive from a common uni-
fied origin, in which part of the field is screened out of our universe through the development of a
broken symmetry, associated with two component complex order parameter or “Higg’s field”

Ψ =

(
ψ0
ψ1

)

that condenses in the early universe. The coupling of its phase gradients to gauge degrees of freedom
generates the massive vector bosons of the weak nuclear force via the Anderson-Higg’s effect,
miraculously leaving behind one decoupled gapless mode that is the photon. Fluctuations in the
amplitude of the Higg’s condensate are predicted to give rise to a massive Higg’s particle.

The basic physics of the standard model can be derived using the techniques of Ginzburg Landau
theory, by examining the interaction of the Higg’s condensate with gauge fields. In its simplest
version, first written down by Weinberg [2], this is given by (see example 13.9)

SΨ = −
∫

d4x
[
1
2
|
(
∇µ − iAµ

)
Ψ|2 +

u
2

(
Ψ†Ψ − 1

)2
]
, (12.111)
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where relativistic notation |∇µΨ|2 ≡ |∇Ψ|2 − |Ψ̇|2 is used in the gradient term. The gauge field Aµ
acting on a two component order parameter is a two dimensional matrix made up of a U(1) gauge
field Ba that couples to the charge of the Higg’s field and an SU (2) gauge field %Aµ,

Aµ = g%Aµ · %τ + g′Bµ

where %τ are the Pauli matrices and %Aµ = (A1
µ, A2

µ, A3
µ) is a triplet of three gauge fields that couple

to the isospin of the condensate. When the Anderson Higg’s effect is taken into account, three
components of the Gauge fields acquire a mass, giving rise to two charged W± with mass MW and
one neutral Z boson of mass MZ that couples to neutral currents of leptons and quarks.

Aµ −→
{
Z, W± neutral/charged vector bosons
A photon

When SΨ is split up into amplitude and phase modes of the order parameter, it divides up into two
parts (see example below) S = S H + SW , where

S H = −
1
2

∫
d4x

[
(∇µφH)2 + m2

Hφ
2
H
]

(12.112)

describes the amplitude fluctuations of the order parameter associated with the Higg’s boson, where
m2
H = 4u defines its mass, while

SW = −
1
2

∫
d4x

[
M2
W(W†µWµ) + M2

Z(ZµZµ)
]

(12.113)

determines the masses of the vector bosons.
The ratio of masses determines the weak-mixing angle θW

cos(θW) =
MW
MZ

Experimentally, MZ = 91.19 GeV/c2 and MW = 80.40 GeV/c2, corresponding to a Weinberg angle
of θW ≈ 280. The Higg’s particle has not yet been observed, and estimates of its mass vary widely,
from values as low as 80GeV/c2, to values an order of magnitude higher.

From the perspective of superconductivity, these two numbers define two length scales: a “pen-
etration depth” for the screened weak fields of order

λW =
!

mWc
∼ 2 × 10−18m

which defines the range of the weak force. At present, the “coherence length” of electroweak theory.
If one uses the estimated Higg’s mass, this is a length of order[23]

ξW =
!

mHc
∼ 2 × 10−18 − 2 × 10−19m.
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This very wide range of scales leaves open the possibility that the condensed Higg’s field is either
weakly type I, or strongly type II in character, an issue of importance to theories of the early
universe. The microscopic physics that develops below the coherence length ξW is also an open
mystery that is the subject of ongoing measurements at the Large Hadron Collider.

Table II contrasts the physics of superconductivity with the electroweak physics.

Superconductivity Electro-weak

Order parameter ψ

(
ψ0
ψ1

)

Pair condensate Higg’s condensate

Gauge field/Symmetry (φ,A) Aµ = g′Bµ + g(%Aµ · %τ)
U (1) U (1)×SU(2)

Penetration depth λL ∼ 10−7m λW ∼ 10−18m

Coherence length ξ = vF
∆
∼ 10−9 − 10−7m ξEW ∼ 10−18 − 10−19m

Condensation mechanism pairing unknown

Screened field %B W±, Z

Massless gauge field None Electromagnetism Aµ

Example 12.10:

(a) Suppose the Higg’s condensate is written Ψ(x) = (1 + φH(x))U(x)Ψ0, where φH is a
real field, describing small amplitude fluctuations of the condensate, U(x) is a matrix
describing the slow variations in orientation of the order parameter and Ψ0 =

(
1
0

)
is just a

unit spinor. Show that the the action splits into two terms, S = S H + SW , where

S H = −
1
2

∫
d4x

[
(∇µφH)2 + m2

Hφ
2
H

]
(12.114)

describes the amplitude fluctuations of the order parameter associated with the Higg’s
boson, where m2

H = 4u defines its mass, while

SW = −
1
2

∫
d4x|A′µΨ0|2. (12.115)
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determines the masses of the vector bosons.
(b) By expanding out the quadratic term in (12.115), show that it is diagonalized in terms of

two gauge fields
SW = −

1
2

∫
d4x

[
M2
W (W†µWµ) + M2

Z(ZµZµ)
]

and give the form of the fields and their corresponding masses in terms of the original
fields and coupling constants.

Solution:

(a) Let us substitute
Ψ(x) = (1 + φH(x))U(x)Ψ0

where Ψ0 =
(

1
0

)
, into (12.111) Since Ψ†Ψ = (1 + φH)2Ψ0

†U†UΨ0 = (1 + φH)2, so to
quadratic order, the “potential” part of SΨ can be written as

u
2

(Ψ†Ψ − 1)2 =
u
2

(2φH + φ2
H)2 =

mH

2
φ2
H + O(φ3

H). (m2
H = 4u)

The derivatives in the gradient term can be expanded as

(∇µ − iAµ)Ψ(x) = (∇µ − iAµ)UΨ0 + ∇µφH(UΨ0).

Since the derivative of a unit spinor is orthogonal to itself, the two terms in the above
expression are orthogonal so that when we take the modulus squared of the above expres-
sion, we obtain

|(∇µ − iAµ)Ψ|2 = |(∇µ − iAµ)UΨ0|2 + (∇µφH)2

=|Ψ0 |2=1︷!︸︸!︷
|UΨ0|2

= |U†(Aµ + i∇µ)UΨ0|2 +
(
∇µφH

)2 (12.116)

Here, we have introduced a pre-factor iU† into the first term, which does not change its
magnitude. Now the combination

A′µ = U†(Aµ + i∇µ)U

is a gauge transformation of Aµ which leaves the physical fields ( Gµν = ∇µAν − ∇νAµ −
i[Aµ,Aν]) and the action associated with the gauge fields invariant. In terms of this
transformed field, the gradient terms of SΨ can be written simply as

|(∇µ − iAµ)Ψ|2 = |A′µΨ0|2 + (∇µφH)2.

so that the sum of the gradient and potential terms yields

L = −
1
2
|
(
∇µ − iAµ

)
Ψ|2 +

u
2

(
Ψ†Ψ − 1

)2

=

LW︷!!!!!!!!︸︸!!!!!!!!︷

−
1
2
|A′µΨ0|2 −

1
2

[
(∇µφH)2 + m2

Hφ
2
H

]

︸!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!︸
LH

(12.117)

which when integrated over space-time, gives the results (SH) and (vbosons).
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(b) Written out explicitly, the gradient appearing in the gauge theory mass term is

A′µΨ0 =
[
g′Bµ + g%Aµ · %τ

]
· Ψ0

=

[
g′

(
Bµ

Bµ

)
+ g

(
A3
µ A1

µ − iA2
µ

A1
µ + iA2

µ −A3
µ

)] (
1
0

)

=

(
g′Bµ + gA3

µ

g(A1
µ + iA2

µ)

)
(12.118)

so that the mass term of the gauge fields can be written

LW = −
1
2
|AµΨ|2 = −

1
2

[
(gA3

µ + g′Bµ)2 + g2|A1
µ + iA2

µ|
2
]

= −
M2
Z

2
Z2
µ −

M2
W

2
|Wµ|2 (12.119)

where

Wµ = A1
µ + iA2

µ,

Zµ =
1

√
g2 + (g′)2

(
g′A(3)

µ + gBµ
)

(12.120)

are respectively, the charged W and neutral Z bosons which mediate the weak force,
MZ =

√
g2 + g′2 and MW = g = MZcos[θW ], where θW is the Weinberg angle determined

by
cos θW =

g
√
g2 + g′2

.

12.7 The concept of generalized rigidity
The “phase rigidity” responsible for superflow, the Meissner effect and its electro-weak counterpart,
are each consequences of general property of broken continuous symmetries. In any broken contin-
uous symmetry, the order parameter can assume any one of continouous number of directions, each
with precisely the same energy. By contrast, it always costs an energy to slowly “bend” the direc-
tion of the order-parameter away from a state of uniform order. This property is termed “generalized
rigidity” [24]. In a superconductor or superfluid, it costs a phase bending energy

U(x) ∼
1
2
ρs(∇φ(x))2, (12.121)

to create a gradient of the phase. The differential of U with respect to the phase gradient δU/(!δ∇φ)
defines the “superflow” of particles is directly proportional to the amount of phase bending, or the
gradient of the phase

js =
δU
!δ∇φ

=
ρs
!
∇φ. (12.122)
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This relationship holds because density and phase are conjugate variables. Anderson noted that that
we can generalize this concept, to a wide variety of broken symmetries, each with their correspond-
ing phase and conjugate conserved quantity. In each case, a gradient of the order parameter gives
rise to a “superflow” of the quantity that translates the phase(see table 1).

For example, broken translation symmetry leads to the superflow of momentum, or sheer stress,
broken spin symmetry leads to the superflow of spin or spin superflow. There are undoubtedly new
classes of broken symmetry yet to be discovered - one of which might be broken time translational
invariance (see table 1).

Table. 1. Order parameters, broken symmetry and rigidity.

Name Broken Symmetry Rigidity/Supercurrent

Crystal Translation Symmetry Momentum superflow
(Sheer stress)

Superfluid Gauge symmetry Matter superflow

Superconductivity E.M. Gauge symmetry Charge superflow

Antiferromagnetism Spin rotation symmetry Spin superflow
(x-y magnets only)

? Time Translation Symmetry Energy superflow ?

12.8 Thermal Fluctuations and criticality

At temperatures that are far below, or far above a critical point, the behavior of the order parameter
resembles a tranquil ocean with no significant amount of thermal noise in its fluctuations. But
fluctuations become increasingly important near the critical point as the correlation length diverges.
At the second-order phase transition, infinitely long-range “critical fluctuations” develop in the
order parameter. The study of these fluctuations requires that we go beyond mean field theory.
Instead of using the Landau Ginzburg functional as a variational Free energy, now we use it to
determine the Boltzmann probability distribution of the thermallly fluctuating order parameter, as
follows

p[ψ] = Z−1e−βFGL[ψ] =
1
Z

exp
[
−β

∫
ddx

(1
2

[
s(∇ψ)2 + r|ψ(x)|2

]
+ u|ψ(x)|4

)]
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where Z =
∑
ψ e−βFGL[ψ] is the normalizing partition function. This is the famous “φ4 field theory”

of statistical mechanics (where we use ψ in place of φ.)
The variational approach can be derived from the probability distribution function p[{ψ}], by ob-

serving that the probabilitly of a given configuration is sharply peaked around around the mean field
solution, ψ = ψ0. If we make a Taylor expansion around around a nominal mean-field configuration,
writing ψ(x) = ψ0 + δψ(x), then

FGL[{ψ}] = Fmf +
∫

x
δψ(x)

=0︷︸︸︷
δFGL
δψ(x)

+
1
2

∫

x,x′
δψ(x)δψ(x′)

δ2FGL
δψ(x)δψ(x′)

+ . . .

where the first derivative is zero because the Free energy is stationary for the mean-field solution
δF/δψ = 0, which implies

FGL[{ψ}] = Fmf [ψ0] +
1
2

∫

x,x′
δψ(x)δψ(x′)

δ2FGL
δψ(x)δψ(x′)

+ . . .

The first non-vanishing terms in the Free energy are second order terms, describing a Gaussian
distribution of the fluctuations of the order parameter about its average

δψ(x) = ψ(x) − ψ0

The amplitude of the fluctuations at long wavelengths becomes particularly intense near a crit-
ical point. This point was first appreciated by Ornstein and Zernicke, who observed in 1914 that
light scatters strongly off the long-wavelength density fluctuations of a gas near the critical point of
the liquid-gas phase transition. We now follow Ornstein Zernicke’s original treatment, and study
study the behavior of order parameter fluctuations above the phase transition.

To treat the fluctuations we Fourier transform the order parameter:

ψ(x) =
1
√
V

∑

q
ψqeiq·x, ψq =

1
√
V

∫
ddxψ(x)e−iq·x. (12.123)

Here, we use periodic boundary conditions in a finite box of volume V = Ld, with discrete wavevec-
tors q = 2π

L (l1, l2, . . . ld). Note that ψ−q = ψ
∗
q, since ψ (or each of its n− components) is real.

Substituting 12.123 into 12.15, noting that (−s∇2 + r)→ (sq2 + r) inside the Fourier transform, we
obtain

F =
1
2

∑

q
|ψq|2

(
sq2 + r

)
+ u

∫
ddx|ψ(x)|4. (12.124)

so that the quadratic term is diagonal in the momentum-space representation. Notice how we can
rewrite the GL energy in terms of the (bare) susceptibility χq = (sq2 + r)−1 encountered in (12.19),
as

F =
1
2

∑

q
|ψq|2χ−1

q + u
∫

ddx|ψ(x)|4. (12.125)

so the quadratic coefficient of the GL free energy is the inverse susceptibilty.
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Suppose r > 0 and the deviations from equilibrium ψ = 0 are small enough to ignore the
interaction, permitting us to temporarily set u = 0. In this case, F is a simple quadratic function of
)ψq and the probability distribution function is a simple Gaussian

p[ψ] = Z−1 exp


−
β

2

∑

q
|ψq|2

(
sq2 + r

)

 ≡ Z

−1 exp


−

∑

q

|ψq|2

2S q




where
S q = 〈|ψq|2〉 =

kBT
sq2 + r

=
kBT/c
q2 + ξ−2 . (12.126)

is the variance of the fluctuations at wavevector q and ξ =
√
s/r is the correlation length. This

distribution function is known as the “Ornstein-Zernicke” form for the Gaussian variance of the
order parameter. This quantity is the direct analog of the Green’s function in many body physics.
Note that

• For q >> ξ−1, S q ∝ 1/q2 is singular or “critical”.

• Using (12.19) we see that the fluctuations of the order parameter are directly related to its
static susceptibility. S q = kBTχq. This is a consequence of the fluctuation dissipation theorem
in the classical limit.

• S q resembles a Yukawa interaction associated with the virtual exchange of massive parti-
cles : V(q) = 1/(q2 + m2). Indeed, short-range nuclear interactions are a result of quantum
fluctuations in a pion field with correlation length ξ ∼ m−1.

Next, let us Fourier transform this result to calculate the spatial correlations:

S (x − x′) = 〈δψ(x)δψ(x′)〉 =
1
V

∑

q,q′

S qδq−q′︷!!!!︸︸!!!!︷
〈ψ−qψq′ 〉 ei(q

′·x′−q·x)

=

∫
ddq

(2π)d
kBT/c
q2 + ξ−2 e

iq·(x′−x) (12.127)

where we have taken the thermodynamic limit V → ∞. This is a Fourier transform that we have
encountered in conjunction with the screened Coulomb interaction, and in three dimensions we
obtain

S (x − x′) = kBT
4πs

e−|x−x′|/ξ

|x − x′| , (d = 3)

Note that:

• The generalization of this result to d dimensions gives

S (x) ∼
e−x/ξ

xd−2+η

where Ginzburg Landau theory predicts η = 0.
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Figure 12.11: Length-scales near a critical point. On length-scales ξ >> x >> ξ0, fluctuations are
critical, with universal power-law correlations. On length-scales larger than the correlation length
ξ, fluctuations are exponentially correlated. On length scales shorter than the coherence length ξ0,
the order parameter description must be replaced by a microscopic description of the physics.

• S (x) illustrates a very general property. On length scales below the correlation length, the
fluctuations are critical, with power-law correlations, but on longer length scales, correlations
are exponentially suppressed. (See Fig. 12.11).

• Ginzburg Landau theory predicts that the correlation length diverges as

ξ ∝ (T − Tc)−ν

where ν = 1/2. Remarkably, even though Ginzburg Landau theory neglects the non-linear
interactions of critical modes, these results are qualitatively correct. More precise treatments
of critical phenomenon show that the exponents depart from Gaussian theory in dimensions
d < 4.

12.8.1 Limits of mean-field Theory: Ginzburg Criterion

What are the limits of mean-field theory? We studied the fluctuations at temperatures T > Tc by
assuming that the non-linear interaction term can be ignored. This is only true provided the ampli-
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tude of fluctuations is sufficiently small. The precise formulation of this criterion was first proposed
by Levanyuk[25] and Ginzburg[26]. The key observation here, is that mean-field theory is only
affected by fluctuations on length-scales longer than the correlation length x >> ξ. Fluctuations on
wavelengths shorter than the correlation length are absorbed into renormalized Landau parameters
and do not produce departures from mean-field theory. To filter out the irrelevant short-wavelength
fluctuations, we need to consider a coarse-grained average ψ̄ of the order parameter over a correla-
tion volume ξd. The Ginzburg criterion simply states that variance of the averaged order parameter
must be small compared with the equilibrium value, i.e

δψ̄2 =
1
ξd

∫

|x|<ξ
ddx〈δψ(x)δψ(0)〉 << ψ2

0 (12.128)

Since correlations decay exponentially on length-scales longer than ξ, to get an an estimate of this
average, we can remove the constraint |x| < ξ on the volume integral, to obtain

δψ̄2 ∼
1
ξd

∫
ddx〈δψ(x)δψ(0)〉 ∼

S q=0

ξd
=

kBTc
s ξd−2

Now substituting ψ2
0 =

|r|
4u ∼

s
u

1
ξ2

we obtain

δψ̄2

ψ2
0
∼
kBTc
ξd−4

u
s2 << 1.

or
ξ4−d <<

c2

kBTc
.

Let us try to understand the meaning of the length-scale defined by this expression. Multiplying by
this expression by ξd−4

0 , where ξ0 =
√
s/(aTc) is the coherence length, we obtain the dimensionless

criterion

(
ξ

ξ0

)4−d
<< ξd0

(aTc)2
︷︸︸︷
s2ξ−4

0
ukBTc

= ξd
a2Tc
ukB

Now from (12.11 ) we recognize the combination a2Tc
u = 8∆CV as the jump in the specific heat, so

that the Ginzburg criterion can be written in the form

(
ξ

ξ0

)4−d
<<

SG
kB
, SG = ∆CVξd0 Ginzburg Criterion, (12.129)

where we have dropped the factor of 8. The quantity SG = ∆CVξd0 , has the dimensions of entropy,
and can be loosely interpreted as the entropy reduction per coherence volume ξd0 associated with the
development of order, so that SG/kB = lnW is a logarithmic measure number of degrees of freedom
W associated with the fully-developed order parameter.
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For models with d > 4, the Ginzburg criterion implies that large correlation lengths are good
and in this situation, as the correlation length diverges close to the critical point, mean-field theory
becomes essentially exact. The dimension dU = 4 is called the upper critical dimension. In a
realistic situation, where d < dU = 4 d < 4, ξ4−d diverges as the critical point is approached, so
for d < dU = 4, the Ginzburg criterion sets an upper bound on the correlation length and lower
bound on the distance from the phase transition. If we rewrite ξ/ξ0 = |∆T/Tc|−1/2, the temperature
deviation from Tc, ∆T must satisfy the requirement

|∆T |
Tc
>> (SG/kB)−(4−d)2 (12.130)

for mean-field theory to be reliable.
From the above discussion, it is clear that systems with a large coherence length will deviate

from mean-field theory only over a very narrow temperature window. Examples of systems with
large coherence lengths are superconductors, superfluid He − 3 and spin density waves, where the
ratio between the transition temperature and the Fermi temperature of the fluid kBTc/εF << 1. For
example, in a superconductor, the entropy of fondensation per unit cell is of order kB(ε/∆), where
∆ ∼ 3.5kBTc is the gap, while the coherence length is of order vF/∆ ∼ a(εF/∆), where vF ∼ εFa is
the Fermi velocity, so that the entropy of condensation per coherence length is of order

∆SG/kB ∼ (∆/εF) × (εF/∆)3 ∼ (εF/∆)2

and the Ginburg criterion is
|∆T |
Tc
>> (∆/εF)4

in three dimensions. Similar arguments may be applied to charge and spin density wave materials.
For a typical superconductor with Tc ∼ 10K, ∆ ∼ 30K, εF ∼ 105K, this gives |∆T |Tc ∼ (10−5)4 ∼
10−20, far beyond the realm of observation. By contrast, in an insulating magnet the coherence
length is of order the lattice spacing, a and the “Ginzburg entropy” is of order unity so ∆T/Tc ∼
1. These discussions are in accord with observations. Superconductors and charge density wave
systems display perfect mean-field transitions, yet insulating magnets and superfluid He− 3 display
the classic λ-shaped specific heat curves that are a hall-mark of a non-trivial specific-heat exponent
α.

12.9 Exercises
1. Show that the action of U(φ)eiφN̂ on a coherent state, |φ〉 = U†(φ)|ψ〉 uniformly shifts the phase of the

order parameter by φ, i.e.
ψ̂(x)|φ〉 = ψ(x)eiφ|φ〉

so that
−i

d
dφ
|φ〉 = N̂ |φ〉
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Solution:

(a) Let us begin by showing that U(φ)ψ̂†(x)U†(φ) = eiφψ̂†(x). Since ψ̂† adds a particle to a state, it
follows that

ψ̂†(x)|α,N〉 = |β,N + 1〉.

where |α,N〉 and |β,N + 1〉 are states with N and N + 1 particles, respectively. But then

eiφN̂
e−iφN |β,N+1〉︷!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!︷

ψ̂†(x)e−iφN̂ |α,N〉 = eiφ(N+1)ψ̂†(x)e−iφN |α,N〉 = eiφψ̂†(x)|α,N〉

Since this holds for all states |α,N〉, it follows that

U(φ)ψ̂†(x)U†(φ) = eiφψ̂†(x)

(b) Let us write out |φ〉 = U(φ)|ψ〉 explicitly:

U(φ)|ψ〉 = U(φ) exp
[∫

ddxψ(x)ψ̂†(x)
]
U†(φ)|0〉

where we have sneaked in a U†(φ) just before the vacuum, since U†(φ)|0〉 = |0〉. Using the
identity UeAU† = eUAU† , we can move the unitary operators inside the exponential

U(φ)|ψ〉 = exp




∫
ddxψ(x)

eiφψ̂†(x)︷!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!︷
U(φ)ψ̂†(x)U†(φ)



|0〉

= exp
[∫

ddx(ψ(x)eiφ)ψ̂†(x)
]
|0〉 (12.131)

corresponding to a coherent state where ψ(x) → ψ(x)eiφ has picked up an additional uniform
phase.

(c) Since |φ〉 = eiφN̂ |ψ〉, differentiating both sides with respect to φ, we obtain

−i
d
dφ
|φ〉 = −i

iN̂eiφN̂︷!!!!!︸︸!!!!!︷
d
dφ

[
eiφN̂

]
|ψ〉 = N̂|φ〉.

Since this holds for all such coherent states, it follows that N̂ = −i ddφ .

2. Consider the most general form of a two component Landau theory

f [ψ] =
r
2

(ψ2
1 + ψ

2
2) +

s
2

(ψ2
1 − ψ

2
2) + u(ψ2

1 + ψ
2
2)2 + u2(ψ4

1 − ψ
4
2) + u3ψ

2
1ψ

2
2

(a) Rewrite the free energy in terms of the amplitude and phase of the order parameter to demon-
strating that if s, u2 or u3 are finite, the free energy is no longer gauge invariant.

(b) Rewrite the free energy as a function of ψ and ψ∗.
(c) If s > 0, what symmmetry is broken when r < 0?
(d) Write down the mean field equations for s = 0, r < 0.
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(e) Sketch the phase diagram in the (u2, u3) plane.

3. Consider the more general class of Landau theory where the interaction u can be negative:

f [ψ] =
1
V
F[ψ] =

r
2
ψ2 + u4ψ

4 + u6ψ
6 − hψ

(a) Show that for h = 0, u < 0, r > 0 the free energy contains three local minima, one at ψ = 0 and
two others at ψ = ±ψ0, where

ψ2
0 = −

u
3u6
±

√(
u

3u6

)2

−
r

6u6
.

(b) Show that for r < rc, the solution at ψ = 0 becomes metastable, giving rise to a first order phase
transition at

rc = −
u2

2u6

(Hint: Calculate the critical value of r by imposing the second condition f [ψII] = 0. Solve the
equation f [ψ] = 0 simultaneously with f ′[ψ0] = 0 from the last part. )

(c) Sketch the (T, u) phase diagram for h = 0.
(d) For r = 0 but h ! 0 show that there are three lines of critical points where f ′[ψ] = f ′′[ψ] = 0

converging at the single point r = u = h = 0. This point is said to be a “tricritical point”.
(e) Sketch the (h, u) phase diagram for r = 0.

4. We can construct a state of bosons in which the bosonic field operator has a definite expectation value
using a coherent state as follows

|ψ〉 = exp
[∫

d3xψψ̂†(x)
]
|0〉.

The Hermitian conjugate of this state is 〈ψ̄| = 〈0|e
∫
d3xψ̂(x)ψ∗ .

(a) Show that this coherent state is an eigenstate of the field destruction operator: ψ̂(x)|ψ〉 = ψ|ψ〉.
(b) Show that overlap of the coherent state with itself is given by 〈ψ̄|ψ〉 = eN , where N = V |ψ|2 is

the number of particles in the condensate.
(c) If

H =
∫

d3x
[
ψ̂†(x)

(
−
!2

2m
∇2 − µ

)
ψ(x) + U : (ψ†(x)ψ(x))2 :

]

is the (normal ordered) energy density, show that the energy density f = 1
V 〈H〉, where

〈H〉 =
〈ψ̄|H|ψ〉
〈ψ̄|ψ〉

is given by
f = −µ|ψ|2 + U |ψ|4.

providing a direct realization of the Landau Free energy functional.

5. (Systematic derivation of the Ginzburg criterion).
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(a) Show that the Ginzburg Landau free energy (12.125) can be written in the form

F =
1
2

∫
ddx′ddxψ(x′)χ−1

0 (x′ − x)ψ(x′) + u
∫

ddxψ(x)4. (12.132)

where
χ−1

0 (x′ − x) = δd(x − x′)
[
−s∇2 + r

]

is inverse of the susceptibility. The subscript “0” has been added to χ−1 denoting that is the
“bare” susceptibilty, calculated for u = 0.

(b) By identifying the renormalized susceptibility with the second derivative of the free energy, show
that when interactions are taken into account

χ−1
0 (x′ − x) ≈ 〈

δ2F
δψ(x)δψ(x′)

〉 = δd(x′ − x)
[
−s∇2 + r + 12u〈ψ2〉

]

(Hint: differentiate (12.17) with respect to ψ(x) and take the expectation value of the resulting
expression), so that in momentum space

χq = sq2 + r + 12u〈ψ2〉T

where 〈ψ2〉T = S (x − x′)|x=x′ is the variance of the order parameter at a single point in space,
evaluated at temperature T .

(c) Show that the effects of fluctuations suppress Tc, and that at the new suppressed transition tem-
perature T ∗c

r = r0 = a(T ∗c − Tc) = −12u〈ψ2〉T ∗c = −12u
∫

ddq
(2π)d

kBT ∗c /c
q2 .

so that
χ−1

q = sq2 + (r − r0) + 12u
[
〈ψ2〉 − 〈ψ2〉T ∗c

]

Notice how the subtraction of the fluctuations at T = T ∗c renormalizes r → r − r0 = a(T − T ∗c ).
What is the renormalized correlation length?

(d) Finally, calculate the Ginzburg criterion by requiring that |r−r0| > 12u
[
〈ψ2〉 − 〈ψ2〉T ∗c

]
, to obtain

|r − r0|
4u

< 3
∫

ddq
(2π)d

kBT ∗c
q2

[
ξ−2

q2 + ξ−2

]
(12.133)

The term inside the square brackets on the right hand side results from the renormalization of
r → r−r0. Notice how this term only involves fluctuations with q<

˜
ξ−1, i.e the long-wavelength

fluctuations of wavelength greater than ξ. What has happened to the short wavelength fluctua-
tions

(e) By approximately evaluating the integral on the right-hand side of (12.133) obtain the Ginzburg
criterion:

|r − r0|
u
<<

kBT ∗c
s

1
ξd−2

6. Properties of a coherent state.

Show that a coherent state |α〉 = eαa† |0〉 can be expanded as a sum of Harmonic oscillator states
|n〉 = 1√

n!
(a†)n|0〉, as follows

|a〉 = |0〉 + α|1〉 + . . .
αn
√
n!
|n〉
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(a)(b) Show that 〈α∗|α〉 = e|a|2 , so that a normalized coherent state is given by

|α〉N = e−|α|
2/2eαâ† |a〉

(c) Show that the probabilty of being in a state with n particles is a Poisson distribution

p(n) =
(λ)n

n!
e−|λ|, λ = |α|2

Note that a Poission distribution has equal mean and variance : 〈N̂〉 = 〈δN̂2〉 = λ

(d) Show that when α =
√
Ns, δN

2

N2 =
1
Ns

.
(e) Show that when the superconducting order parameter is written in terms of its amplitude and

phase, ψ = |ψ|eiφ, that the Ginzburg Landau free energy of a superconductor separates into a
phase and an amplitude component.

∣∣∣∣∣
(
∇ − i

q
!

A
)
ψ

∣∣∣∣∣
2
=

∣∣∣∣∣e
iφ

[
∇|ψ| + i

(
∇φ −

q
!

A
)]∣∣∣∣∣

2

= (∇|ψ|)2 + |ψ|2
(
∇φ −

q
!

A
)2

(12.134)

Use this expression to rederive an expression for the current in terms of the phase gradient of the
order parameter.

429



bk.pdf June 28, 2011 216

Bibliography

[1] L. D. Landau. Theory of phase transformations. Phys. Z. SowjUn, 11(26):545, 1937.

[2] Steven Weinberg. A model of leptons. Phys. Rev. Lett., 19(21):1264–1266, Nov 1967.

[3] N. Goldenfeld. Lectures on Phase Transitions and the Renormalization Group. Perseus Pub-
lishing, 1992.

[4] L. S. Ornstein and F. Zernike. Proc. Sect. Sci. K. Akad. Wet. Amsterdam, 17:793, 1914.

[5] V. L. Ginzburg and L. D. Landau. On the theory of superconductivity. Zh. Eksp. Teor. Fiz,
20:1064, 1950.

[6] Alexei A. Abrikosov. Type II Superconductors and the Vortex Lattice. Nobel Prize Lecture in
Les Prix Nobel, published by the Nobel Foundation, Stockholm, pages 59–67, 2003.

[7] O. Penrose. On the Quantum Mechanics of Helium II. Phil Mag., 42:1373, 1951.

[8] O. Penrose and L. Onsager. Bose Einstein Condensation and Liquid Helium. Phys. Rev.,
104:576, 1956.

[9] P. W. Anderson. Considerations on the flow of superfluid heii. Rev. Mod. Phys., 38:298, 1966.

[10] C. N. Yang. Concept of off-diagonal long-range order and the quantum phases of liquid he
and of superconductors. Rev. Mod. Phys., 34:694, 1962.

[11] L. Onsager. Statistical hydrodynamics. Nuovo Cimento, Suppl. 6:279, 1949.

[12] R. P. Feynman. Progress in Low Temperature Physics, volume 1. North Holland, Amsterdam,
1955.

[13] F. London. Superfluids. Dover Publications, New York, 1961-64.

[14] D. Saint-James and G. Sarma. Type II Superconductivity. Pergamon Press, 1969.

[15] L. Onsager. Proceedings of the International Conference on Theoretical Physics, Kyoto and
Tokyo, September 1953. Science Council of Japan, Tokyo, pages 935–6, 1954.

431

Chapter 12. c©Piers Coleman 2011

[16] B. S. Deaver and W. M. Fairbank. Experimental evidence for quantized flux in superconduct-
ing cylinders. Phys Rev Lett, 7:43, 1961.
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Chapter 13

Path Integrals

13.1 Broken symmetry, coherent states and path integrals.

In this chapter, we link the order parameter concept with microscopic Many Body Physics by in-
troducing the path integral formulation of quantum many body theory. The emergence of a macro-
scopic order parameter in a quantum system is analogous to the emergence of classical mechanics
in macroscopic quantum systems. The emergence of classical mechanics from quantum mechanics
is most naturally described using wave-packets and the Feynman path integral. We shall see that a
similar approach is useful for many body systems, where the many body “wave-packets” states are
coherent states: eigenstates of the quantum fields.

Chapter 12 introduced Landau’s concept of broken symmetry, embracing the idea of an order
parameterΨ(x). The beauty of the Landau approach, is that it is a macroscopic description of matter:
a length scales beyond the microscopic coherence length ξ0, the emergence of an order parameter
does not depend on the detailed microscopic microscopic physics that gives rise to it. In this chapter
we go beneath the coherence length, to examine the connection between the order parameter and
the microscopic physics of a many body system.

The basic idea of Feynman’s path integral[1, 2, 3], is to re-formulate the quantum mechanical
amplitude as sum of contributions from all possible paths, in which the classical action plays the
role of the phase φ = S Path/! associated with the path. The amplitude for a particle in a box to go
from state |i〉 to state | f 〉 is given by

〈 f |e−i
Ht
! |i〉 =

∑

Paths i −→ f
exp


i
S path
!




where
S path =

∫ t

0
dt′

(
pq̇ − H[p, q]

)
(13.1)

The Feynman formulation is a precise reformulation of operator quantum mechanics. In the classical
limit ! → 0, the path integral is dominated by the paths of stationary phase, which correspond to
the classical path which minimizes the action.
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Figure 13.1: Illustrating a periodic path in imaginary time that contributes to the partition function
of a single particle.

Feynman’s idea can be extended to encompass statistical mechanics by treating the Boltzmann
density matrix as a time-evolution operator in imaginary time. The trace over the density matrix is
then the sum of amplitudes of paths that return to the initial configuration after an imaginary time
t = i!β:

Z = Tr
[
e−βĤ

]
=

∑

λ

〈λ|e−i
Ht
! |λ〉

∣∣∣∣∣∣∣
t=−i!β

(13.2)

By changing variables to it/!→ τ, so that idt/!→ dτ, and pq̇dt → pq̇dτ we obtain we see that we
can write this quantity as

Z =
∑

periodic paths
exp [−S E]

where
S E =

∫ β

0
dτ

(
−
i
!
p∂τq + H[p, q]

)
. (13.3)

We will now discuss a sophisticated extension of this idea to many body systems, in which the
path integral sums over the configurations of the particle fields rather than the trajectories of the par-
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ticles themselves. The key innovation that makes this possible, is the use of coherent states, which
are literally, eigenstates of the quantum field. In quantum optics, such states, sometimes called
“Glauber states”, are used to describe “minimum-uncertainty” wave-packets of photon fields[4].
For a single boson field, a coherent state is given by

|b〉 = eb̂†b|0〉 (13.4)

where in this chapter, we use the roman b̂ and b̂† to denote boson operators, reserving the italic
b and b̄ for the corresponding eigenvalues. Now |0〉 is a harmonic oscillator ground-state defined
by b̂|0〉 = 0, and it forms a a minimum uncertainty wavepacket centred around the origin of phase
space. By contrast, the state |b〉 is the result of translating |0〉 so that it is centered around the point
(q, p) in phase space, where b = (q + ip)/

√
2! incorporates both variables into a single complex

variable (see problem 14.1). Paradoxically, though the state is an eigenstate of b̂ = (q̂ + ip̂)/
√

2!, it
is not an eigenstate of either q̂ or p̂. In a many body problem the fields ψ̂(x) are defined at at each
point in space and in the corresponding coherent state |φ〉

ψ̂(x)|φ〉 = φ(x)|φ〉. (13.5)

We can still use the definition (13.11) for a coherent state, but now

b̂† =
∫

ddx ψ̂†(x)φ(x), (13.6)

coherently adds a boson to a condensate with wavefunction ψ(x). (See example 12.33 and exercise
12.6.) These states are the “wavepackets” of many body physics. With care, we can use them as a
basis set in which the matrix elements of the Hamiltonian are obtained simply by replacing the field
operators by their expectation values. Using this procedure, the partition function can be re-written
as a path integral in which φ(x, t) defines a “history”, or path over which the field at point x evolves,
and (Fig. 13.2),

Z =
∑

periodic paths
e−S E[φ̄,φ]. (13.7)

By convention, we denote the complex conjugate of φ(x) by φ̄(x). In chapter 3, we introduced
motivated particle field operators of particles as the quantization of the single particle wavefunc-
tion, identifying φ(x) ∼ q, i!φ̄†(x) ∼ p as the corresponding canonical position and momenta
co-ordinates. Using this analogy the many-body analog of the kinetic term in (14.3) is

−
i
!
p∂τq ∼ φ̄(x)∂τφ(x), (13.8)

so the many-body analogue of (13.3) is expected to take the form

S E =
∫ β

0
dτd3x

[
φ̄(x, τ)∂τφ(x, τ) + H[φ̄, φ]

]
. (13.9)

where H is the many-body Hamiltonian, with field operators replaced by the c-numbers φ and φ̄.
Infact, as we’ll see, this is precisely the form that is obtained when the quantum partition function is
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Figure 13.2: Illustrating how the operator field at each point in space is represented by a trajectory
inside the path integral.

expanded in terms of coherent states |φ(x, τ)〉 [5, 6, 7]. Furthermore, time-ordered Green’s functions
can also be re-written as an average under the path integral, so that

〈T ψ̂(1)ψ̂†(2)〉 =
1
Z

∑

path
exp

[
−S path

]
φ(1)φ̄(2)

where ψ̄(2) is the complex conjugate of ψ(2). In this way, the quantum mechanics of the many body
system is transformed from an operator formalism, into a statistical description, with each with each
space-time configuration of the fields weighted by the action.

Remarkably, this approach can be extended to include fermions, using an idea of Julian Schwinger
[8] that generalizies the concept of “c-numbers” to include anticommuting Grassman numbers. For
fermions, the numbers ψ(x) appearing in the coherent states must anticommute with each-other.
They are thus a new kind of number, which requires some new algebraic tricks. Moreover, we’ll see
that that we can evaluate the corresponding path integral for all non-interacting problems. This is
already a major achievement.

A final aspect of path integrals, is that interacting problems can be transformed, by the method of
“Hubbard Stratonovich” [9, 10], into a problem of “free” particles moving in a fluctuating effective
field. This technique provides an important tool for the study of broken symmetry phase transitions.

Zinteracting −→
∑

{∆}

[
path integral of fermions moving in field ∆

]
(13.10)

where {∆} denotes a given configuration of the symmetry breaking field ∆.
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13.2 Coherent states for Bosons
To demonstrate the path integral approach, and its derivation using coherent states, we will start
with the bosonic path integral. As a warm up for path integrals, we need to establish a few key
properties of the bosonic coherent state. We start by considering the coherent state of a single boson
operator b̂†, given by

|b〉 = eb̂†b|0〉, (13.11)

where b is a complex number. This state is an eigenstate of the annihilation operator

b̂|b〉 = b|b〉. (13.12)

We can also form the conjugate state
〈b̄| = 〈0|eb̄b̂. (13.13)

which is the eigenstate of the creation operator,

〈b̄|b̂† = 〈b̄|b̄,

where b̄ is the complex conjugate of b. Although b and b̄ are complex conjugates of one-another,
they are derived from two independent real variables, and when we integrate over them we need a
double integral in which we treat b and b̄ as independent variables. The “bar” notation is adopted
by convention to emphasize this linear independence.

A coherent state describes a condensate with an indefinite particle number. If we decompose it
into eigenstates of particle number n by expanding in powers of b we obtain

|b〉 =
∑

n

bn

n!
(b̂†)n|0〉 =

∑

n
|n〉

bn
√
n!

(13.14)

where |n〉 = (b̂†)n√
n!
|0〉 is the eigenstate of the number operator n̂ = b̂†b̂. In this way we see that the

amplitude for a coherent state to be in a state with n particles is

φn(b) = 〈n|b〉 =
bn
√
n!
. (13.15)

Similarly,

〈b̄| =
∑

m

b̄m
√
m!
〈m|, (13.16)

and
〈b̄|m〉 =

b̄m
√
m!

(13.17)

From (13.14) and (13.16), the overlap between the two states 〈b̄1| and |b2〉 is given by

〈b̄1|b2〉 =
∑

m,n

b̄m1√
m!

δmn︷︸︸︷
〈m|n〉

bn2√
n!
=

∑

n

(b̄1b2)n

n!
= eb̄1b2 . (13.18)
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13.2.1 Matrix elements and the completeness relation.

Remarkably, even though coherent states are non-orthogonal, they can be used to great effective-
ness as a basis (an overcomplete basis), in which the field operators are diagaonal. There are two
important properties of the coherent state that we shall repeatedly use to great advantage:

• Matrix elements. Matrix elements of normal ordered operators O[b̂†, b̂] between two coher-
ent states are obtained simply by replacing the operators b̂ and b̂† by the c-numbers b and b̄
respectively:

〈b̄1|Ô[b̂†, b̂]|b2〉 = O[b̄1, b2] × 〈b̄1|b2〉 = O[b̄1, b2] × eb̄1b2 (13.19)

• Completeness.

The unit operator can be decomposed in terms of coherent states as follows

1̂ =
∑

b̄,b

|b〉〈b̄|, (13.20)

where1
∑

b̄,b

≡
∫

db̄db
2πi

e−b̄b (13.24)

is the normalized measure for summing over coherent states.

We present a detailed derivation of these two results in appendix 14A, continuing now to use
them to derive a path integral.

1Note: In quantum optics, one often encounters the “normalized” coherent or Glauber state,

|b, b̄〉N =
1
√

2πi
e−b̄b̂+b̂†b|0〉 =

1
√

2πi
e−b̄b/2|b〉 (13.21)

This affords the advantage of a simpler completeness relation

1 =
∫

db̄db |b, b̄〉N〈b, b̄|N , (13.22)

but unfortunately, the matrix elements of normal ordered operators now assume a more complex form,

〈b1, b̄1|Ô(b̂†, b̂)|b2, b2〉N = eb̄1b2−b̄1b1/2−b̄2b2/2O(b̄, b). (13.23)

The prefactor in this expression vanishes if b1 = b2, but our use of completeness in the derivation of the path integral
forces us to include paths where b2 and b1 are completely independent. For this reason, while Glauber states are a useful
mnemonic device for remembering completeness, this book chooses to use coherent states without the normalizing pre-
factor.
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Figure 13.3: Probability distribution function for a coherent state with b̄b = n0 = 10.

Example 13.1: Prove that in a coherent state |b〉, the probability p(n) to be in a state with n
particles is a Poisson distribution with average particle number n0 = 〈n̂〉 = b̄b, and variance
〈δn2〉 = n0, where

p(n) =
1
n!

(b̄b)ne−b̄b, (13.25)

Solution:
To calculate the normalized probalility to be in a state |n〉, we calculate

p(n) =
|〈n|b〉|2

〈b̄|b〉
=

1
n!

(b̄b)ne−b̄b.

The average particle number is

n0 =
∑

n=1,∞
np(n) =

∑

n=1,∞

1
n − 1!

(b̄b)ne−b̄b = b̄be−b̄b
∑

n=0,∞

1
n!

(b̄b)n = b̄b

Now
〈n̂2 − n̂〉 =

∑

n=1,∞
n(n − 1)p(n) = (b̄b)2

∑

n=2,∞

1
n − 2!

(b̄b)n−2e−b̄b = (b̄b)2 = n2
0

so that 〈n̂2〉 = n0(n0 + 1) and hence 〈δn2〉 = 〈n̂2〉 − n2
0 = n0. Notice that 〈δn2〉/〈n〉2 = 1/n0.

When n0 is large, the distribution function becomes Gaussian and resembles a delta function in
the thermodynamic limit.

Example 13.2: Using the completeness relation, prove that if f (α) = 〈 f |α〉 is the overlap of

439

Chapter 13. c©Piers Coleman 2011

coherent state |α〉 with state | f 〉, then

f (α) =
∫

db̄db
2πi

f (b)eb̄(α−b). (13.26)

Solution: Write the function f (α) as the overlap of state 〈 f | with state |α〉, f (α) = 〈 f |α〉. Now
insert the completeness relation into this expression to obtain

〈 f |α〉 = 〈 f |1̂|α〉 =
∫

db̄db
2πi
〈 f |b〉〈b̄|α〉e−b̄b

=

∫
db̄db
2πi

f (b)eb̄(α−b). (13.27)

Note the useful identity

δ(α − b) =
∫

db̄
2πi

eb̄(α−b). (13.28)

Example 13.3: Using the completeness relation, prove that the trace of any operator (not
necessarily normal-ordered) Â[b̂†, b̂] is given by

Tr[A] =
∑

b̄,b

〈b̄|A|b〉 =
∫

db̄db
2πi

e−b̄b〈b̄|A|b〉 (13.29)

Solution: In the particle-number basis, the trace over Â is given by

Tr[A] =
∑

n
〈n|A|n〉 =

∑

n,m
〈m|A|n〉δnm (13.30)

From completeness,
δnm =

∑

b̄,b

〈n|b〉〈b̄|m〉

so that

Tr[A] =
∑

b̄,b,n,m

〈n|b〉〈b̄|m〉〈m|A|n〉

=
∑

b̄,b,m,n

〈b̄
=1︷!︸︸!︷
|m〉〈m| Â

=1︷︸︸︷
|n〉〈n| b〉

=
∑

b̄,b

〈b̄|A|b〉 ≡
∫

db̄db
2πi

e−b̄b〈b̄|A|b〉 (13.31)
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Table. 1. Boson Calculus.

Completeness

〈b|b〉 = eb̄b Over-complete basis.
∫

db̄db
2πi

e−b̄b|b〉〈b̄| = 1 Completeness relation.

Tr[Â] =
∫

db̄db
2πi

e−b̄b〈b̄|Â|b〉 Trace Formula.

Gaussian
Integrals

∫ ∏

j

db̄ jdb j
2πi

e−
[
b̄·A·b̄− j̄·b−b̄· j

]
=
e
[
j̄·A−1· j

]

detA

13.3 Path integral for the partition function: Bosons
We now develop the path integral expression for the partition function of a single boson field, with
a normal-ordered Hamiltonian Ĥ[b̂†, b̂]. Our key result, to be derived is

Z =

∫
D[b̄, b]e−S

S =

∫ β

0
dτ

(
b̄∂τb + H[b̄, b]

)
(13.32)

Path integral for the Partition Function

All of our results can be simply generalized to include many different bosons. We begin by writing
the trace required for the partition function in a coherent state basis, as

Z = Tr[e−βH] =
∫

db̄db
2πi

e−b̄b〈b̄|e−βH |b〉 (13.33)

Unfortunately, e−βH[b̂†,b̂] is not a normal-ordered operator, so we can’t just replace the boson opera-
tors by their c-number equivalents. To achieve such a replacement, we divide the Boltzmann factor
e−βH = U(β) (Fig 13.4) into a large number N tiny time-slices of duration ∆τ = β/N,

e−βH =
(
e−∆τH

)N
(13.34)

Since H is normal ordered, e−∆τH = 1 − ∆τ : H : +O(∆τ2) so that e−∆τH and : e−∆τH : only differ
at second order in ∆τ. Thus, to an accuracy O(∆τ2) = O(1/N2) per time slice, we can replace the
boson operators by c-numbers in each time slice.

〈b̄ j|e−∆τH[b̂†,b̂]|b j−1〉 = exp
[
b̄ jb j−1 − ∆τH[b̄ j, b j−1]

]
+ (∆τ2). (13.35)

441

Chapter 13. c©Piers Coleman 2011

Figure 13.4: Illustrating the division of the trajectory into N time slices.

This is a huge step forward, which transforms the time-slice into a purely algebraic expression.
Let us now put this all together. The time-sliced partition function (13.33 ) is first written

Z =

∫
db̄Ndb0

2πi
〈b̄N |

(
e−∆τH

)N
|b0〉e−b̄Nb0 (13.36)

where we have relabelled b̄ → bN , b → b0 in (13.33). Next, between each time slice, we now
introduce the completeness relation,

1̂ =
∫ db̄ jdb j

2πi
|b j〉e−b̄ jb j〈b̄ j| ≡ 1 j. (13.37)

so that the partition function becomes

Z =

∫
db̄Ndb0

2πi
〈b̄N |e−∆τH × . . . 1 j × e

−∆τH × 1 j−1 × · · · × 11 × e
−∆τH |b0〉e−b̄Nb0

=

∫
DN[b̄, b]

N∏

j=1
e−b̄ jb j〈b̄ j|e−∆τH |b j−1〉. (13.38)

Notice that we have identified bN ≡ b0 and b̄N ≡ b̄0. We have also introduced the short-hand
notation

DN[b̄, b] =
N∏

j=1

db̄ jdb j
2πi

(13.39)
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for the measure.
Inserting expression (13.35 ) into (13.38), we then obtain

Z =
∫
DN[b̄, b] exp


−

N∑

j=1

(
b̄ j(b j − b j−1) + ∆τH[b̄ j, b j−1]

)

 + O(N∆τ2), (13.40)

where we have grouped the errors from all N time slices into a final term of order O(N∆τ2) =
O(1/N). Since this error vanishes in the limit N → ∞, we may thus write

Z = lim
N→∞

∫
DN[b̄, b] exp [−S N]

S N =

N∑

j=1
∆τ

(
b̄ j

(b j − b j−1)
∆τ

+ H[b̄ j, b j−1]
)

(13.41)

This is the path integral representation of the partition function for a single boson field. Let us pause
to reflect on this result. The integral represents a sum over all possible “histories” of the field,

b(τ j) ≡ (b1, b2 . . . bN),
b̄(τ j) ≡ (b̄1, b̄2 . . . b̄N), (13.42)

This kind of integral is also called a “functional integral”, because it involves integrating over all
values of the functions b(τ). When we take the thickness of each time slice to zero, the discrete
functions b(τ j) ≡ b j become functions of continuous time. Our identification of b0 ≡ bN and hence
b̄0 ≡ b̄N implies that the set of complete functions that we sum over is periodic in time:

b(τ) = b(τ + β), b̄(τ) = b̄(τ + β), (13.43)

This is a new type of integral calculus - rather than integrating over all points on a line, we are inte-
grating over all possible values of a function. We call these integrals “path integrals” or “functional
integrals”. Just as in conventional integral calculus, at some point we reserve a special notation for
the continuum limit

DN[b̄, b]→ D[b̄, b].

Assuming that the continuum limit is indeed a well-defined limit, we now replace

N∑

j=1
∆τ →

∫ β

0
dτ,

b j → b(τ), b̄ j
(b j − b j−1)
∆τ

→ b̄∂τb,
H[b̄ j, b j−1] → H[b̄, b]. (13.44)

These brash replacements hide a mountain of subtlety. Unlike a conventional integral, there is
no sense of “continuity” associated with the field b(τ): inside the functional integral the paths we
sum over are jagged noisy objects. However, if we look at their typical noise spectra, they have a
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characteristic frequency. For a Harmonic oscillator, this is just the frequency of oscillation ω, but if
we include interactions, there will typically be a spectrum of such frequencies with some minimum
frequency ω0. The continnum limit will develop provided ω0∆τ << 1.

The limiting value of the path integral is then written

Z =

∫
D[z̄, b]e−S

S =

∫ β

0
dτ

(
b̄∂τb + H[b̄, b]

)
(13.45)

The simplest example of such a path integral is the non-interacting Harmonic oscillator, in which
H = εb̂†b̂. For this case,

Z =
∫
D[b̄, b] exp

[
−

∫ β

0
dτb̄

(
∂τ + ε

)
b
]

(13.46)

This is an example of a “Gaussian” path integral, because the action is just a quadratic function
of the fields, and we’ll shortly see that we can evaluate all such path integrals in a close form.
It should be clear that this derivation does not depend on whether there are interaction terms in
the Hamiltonian. We could equally well consider the case of the anharmonic oscillator, written in
normal-ordered form as

H = εb̂†b̂ + g : (b̂ + b̂†)4 :

The partition function for this case is now

Z =
∫
D[b̄, b] exp

[
−

∫ β

0
dτ

(
b̄
(
∂τ + ε

)
b + g(b + b̄)4

)]
.

This is probably the simplest example of an “interacting” path integral.

13.3.1 Many bosons

The derivation of the last section is easily generalized to include many bosons, with a Hamiltonian
H[b̂†λ, b̂λ], by using a multi-variable coherent state

|b〉 = exp


∑

λ

b̂†λbλ


 .

Since this is just a product of coherent states, we can simply extend the completeness relationship
as product of the measures for each individual boson

1̂ =
∑

b̄,b

|b〉〈b| (13.47)

where now ∑

b̄,b

=

∫ ∏

λ

db̄λdbλ
2πi

e−bλbλ
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The procedure of developing the path integral is exactly the same: we subdivide the interval into N
time slices, approximating e−∆τH by its normal ordered form. The resulting path integral is formally
very similar,

Z =

∫
D[b̄, b]e−S

S =

∫ β

0
dτ

(∑

λ

b̄λ∂τbλ + H[b̄λ, bλ]
)

(13.48)

Path integral for the partition function: many bosons.

where the measure is now a product of the measure for each boson field,

D[b̄, b] =
∏

λ

D[b̄λ, bλ]

For example, the path integral for a gas of free bosons with Hamiltonian H =
∑

k ωkb̂†kb̂k has the
action

S =
∫ β

0



∑

k
b̄k(∂τ + ωk)bk


 .

13.3.2 Time-ordered expectation values

In addition to providing equilibrium thermodynamics, the path integral can also be used to calcu-
late time-ordered expectation values. The division of time into N time-slices using coherent states
can also be carried out for the evaluation of arbitrary time-ordered products of fields - and when
we do so, we discover that the time-ordered product of fields maps onto a path integral over the
corresponding c-number product of fields. Thus for the two-point Green’s function

G(2 − 1) = −〈T b̂(2)b̂†(1)〉 = −

∫
D[b̄, b]e−S b(2)b̄(1)

∫
D[b̄, b]e−S

(13.49)

where we have used the notation 1 ≡ (τ1, X1, {λ1}) to denote the continuous and discrete variables
associated with the boson field. In this way, time-ordered products of operators become weighted
averages of c-numbers inside the path-integral. The operator form for the Green’s function is writ-
ten in terms of the Heisenberg fields and to convert it into a path integral, we need to rewrite the
Heisenberg field operators in terms of the Schrödinger fields,

b̂H(2) = eHτ2 b̂S (2)e−Hτ2
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where the time argument τ2 of the Schrödinger field b̂S (2) is a dummy variable. Now with this
device, the Green’s function can be transformed to the Schrödinger representation as follows

G(2 − 1) = −
1
Z

Tr[e−βHT
{
b̂H(2)b̂†H(1)

}
]

= −
1
Z

Tr[e−βHT
{
eτ2H b̂S (2)e−τ2Heτ1H b̂†S (1)e−τ1H

}
]

= −
1
Z

Tr[T
{
U(β − τ2)b̂S (2)U(τ2 − τ1)b̂†S (1)U(τ1)

}
]

= Tr[T
{
U(β)b̂S (2)b̂†S (1)

}
] (13.50)

where U(τ) = e−Hτ is the time-evolution operator. To write the Green’s function as a path integral,
we now expand the time-ordered trace in terms of N time slices, introducing the Schrodinger op-
erators at the time-slices τ j and τk which corresponding to τ1 and τ2 respectively. Here’s where
coherent states work their marvellous magic, for we can rewrite the destruction operator as

b̂S (τk) = b̂S (τk) × 1k =
∫

db̄kbk
2πi

e−b̄kbk |bk〉 bk〈b̄k| (13.51)

and similarly

b̂†S (τ j) = 1 j × b̂†S (τ j) =
∫ db̄ jb j

2πi
e−b̄ jb j |b j〉 b̄ j 〈b̄ j|, (13.52)

so that inside the path integral, b̂S (2)b̂†S (1)→ b(2)b̄(1) and

Tr[T
{
U(β)b̂S (2)b̂†S (1)

}
] =

∫
D[b̄, b]e−S b(2)b̄(1)

from which the path integral expression for the Green’s function (13.49) follows. We can easily
extend these results to all higher moments, quite generally, mapping time-ordered Green functions
onto the corresponding moments under the path integral

〈T b̂(1)b̂(2) . . . b̂†(2′)b̂†(1′)〉 =

∫
D[b̄, b]e−S b(1)b(2) . . . b̄(2′)b̄(1′)

∫
D[b̄, b]e−S

(13.53)

In this way, the path integral maps a system of interacting particles onto a statistical mechanics
problem, with distribution function e−S .

13.3.3 Gaussian path integrals

An important class of path integrals are the “Gaussian path integrals”, in which the action is a
quadratic functional of the fields. For example, for for free bosons Hamiltonian Ĥ = b̂†αhαβb̂β the
action is

S E =
∫ β

0
dτb̄α(∂τ + hαβ)bβ ≡

∫ β

0
dτb̄(∂τ + h)b (13.54)
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Remarkably, all Gaussian path integrals can be evaluated in a closed form and the key result is

ZG =
∫
D[b̄, b] exp

[
−

∫ β

0
dτb̄(∂τ + h)b

]
= [det(∂τ + h)]−1 (13.55)

Bosonic Gaussian Integral

To understand this result, it is helpful to think of the function bα(τ) ≡ bα̃ as a huge vector labelled
by the indices α̃ ≡ (α, τ). From this perspective, a Gaussian action is a vast matrix bilinear

S E =
∑

(α,τ), (β,τ′)
b̄α(τ)Mαβ(τ, τ′)bβ(τ′) ≡ b̄ · M · b, (13.56)

where
Mαβ(τ, τ′) = δ(τ − τ′)(∂τ′ + hαβ). (13.57)

You may be worried about the notion of treating time-integration as a summation. To assuage
your doubts, it is useful to re-write S E in the frequency domain, where summations over time are
replaced by discrete frequency summations. Since b(τ) = b(τ + β), the Bose field can always be
represented in terms of a discrete set of Fourier components,

bα(τ) =
1
√
β

∑

n
bα(iνn)eiνnτ. (13.58)

In this basis

[M(τ − τ′)]αβ = δ(τ − τ′)(∂τ′ + hαβ) −→ (−iνnδαβ + hαβ) = M(iνn) (13.59)

so the action becomes a discrete summation over Matsubara frequencies

S E =
∑

iνn

b̄α(iνn)
(
−iνnδαβ + hαβ

)
bβ(iνn) ≡ b̄ · M · b (13.60)

To integrate a Gaussian path integral, we employ the general result for a multi-dimensional
Gaussian integral

∫ ∏

α

db̄αdbα
2πi

e−b̄αMαβbβ =
1

det[M]
(13.61)

where M is a matrix with non-zero eigenvalues. To prove this result we transform to a basis where
M is explicitly diagonal. Let b = U · a, and b̄ = ā · U†, where U ≡ Uαλ is the unitary matrix that
diagonalizes M, then since U†λαMαβUβλ′ = mλδλλ′ , where the mλ are the eigenvalues of M,

b̄αMαβbβ = āλmλaλ
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is explicitly diagonal. Furthermore, under a unitary transformation, the measure remains unchanged.
To see this, we write the transformed measure using a Jacobian,

∏

α

db̄αdbα =
∏

α

dāαdaα ×
δ[b̄, b]
δ[ā, a]

=
∏

α

dāαdaα
eeeeeeeeee
U† 0
0 U

eeeeeeeeee =
∏

α

dāαdaα

where unitarity guarantees that the Jacobian is unity:
eeeeeeeeee
U† 0
0 U

eeeeeeeeee = Det[U†U] = 1.

Under these transformations, the Gaussian integral becomes diagonal and can be explicitly evalu-
ated:

∫ ∏

α

db̄αdbα
2πi

e−b̄αMαβbβ =
∏

λ

∫
dāλdaλ

2πi
e−mλāλaλ =

(∏

λ

mλ
)−1
=

1
Det[M]

(13.62)

where, in the last step, we have identified the determinant of M with the product of its eigenvalues,
Det[M] =

∏
λmλ. Finally, if we now replace M → ∂τ + h, we obtain the general relationship given

in (13.55).
ZG =

1
Det[∂τ + h]

(13.63)

We can equally well write this in the frequency-domain, where the determinant can be explicitly
evaluated:

ZG =
∫
D[b̄, b] exp


−

∑

n
b̄(iνn)(−iνn + h)b(iνn)


 =

1
∏

n Det(−iνn + h)
=

1
∏

n,λ(−iνn + ελ)
(13.64)

where the ελ are the energy eigenvalues of h. This expression is most usefully re-written as an
expression for the Free energy

FG = −T lnZG = T
∑

n
Trln(h − iνn)eiνn0+ = T

∑

n,λ
ln(ελ − iνn)eiνn0+

where we have used the identity ln DetA = Tr ln A and have introduced the convergence term eiνn0+ .
This term is motivated by the observation that derivatives of the partition function represent equal
time expectation values, which are the expectation values of time-ordered operators at an infinitesi-
mally negative time.

In ending this section, we make one last identification. For a diagonalized non-interacting
Hamiltonian, the bosonic Green’s function is given by

Gλλ′(iνn) = δλλ′(iνn − ελ)−1. (13.65)

So we can identify (−iνn + ελ) = −G−1(iνn) = −G−1, as the inverse Green’s function. Since this
identity holds in any basis, we can identify (∂τ + h) ≡ −G−1 in the time domain. An alternative
expression for the Gaussian integral is then

ZG =
∫
D[b̄, b] exp

[
−

∫ β

0
b̄(−G−1)b

]
=

1
Det[−G−1]

(13.66)
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If we take logarithms of both sides, we may write down the Free energy in terms of the one-particle
Green’s function

F = T lnDet[−G−1] = TTr ln[−G−1]. (13.67)
This expression enables us to relate the Green’s function and Free energy without having to first
diagonalize the Hamiltonian G−1.

Example 13.4: Use the equation of motion, ∂τb̂(1) = [Ĥ, b̂(1)] to confirm that for a free system
of bosons, where Ĥ = b̂†hb̂ ≡ b̂†αhαβb̂β, the Green’s function is given by G = −(∂τ + h)−1.
Solution: The boson Green’s function is given by

G(1 − 2) = −〈T b̂(1)b̂†(2)〉 (13.68)

The time-dependence of the Green’s function has two components - a smoothly varying term
derived from the time-evolution of the bose field and a discontinuous term derived from the
derivatives of the time-ordering operator. To see this, let us first expand the time-ordering
operator in terms of θ functions,

G(1 − 2) = −
〈
b̂(1)b̂†(2)

〉
θ(τ1 − τ2) −

〈
b̂†(2)b̂(1)

〉
θ(τ2 − τ1) (13.69)

If we now take the derivative w.r.t. time, we must take account of the discontinuity in the theta
functions. Using , ∂τθ(τ1 − τ2) = δ(τ1 − τ2) and ∂τθ(τ2 − τ1) = −δ(τ1 − τ2), we obtain

∂τG(1 − 2) =

(
−
〈
b̂(1)b̂†(2)

〉
δ(τ1 − τ2) +

〈
b̂†(2)b̂(1)

〉
δ(τ1 − τ2)

)
−

〈
T∂τb̂(1)b̂†(2)

〉

= −
〈

δ(1−2)︷!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!︷
[b̂(1), b̂†(2)]

〉
δ(τ1 − τ2)−

〈
T

[H,b̂(1)]︷!︸︸!︷
∂τb̂(1) b̂†(2)

〉

= −δ(1 − 2) −
〈
T [H, b̂(1)]b̂†(2)

〉
. (13.70)

where we have simplified the first term using the canonical commutation relations
(
[b̂(1), b̂†(2)]δ(τ1 − τ2)

)
αβ
≡ [b̂α, b̂†β]δ(τ1 − τ2) = δαβδ(τ1 − τ2) ≡ δ(1 − 2)αβ,

and used the equation of motion, ∂τb(1) = [H, b(1)]. The commutator between the Hamiltonian
and the boson field is

[H, b̂(1)]α ≡ [H, b̂α] = −[b̂α, b̂†λhλβb̂β] = −

δαλ︷!!!︸︸!!!︷
[b̂α, b̂†λ] hλβb̂β = −hαβb̂β ≡ −[h · b̂(1)]α

so putting this all together, we have

∂τG(1 − 2) = −δ(1 − 2) − h ·G(1 − 2) (13.71)

or
(∂τ + h)G(1 − 2) = −δ(1 − 2) (13.72)

If we write this expression succinctly as

(∂τ + h)G = −1. (13.73)
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we see that
G = −(∂τ + h)−1. (13.74)

If you are uncomfortable with treating integrals over the time-domain as a matrix multiplication,
you can Fourier transform (13.71), writing

G(τ − τ′) = T
∑

n
G(iνn)e−iνn(τ−τ′) (13.75)

so that ∂τ → −iνn and then (13.73) becomes

(iνn − h) ·G(iνn) = 1 (13.76)

and hence
G(iνn) = (iνn − h)−1. (13.77)

which is the Fourier transform of (13.74).

Example 13.5: Calculate the free energy of free bosonic gas, where Ĥ =
∑

k εkb̂†kb̂k using the
path integral method.
Solution: We begin by writing the action in the Frequency domain as

S E = −
∑

k,iνn

b(k, iνn)G(k, iνn)−1b(k, iνn)

G(k, iνn)−1 = (iνn − εk). (13.78)

The partition function is given by

e−βF =
1

det[−G−1]
(13.79)

so that
F = T lnDet[−G−1] = TTr ln[−G−1] = T

∑

k,iνn

ln(εk − iνn)eiνn0+ , (13.80)

where we have introduced the convergence factor eiνn0+ and used the identity ln Det[A] = Tr ln A.
Carrying out the frequency summation using complex contour methods, we have

F = −
∑

k

"

dz
2πi

n(z) ln(εk − z) (13.81)

where the integral is anticlockwise around the branch-cut on the real axis. This branch-cut runs
out from ω = εk to positive infinity, with a discontinuity of 2π. Rewriting the integral along this
discontinuity, we have

F = −
∑

k

∫ ∞

−∞

dω
2πi

n(ω)

2πi θ(ω−εk)︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷[
ln(εk − ω + iδ) − ln(εk − ω − iδ)

]
= −

∑

k

∫ ∞

εk

dωn(ω)
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= −T
∑

k

[
ln(1 − e−βω)

]∞

εk

= +T
∑

k
[ln(1 − e−βεk )] (13.82)

13.3.4 Source terms in Gaussian integrals

Source terms provide a means of probing the correlations and fluctuations described by a path
integral. For Gaussian path integrals, the result of introducing source terms can be evaluated to
obtain

ZG[ j̄, j] =
∫
D[b̄, b] exp

{
−

∫ β

0
d1

[
b̄
(
∂τ + h

)
b − j̄(1)) · b(1) − b̄(1) · j(1)

]}

=

exp
[
−

∫ β
0 d1d2 j̄(1)G(1 − 2) j(2)

]

Det[∂τ + h]
(13.83)

Bosonic Gaussian Path Integral with source terms

where we have used the schematic notation 1 ≡ (τ1, X1, {λ1}), 2 ≡ (τ2, X2, {λ1}), to denote the time,
position and all other relevant indices of the boson field and

∫ β
0 d1 =

∑
λ1

∫ β
0 dτ1

∫
ddX1 to denote the

corresponding integration over continuous variables and summation over discrete quantum numbers.
The expansion of the left and the right-hand sides of this expression as a power-series provide the
Wick expansion of multi-particle Green’s functions of the Boson field. Differentiating first the left
and then the right-hand side with respect to j̄(1) we obtain

1
ZG[ j̄, j]

δZG[ j̄, j]
δ j̄(1)

=

∫
D[b̄, b]e−S b(1)
∫
D[b̄, b]e−S

≡ 〈b̂(1)〉 = −
∫ β

0
d2G(1 − 2) j(2). (13.84)

Taking second-derivatives and setting the source terms to zero we obtain

1
ZG[ j̄, j]

δ2ZG[ j̄, j]
δ j̄(1)δ j(2)

∣∣∣∣∣∣ j̄, j=0
=

∫
D[b̄, b]e−S b(1)b̄(2)

∫
D[b̄, b]e−S

≡ 〈T b̂(1)b̂†(2)〉 j̄, j=0 = −G(1 − 2) (13.85)

while higher-order differentials give us the Wick expansion,

1
ZG[ j̄, j]

δ2nZG[ j̄, j]
δ j̄(1) . . . δ j(1′)

∣∣∣∣∣∣ j̄, j=0
=

(−1)n
∑

P
G(1 − P′1)G(2 − P′2) . . .G(n − P′n) =

∫
D[b̄, b]e−S b(1)b(2) . . . b̄(2′)b̄(1′)

∫
D[b̄, b]e−S

≡ 〈T b̂(1)b̂(2) . . . b̂†(2′)b̂†(1′)〉. (13.86)
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In this remarkable fashion, the correlation functions of non-interacting bosons in imaginary time
are identified with the classic properties of Gaussian-distributed random variables.

To prove (13.84), we take (13.61) and shift the integration variables inside the integral

b→ b − M−1 j, b̄→ b̄ − j̄M−1, (13.87)

Under this simple shift, the measure remains unchanged, while the action term b̄ · M · b becomes

b̄ · M · b→ (b̄ − j̄M−1) · M · (b − M−1 j) = b̄ · M · b − ( j̄ · b + b̄ · j) + j̄ · M−1 · j. (13.88)

Since the integral is unchanged under this change of variables, it follows that

e− j̄·M j
∫ ∏

α

db̄αdbα
2πi

e−(b̄αMαβbβ− j̄αbα−b̄α jα) =
1

Det[M]
(13.89)

in other words, ∫ ∏

α

db̄αdbα
2πi

e−(b̄αMαβbβ− j̄αbα−b̄α jα) =
e j̄·M−1 j

det[M]
(13.90)

If we rewrite this expression by replacing M → −G−1 = (∂τ + h), we obtain the key result (13.84).
As usual, if you are uncomfortable with the change from discrete, to continuous variables, this
procedure can first be carried out using the discrete variables in Fourier space, followed by an
inverse Fourier transformation back into real space.

13.4 Fermions: Coherent states and Grassman mathematics
We now generalize the results of the last section to fermions, using Grassman numbers to set up a
completely parallel derivation of the fermionic path integral in terms of coherent states.

Feynman’s original derivation of path integrals applied purely to bosonic fields and its extension
to fermions was begun in the 1950s. The idea of using anticommuting numbers, both as eigenval-
ues of fermion fields and as fermionic source terms was proposed in a seminal paper by Julian
Schwinger in 1953[8]. Early proposals for path integrals for fermions were made by P. Matthews
and Abdus Salam in 1955[11] and by David Candlin in 1956 [5]. The first explicit formulation of
the fermionic action in terms of Grassman numbers, with a derivation using fermion coherent states
was made by by J. L. Martin in 1959[6]. The mathematical foundations of fermionic path integrals
were extensively developed in the 1960s by Felix Berezin[12] and the extension of the fermionic
path integral to imaginary time and finite temperature was later provided by David Sherrington and
Sam Edwards[7, 13]. However it is only in the last few decades that the method has become a
commonly used tool in quantum many body physics.

To illustrate the basic approach, we shall consider a a single fermionic field ĉ†. The coherent
state for this field is

|c〉 = eĉ†c|0〉

and its conjugate is
〈c̄| = 〈0|ec̄ĉ.
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In this text we’ve reserved roman symbols ĉ† and ĉ for the creation and annihilation operators, to
delineate them from their expectation values c̄ and c. Here c and c̄ are anticommuting “Grassmann
numbers”. Note that in common usage the notation c† is often used interchangeably to describe both
the operator and its Grassman counterpart c̄.

There are a number of caveats you need to remember about Grassmans. On the one hand, the
quantities c and c̄ are numbers which commute with all observables Ô, cÔ = Ôc. On the other hand,
to correctly represent the anticommuting algebra of the original Fermi fields, Grassman numbers
anticommute amongst themselves and with other Fermi operators, so that

cc̄ + c̄c = 0, cψ̂ + ψ̂c = 0, (13.91)

But c must also anticommute with itself, which means that

c2 = c̄2 = 0, (13.92)

But how can we possibly deal with numbers which when squared, give zero? Though this seems
absurd, we’ll see that anticommuting or “Grassman” numbers do form a non-trivial calculus and
that ultimately, the leap to this new type of number is no worst and no more remarkable than the
jump from real, to complex numbers.

The main effect of the anticommuting properties of Grassmans is to drastically reduce the set
of possible functions and the set of possible linear operations one can carry out on such functions.
For example, the Taylor series expansion of Grassman functions has to truncate at first order in any
particular variable. Thus a function of two variables, f (c̄, c)

f [c̄, c] = fo + c̄ f1 + f̃1c + f12c̄c

only has four terms! The coherent state also truncates, so that

|c〉 = |0〉 + ĉ†c|0〉
= |0〉 + |1〉c (13.93)

so that the overlap between the “n” fermion state (n = 0, 1) and the coherent state is given by

〈n|c〉 = cn, (n = 0, 1)

To develop a path integral representation for fermions one needs to know how to carry out Grassman
calculus. The key properties of Grassman algebra are summarized in table 1. In particular, you
will notice that the only formal difference with bosons, is that the measure contains a different
normalization ∑

b̄,b

=

∫
db̄db
2πi

e−b̄b →
∑

c̄, c
=

∫
dc̄dce−c̄c, (13.94)

that the trace formula contains an additional minus sign

Tr[A]B =
∑

b̄,b

〈b̄|A|b〉 → Tr[A]F =
∑

c̄,c
〈−c̄|A|c〉. (13.95)

and that both the Jacobian and the Gaussian integral are the inverses of their bosonic counterpart.
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13.4.1 Completeness and matrix elements

Coherent states are over-complete, for

〈c̄|c〉 = 〈0|(1 + c̄ĉ)(1 + ĉ†c)|0〉 = 1 + c̄c = ec̄c. (13.96)

Notice the formal parallel with the overlap of bosonic coherent states. To derive the completeness
relation, we start with the identity

∫
dc̄dce−c̄ccnc̄m = δnm, (n,m = 0, 1) (13.97)

then by writing cn = 〈n|c〉, c̄m = 〈c̄|m〉 we see that the overlap between the eigenstates |n〉 of definite
particle number is given by

δnm = 〈n|m〉 =
∫

dc̄dce−c̄c〈n|c〉〈c̄|m〉 = 〈n|
∫

dc̄dce−c̄c |c〉〈c̄| |m〉 (13.98)

from which it follows that

∫
dc̄dc|c〉〈c̄|e−c̄c = |0〉〈0| + |1〉〈1| ≡ 1. (13.99)

Completeness relation

Alternatively, we may write ∑

c̄,c
|c〉〈c̄| = 1

where ∑

c̄, c
≡

∫
dc̄dce−c̄c (13.100)

is the measure for fermionic coherent states. The exponential factor e−c̄c = 1/〈c̄|c〉 provides the
normalizing factor to take account of the over-completeness.

Matrix elements between coherent states are easy to evaluate. If an operator A[ĉ†, ĉ] is normal
ordered, then since the coherent states are eigenvectors of the quantum fields, it follows that

〈c̄|Â|c〉 = 〈c̄|c〉A[c̄, c] = ec̄cA[c̄, c], (13.101)

i.e

〈c̄|Â|c〉 = ec̄c × c-number formed by replacing A[ĉ†, ĉ]→ A[c̄, c]. (13.102)

This wonderful feature of coherent states enables us at a swoop, to convert normal-ordered operators
into c-numbers.
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Table. 2. Grassman Calculus .

Algebra
c1c2 = −c2c1

anticommute with Fermions and other
Grassman numbers

cb̂ = b̂c, cψ̂ = −ψ̂c commute with bosons, anticommute with
Fermi operators.

Functions f [c̄, c] = fo + c̄ f1 + f̃1c + f12c̄c
Since c2 = 0, truncate at linear order in each
variable.

Calculus

∂ f = − f̃1 − f12c̄
Differentiation

∂̄ f = f1 + f12c

∫
dc ≡ ∂c

∫
dc1 = ∂c1 = 0

∫
dcc = ∂cc = 1

Completeness

〈c|c〉 = ec̄c Over-complete basis.
∫

dc̄dce−c̄c|c〉〈c̄| = 1 Completeness relation.

Tr[Â] =
∫

dc̄dce−c̄c〈−c̄|Â|c〉 Trace Formula.

Change of
variable J

(
c1 . . . cr
ξ1 . . . ξr

)
=

∣∣∣∣∣
∂c1 . . . cr
∂ξ1 . . . ξr

∣∣∣∣∣
−1

Jacobian - inverse of Bosonic Jacobian.

Gaussian
Integrals

∫ ∏

j
dc̄ jdc je−

[
c̄·A·c̄− j̄·c−c̄· j

]
= detA × e

[
j̄·A−1· j

]
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The last result we need is the trace of A. We might guess that the appropriate expression is

Tr[Â] =
∑

c̄,c
〈c̄|Â|c〉

actually - this is almost right, but infact, it turns out that the anticommuting properties of the Grass-
mann’s force us to introduce a minus sign into this expression

Tr[Â] =
∑

c̄,c
〈−c̄|Â|c〉 =

∫
dc̄dce−c̄c〈−c̄|Â|c〉 (13.103)

Grassman Trace formula

which we shall shortly see, gives rise to the antisymmetric boundary conditions of fermionic fields.
To prove the above result, we rewrite (13.98) as

δnm = 〈n|m〉 =
∫

dc̄dce−c̄c〈−c̄|m〉〈n|c〉 (13.104)

where the minus sign arises from anticommuting c and c̄. We can now rewrite the trace as

TrA =
∑

n,m
〈m|A|n〉δnm

=
∑

n,m

∫
dc̄dce−c̄c〈−c̄|m〉〈m|A|n〉〈n|c〉

=

∫
dc̄dce−c̄c〈−c̄|Â|c〉 (13.105)

We shall make extensive use of the completeness and trace formulae (13.99) and (13.103) in devel-
oping the path integral. Both expressions are simply generalized to many fields c j by making the
appropriate change in the measure and by replacing c̄c in the exponent, by the dot product,

dc̄dc →
∏

j
dc̄ jdc j, (13.106)

c̄c →
∑

j
c̄ jc j.

13.4.2 Path integral for the partition function: Fermions

This section very closely parallels the derivation of the bosonic path integral in section (13.3), but
for completeness, we include all relevant steps. To begin with, we consider a single fermion, with
Hamiltonian

H = εĉ†ĉ (13.107)

Using the trace formula (13.103), the partition function

Z = Tre−βH (13.108)
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can be re-written in terms of coherent states as

Z = −
∫

dc̄Ndc1ec̄Nc1〈c̄N |e−βH |c1〉, (13.109)

where the labeling anticipates the next step. Now we expand the exponential into a sequence of
time-slices

e−βH =
(
e−∆τH

)N
, ∆τ = β/N. (13.110)

Between each time slice we introduce the completeness relation
∫

dc̄ jdc j+1|c j+1〉〈c̄ j|e−c̄ jc j+1 = 1 (13.111)

so that

Z = −
∫

dc̄Ndc1ec̄Nc1
N−1∏

j=1
dc̄ jdc j+1e−c̄ jc j+1

N∏

j=1
〈c̄ j|e−H∆τ|c j〉 (13.112)

where the first integral is associated with the trace and the subsequent integrals with the N − 1
completeness relations. Now if we define

c1 = −cN+1 (13.113)

we are able to identify the N th time slice with the 0 th the time-slice. In this way, the integral
associated with the trace

−
∫

dc̄Ndc1ec̄Nc1〈c̄N | . . . |c1〉 =
∫

dc̄NdcN+1e−c̄NcN+1〈c̄N | . . . |c1〉 (13.114)

can be absorbed into the other N − 1 integrals, and furthermore, we notice that the fields entering
into the discrete path integral are antiperiodic.

With this observation,

Z =
∫ N∏

j=1
dc̄ jdc j+1e−c̄ jc j+1〈c̄ j|e−H∆τ|c j〉 (13.115)

Provided each time-slice is of sufficiently brief duration, we can replace e−∆τH by its normal ordered
form, so that

〈c̄ j|e−H∆τ|c j〉 = ec̄ jc̄ je−H[c̄ jc j]∆τ + O(∆τ2), (13.116)

where H[c̄, c] = εc̄c is the normal-ordered Hamiltonian, with Grassman numbers replacing opera-
tors.
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Division of Grassmanian time evolution into “time-slices”.

Combining (13.109) and (13.112) we can write

Z = LtN→∞ZN

ZN =

∫ N∏

j=1
dc̄ jdc j exp

[
−S

]

S =

N∑

j=1

[
c̄ j(c j+1 − c j)/∆τ + εc̄ jc j

]
∆τ, (13.117)

As in the bosonic case, this path integral represents a sum over all possible values “histories” of the
fields:

c(τ j) ≡ {c1, c2 . . . cN}, (13.118)
c̄(τ j) ≡ {c̄1, c̄2 . . . c̄N} (13.119)

as illustrated in Fig. 2. This kind of integral is also called a “functional integral”, because it involves
integrating over all possible values of the functions c(τ) and c̄(τ). When we take the thickness of the
time slices to zero, the discrete functions c(τ) and c̄(τ) become functions of continuous time. The
boundary condition (13.113) implies that the set of complete functions which we sum over must
satisfy anti-periodic boundary conditions

c(τ + β) = −c(τ), c̄(τ + β) = −c̄(τ)

In the continuum limit, N → ∞, we now replace

c̄ j(c j − c j−1)/∆τ → c̄∂τc,
∑

j
∆τ →

∫ β

0
dτ. (13.120)
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The sense in which c j becomes “close” to c j+1 needs to be carefully understood. Suppose we rewrite
the antiperiodic c j in terms of their frequency components as

c j =
1
√
β

∑

|n|≤N/2
c(iωn)e−iωnτ j ,

then in this new basis,
∑

j
c̄ j(c j+1 − c j) =

∑

|n|≤N/2
c̄(iωn)

[
e−iωn∆τ − 1
∆τ

]
c(iωn)

In practice, the path-integral is dominated by functions c j with a maximum characteristic temporal
frequency max(|ωn|) ∼ ε, so that as ∆τ→ 0, we can replace

[
e−iωn∆τ − 1
∆τ

]
→ −iωn

which is the Fourier transform of ∂τ.
With these provisos, the continuum limit of the action and path integral are then

S =

∫ ∞

0
dτ

[
c̄(∂τ + ε)c

]
,

Z =

∫
D[c̄, c] exp

[
−S

]
(13.121)

where we use the notation
D[c̄, c] =

∏

τl

dc̄(τl)dc(τl)

At first sight, it might seem a horrendous task to carry out the integral over all possible functions
c(τ). How can we possibly do this in a controlled fashion? The clue to this problem lies in the
observation that the set of functions c(τ) (and its conjugate, c̄(τ) ) are spanned by a discrete but
complete set of anti-periodic functions, as follows

c(τ) =
1
√
β

∑

n
cne−iωnτ,

We can integrate over all possible functions c(τ) by integrating over all possible values of the coef-
ficients cn and since the transformation which links these two bases is unitary, the Jacobian which
links the two bases is unity, i.e.

D[c̄, c] ≡
∏

n
dc̄ndcn

It is much easier to visualize and work with a discrete basis. We can transform to this basis, by
replacing ∂τ → −iωn in the action, rewriting it as

S =
∑

n
c̄n(−iωn + ε)cn
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Now the path integral is just a discrete Gaussian integral

Z =
∫ ∏

n
dc̄ndcn exp

[
−

∑

n
c̄n(−iωn + ε)cn

]
=

∏

n
(−iωn + ε)

so that the Free energy is given by

F = −T lnZ = −T
∑

n
ln(ε − iωn)eiωn0+

Here we have added a small convergence factor eiωn0+ because the time-evolution from τ = 0 to
τ = β is equivalent to time evolution from τ = 0 to τ = 0−.

We can show that this reverts to the standard expression for one-particle free energy by replacing
the Matsubara sum with a contour integral:

F = T
∮

dz
2πi

f (z)ln[ελ − z]ez0
+

(13.122)

where the contour integral passes counter-clockwise around the poles of the Fermi function at z =
iωn, and the choice of f (z) is dictated by the convergence factor. We take the logarithm to have a
branch cut which extends from z = ελ to infinity. By deforming the integral around this branch cut
we obtain

F = −
∫ ∞

ε

dω
2πi

f (ω)
[
ln(ε − ω − iδ) − (c.c.)

]

=

∫ ∞

ε
dω f (ω)

= −T ln[1 + e−βε] (13.123)

which is the well-known Free energy of a single fermion.
Of course, here we have used a sledge-hammer to crack a walnut, but the virtue of the method is

the ease with which it can be generalized to more complex problems. Three important points need
to be made about this result:

• This result can easily be generalized to an arbitrary number of Fermi-fields. In this case,

S =
∫ ∞

0
dτ

[∑

λ

c̄λ∂τcλ + H[c̄, c]
]
,

and the measure for the path integral becomes

D[c̄, c] =
∏

τl,r
dc̄λ(τl)dcλ(τl)

• The derivation did not depend on any details of H, and can thus be simply generalized to
interacting Hamiltonians. In both cases, the conversion of the normal-order Hamiltonian
occurs by simply replacing operators with the appropriate Grassman variables.

: H[ĉ†, ĉ] :→ H[c̄, c]
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• Because the Jacobian for a unitary transformation is unity, we can change basis inside the
path integral. For example, if we start with the action for a gas of fermions

S =
∫ β

0
dτ

∑

k
c̄k(∂τ + εk)ck,

where εk = (k2/2m) − µ, we can transform to a completely discrete basis by Fourier trans-
forming in time,

ck =
1
√
β

∑

n
ckneiωnτ,

∂τ → −iωn

D[c̄, c] →
∏

k,n
dc̄kndckn. (13.124)

In the this discrete basis, the action becomes

S =
∑

k,n
(εk − iωn)c̄knckn

This basis usually proves very useful for practical calculations.

• We can also transform to a continuum real-space basis, as follows

ck =
1
√
V

∫
d3xψ(x)e−ik·x,

εk → −
∇2

2m
− µ

D[c̄, c] → D[ψ̄, ψ]. (13.125)

In the new basis, the the action becomes

S =
∫ β

0
dτ

∫
d3xψ̄(x)

[
∂τ −

∇2

2m
− µ

]
ψ(x).

The discrete and continuous measures, (13.124) and (13.125) are equivalent
∏

k,n
dc̄kndckn ≡ D[ψ̄, ψ].

because the space of continuous functions ψ(x) is spanned by a complete, but discrete set of
basis functions.

ψ(x, τ) = 1
√
βV

∑

k,n
cknei(k·x−ωnτ),

We can integrate over all possible functions ψ(x, τ) by integrating over all values of the dis-
crete vector ckn.
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13.4.3 Gaussian Path Integral for Fermions

For non-interacting fermions the action only involves bilinears of the Fermi fields, so the path inte-
gral is of Gaussian form and can always be evaluated. To discuss the most general case, we shall
include “source terms” in the original Hamiltonian, writing

H(τ) =
∑

λ

[
ελĉλ†ĉλ − j̄λ(τ)ĉλ − ĉλ† jλ(τ)

]

where ĉλ† is Schrödinger field that creates a fermion in the eigenstate with energy ελ. With source
terms, the partition function becomes a “generating functional”

Z[ j̄, j] = Tr
[
T exp

{
−

∫ β

0
dτH(τ)

}]
.

Derivatives of the generating functional generate the irreducible Green’s functions of the fermions,
for instance,

δlnZ[ j̄, j]
δ j̄(1)

= 〈c(1)〉 (13.126)

δ2lnZ[ j̄, j]
δ j̄(2)δ j(1)

= 〈T [c(1)c†(2)]〉 − 〈c(2)〉〈c†(1)〉 (13.127)

where
〈. . .〉 =

1
Z[ j̄, j]

Tr
[
T exp

{
−

∫ β

0
dτH(τ)

}
. . .

]

Transforming to a path integral representation, now

Z[ j̄, j] =
∫
D[c̄, c]e−S (13.128)

S =

∫
dτ

[
c̄(τ)(∂τ + h)c(τ) − j̄(τ)c(τ) − c̄(τ) j(τ)

]
(13.129)

where hαβ = εαδαβ is the one-particle Hamiltonian. One can carry out functional derivatives on this
integral without actually evaluating it. For example, we find that

〈c(1)〉 =
1

Z[ j̄, j]

∫
D[c̄, c]c(1)e−S (13.130)

〈T [c(1)c†(2)]〉 =
1

Z[ j̄, j]

∫
D[c̄, c]c(1)c̄(2)e−S (13.131)

Notice how the path integral automatically furnishes us with time-ordered expectation values.
Fortunately, the path integral is Gaussian, allowing us to use the general result obtained in

Appendix 14D,
∫ ∏

j
dξ̄ jdξ j exp[−ξ̄ · A · ξ + j̄ · ξ + ξ̄ · j] = detA exp[ j̄ · A−1 · j]. (13.132)
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In the case considered here, A = ∂τ + h, so we can do the integral, to obtain

Z[ j̄, j] =
∫
D[c̄, c] exp

[∫
dτ

[
c̄(τ)(∂τ + h)c(τ) − j̄(τ)c(τ) − c̄(τ) j(τ)

]]

= det[∂τ + h] exp
[
−

∫
dτdτ′ j̄(τ)G[τ − τ′] j(τ′)

]
(13.133)

where −(∂τ + h)−1 = G[τ − τ′].
By differentiating (13.133) with respect to j and j̄, we are able to identify

δ2 lnZ
δ j̄(τ)δ j(τ′)

∣∣∣∣∣∣ j̄, j=0
= 〈c(τ)c†(τ′)〉 = −G[τ − τ′], (13.134)

so the inverse of the Gaussian coefficient in the action −[∂τ+h]−1 directly determines the imaginary
time Green-function of these non-interacting fermions. Higher order moments of the generating
functional provide a derivation of Wick’s theorem.

From the partition function in (13.133), the Free energy is then given by

F = −T lnZ = −T lndet[∂τ + h] = −TTrln[∂τ + h] = TTrln[−G−1]

where we have used the result lndet[A] = Trln[∂τ + h].
To explicitly compute the Free energy it is useful to transform to Fourier components,

cλ(τ) =
1
√
β

∑

n
cλne−iωnτ,

jλ(τ) =
1
√
β

∑

n
jλne−iωnτ, (13.135)

In this basis,

(∂τ + ελ) −→ (−iωn + ελ)
G = −(∂τ + ελ)−1 −→ (iωn − ελ)−1 (13.136)

so that

S =
∑

λ,n

[
[−iωn + ελ]c̄λncλn − j̄λncλn − c̄λn jλn

]
(13.137)

whereupon,

det[∂τ + h] = =
∏

λ,n
(−iωn + ελ)

Z[ j̄, j] =
∏

λ,n
(−iωn + ελ) exp

[∑

λ,n
(−iωn + ελ)−1 j̄λn jλn

]
(13.138)
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If we set j = 0 in Z we obtain the Free energy in terms of the Fermionic Green function.

F = −T
∑

λ,n
ln[−iωn + ελ]

As in the case of a single field, by replacing the Matsubara sum with a contour integral we obtain

F = T
∑

λ

∮
dz
2πi

f (z)ln[ελ − z] (13.139)

= −T
∑

λ

ln[1 + e−βελ] (13.140)

If we differentiate Z with respect to its source terms, we obtain the Green’s function:

−
δ2lnZ
δ j̄λnδ jλ′n′

= [G]λn,λ′n′ = δλλ′δnn′
1

iωn − ελ

13.5 Effective action and Hubbard Stratonovich transformation

13.5.1 Heuristic derivation

The “Hubbard Stratonovich” transformation [9, 10], provides a means of representing the inter-
actions between fermions in terms of an exchange boson. It is in essence, a way of replacing an
instantaneous interaction by a force-carrying boson that describes the fluctuations of an emergent
order parameter. Using this method it becomes possible to formally “integrate out” the microscopic
fermions, rewriting the problem as an effective field theory describing the thermal and quantum
fluctuations of the order parameter as a path integral with a new “effective action”. The method also
provides an important formal basis for the order-parameter and mean-field description of broken
symmetry states.

To motivate this approach, we begin with a heuristic derivation. Consider a simple attractive
point interaction between particles V(x − x′) = −gδ(x − x′), given by the interaction Hamiltonian

HI = −
g
2

∫

x
ρ(x)2. (13.141)

We can write the partition function as a path integral,

Z =
∫
D[ψ] exp

[
−

∫

x,τ
ψ̄(x)(∂τ + h)ψ(x) −

g
2
ρ(x)2

]
(13.142)

If we expand the logarithm of the partition function diagrammatically, then we get a series of linked-
cluster diagrams,

ln(Z/Z0) = + + + + . . . (13.143)
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where the point interaction is represented by Feynman diagram

1 2 = gδ(1 − 2). (13.144)

Rather that thinking of an instantaneous contact interaction, we can regard this diagram as the
exchange of force carrying boson, writing the diagram as

1 2 = (i)2
︸︷︷︸

vertices
×
−〈Tφ(1)φ(2)〉︷!!!!!!!︸︸!!!!!!!︷
−gδ(1 − 2) (13.145)

where the vertices (−i) derive from an interaction S ′I =
∫

x,τ ρ(x)φ(x), between the fermions and the
boson with imaginary time Green’s function

G(1 − 2) = −〈Tφ(1)φ(2)〉 = −gδ(1 − 2) (13.146)

But this implies that the exchange boson has a white noise correlation function 〈Tφ(1)φ(2)〉 =
δ(1− 2): these kind of white noise correlations are exactly what we expect for a field governed by a
simple Gaussian path integral, where

∫
D[φ]φ(1)φ(2)e−S φ

∫
D[φ]e−S φ

= gδ(1 − 2) (13.147)

with the Gaussian action

S φ =
∫

x

∫ β

0
dτ
φ(x)2

2g
. (13.148)

By adding S φ + S ′I to the free fermion action we can thus represent original point interaction by
a fluctuating white-noise potential

−
g
2
ρ(x)2 → ρ(x)φ(x) +

φ(x)2

2g
. (13.149)

If we now insert this transformed interaction into the action, the transformed path integral expression
of the partition function becomes

Z =
∫
D[ψ, φ] exp

[
−

∫

x,τ
ψ̄(x)[∂τ + h + φ(x)]ψ(x) +

1
2g
φ(x)2

]
. (13.150)

Note that:

• Although our derivation is heuristic, we shall shortly see that the Hubbard Stratonovich trans-
formation is exact so long as we allow φ(x) = φ(x, τ) to describe a fluctuating quantum
variable inside the path integral.
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• If we replace φ(x, τ) by its average value, φ(x, τ) → 〈φ(x, τ)〉 = φ(x) we obtain a “mean-field
theory”. Suppose, instead of carrying out the Hubbard Stratonovich transformation, we chose
to expand the density in powers of its fluctuations δρ(x) about its average value 〈ρ(x)〉, writing
ρ(x) = 〈ρ(x)〉 + δρ(x). The interaction can then be written

HI = −
g
2

∫

x
(〈ρ(x)〉 + δρ(x))2

= −
g
2

∫

x

[
〈ρ(x)〉2 + 2〈ρ(x)〉δρ(x)

]
+ O(δρ(x)2) (13.151)

If we neglect the term second order in the fluctuations, then resubstitute δρ(x) = ρ(x)−〈ρ(x)〉,
we obtain

HI ≈ −
g
2

∫

x

[
2〈ρ(x)〉ρ(x) − 〈ρ(x)〉2

]
=

∫

x

[
ρ(x)φ(x) +

φ(x)2

2g

]
(13.152)

where we have replaced −g〈ρ(x)〉 = φ(x). This approximate mean-field Hamiltonian (13.152)
resembles the result of the Hubbard Stratonovich transformation (13.149)

With care, this kind of reasoning can be extended to a whole host of interactions between var-
ious kinds of charge, spin, current densities, including both non-local interactions and repulsive
interactions. For example, in the Hubbard and Anderson models, the interaction can be written as
an attractive interaction in the magnetic channel of the form that is factorized as follows:

−
U
2

(n↑ − n↓)2 → (n↑ − n↓)M +
M2

2U
(13.153)

corresponding to electrons exchanging fluctuations of the magnetic Weiss field M. The coupling
between the field M and the electrons can sometimes stabilize a broken symmetry state where M
develops an expectation value - leading to a magnet. The Hubbard Stratonovich transformation can
also be applied to complex fields, permitting the following factorization

HI = −gA†A→ Ā∆ + ∆̄A +
∆̄∆

g
(13.154)

where ∆ is a complex field. Notice how we have switched A† → Ā to emphasize that the replacement
is only exact under the path integral (or alternatively, if you wish to switch to operators, under the
time-ordering operator). This kind of interaction occurs in a BCS superconductor, where the pairing
interaction

HI = −g
∑

k,k′
c†k↑c†−k↓c−k′↓ck′↑ = −g

A†︷!!!!!!!!!!︸︸!!!!!!!!!!︷∑

k
c†k↑c†−k↓

A︷!!!!!!!︸︸!!!!!!!︷∑

k
c−k↓ck↑ .

In this case, under the path integral the interaction can be rewritten in terms of electrons moving in
a fluctuating pair field

HI → ∆̄
∑

k
c−k↓ck↑ +

∑

k
c̄k↑c̄−k↓∆ +

∆̄∆

g

Once superconductivity develops, ∆ develops an expectation value, playing the role of an order
parameter.
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13.5.2 Detailed derivation

Let us examine the above procedure in detail. To be concrete, consider an attractive interation of
the form HI = −g

∑
j A† jA j, where Aj represents an electron bilinear (such as the pair density

or spin density of an x-y spin). Consider a fermion path integral on a lattice with interactions
HI = −g

∑
j A j
†Aj,

Z =
∫
D[c̄, c] exp


−

∫ β

0
dτc̄(∂τ + h)c − g

∑

j
Ā jA j


 , (13.155)

where inside the path integral, we have replaced A† → Ā. The next step is to introduce a “white
noise” variable, α j described by the path integral

Zα =
∫
D[ᾱ, α] exp

[
−

∑

j

∫ β

0
dτ
ᾱ jα j

g

]
. (13.156)

The weight function

exp


−

∑

j

∫ β

0
dτ
ᾱ jα j

g




is a Gaussian distribution function for a white noise field with correlation function 2

〈ᾱi(τ)α j(τ′)〉 = gδi jδ(τ − τ′). (13.157)

Now the product of these two path integrals

Z × Zα =
∫
D[c̄, c]

∫
D[ᾱ, α] exp


−

∫ β

0
dτc̄(∂τ + h)c −

∑

j

H′I ( j)︷!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!︷(
−gĀ jA j +

ᾱ jα j

g

) 
 , (13.158)

describes two independent systems. As written, the “α” integrals are on the inside of the path so that
for all configurations of the α j(τ) field explored in the inner α integral, the space-time configuration

2To show this, it is helpful to consider the generating functional

Λ[ j̄, j] =
∫
D[ᾱ, α] exp

[
−

∑

r

∫ β

0
dτ

(
ᾱrαr
g
− j̄rαr − ᾱr jr

)]

By changing variables, αr → αr + g jr, we can absorb the terms linear in j, to obtain

Λ[ j̄, j] = exp
[
g
∑

r

∫ β

0
dτ( j̄r(τ) jr(τ))

]

Differentiating this with respect to jr(τ), we find that

∂2lnΛ[ j, j̄]
∂ j̄r(τ)∂ jr′ (τ′)

∣∣∣∣∣∣
j, j̄=0
= 〈αr(τ)ᾱr′ (τ′)〉 = gδrr′δ(τ − τ′)
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of the Aj(τ) set by the outer integral are frozen and can hence be regarded as “constants”, fixed at
each point in space time. This permits us to define a new variable

∆ j(τ) = α j(τ) − gAj(τ),

and its corresponding conjugate ∆̄ j = ᾱ j − gĀ j. Formally this is just a shift in the integration
variable, so the measure is unchanged and we can write D[∆̄,∆] = D[ᾱ, α]. The transformed
interaction becomes

H′I =
∑

j

{
−gĀ jA j

(∆̄ j + gĀ j)(∆ j + gAj)
g

}

=
∑

j

{
Ā j ∆ j + ∆̄ jA j +

∆̄ j∆ j

g

}
. (13.159)

In this way, we arrive at a transformed interaction in which new variable ∆ j is linearly coupled to the
electron operator Aj. If we now re-invert the order of integration inside the path integral (13.158),
we obtain

Z =

∫
D[∆̄,∆] exp


−

∑

j

∫ β

0
dτ
∆̄ j∆ j

g




∫
D[c̄, c]e−S̃

S̃ =

∫ β

0
dτ

(
c̄∂τc + HE[∆̄,∆]

)
(13.160)

where

HE[∆̄,∆] = c̄hc +
∑

j

{
Ā j∆ j + ∆̄ jA j

}
(13.161)

represents the action for electrons moving in the fluctuating field ∆ j. Notice that since A and Ā
represent fermion bilinear terms, that HE is itself a bilinear Hamiltonian.

These noisy fluctuations mediate the interaction between the fermions, much as an exchange
boson mediates interactions in the vacuum. More schematically,

Z =
∑

{∆}

exp


−

∑

j

∫
dτ
|∆ j|2

g


 ×

[
Path integral of fermions moving in field ∆

]
(13.162)

where the summation represents a sum over all possible configurations {∆} of the auxiliary field ∆.
The transformed field

∆ j = α j − gAj

is a combination of a white noise field α j and the physical field −gAj, so its fluctuations now acquire
the correlations associated with the electron fluid. Indeed, when the associated variable A is prone to

468



bk.pdf June 28, 2011 235

c©2011 Piers Coleman Chapter 13.

Figure 13.5: (a) Action for initial white noise variable α. (b) Action for shifted variable ∆ is shifted
off-centre when the related quantity A has a predisposition towards developing an expectation value.

the development of a broken-symmetry expectation value, the distribution function for ∆ becomes
concentrated around a non-zero value (Fig. 13.5). We call ∆ j a “Weiss field” after Weiss, who first
introduced such a field in the context of magnetism.

13.5.3 Integrating out the fermions.

Since the fermionic action inside the path integral is actually Gaussian, we can formerly integrate
out the fermions as follows

e−S ψ[∆̄,∆] =

∫
D[c̄, c]e−S̃ = det[∂τ + hE[∆̄,∆]] (13.163)

where hE is the matrix representation of HE . The Full path integral may thus be written

Z =
∫
D[∆̄,∆]e−S E[∆̄,∆]

where

S E[∆̄,∆] =
∑

j

∫
dτ
∆̄ j∆ j

g
− ln det[∂τ + hE[∆̄,∆]]

=
∑

j

∫
dτ
∆̄ j∆ j

g
− Trln[∂τ + hE[∆̄,∆]] (13.164)

where we have made the replacement ln det → Tr det. This quantity is called the “effective action”
of the field ∆. The additional fermionic contribution to this action can profoundly change the distri-
bution of the field ∆. For example, if S E develops a minima away around ∆ = ∆o ! 0, the ∆ = −A/g

469

Chapter 13. c©Piers Coleman 2011

will acquire a “vacuum expectation value”. This makes the Hubbard Stratonovich transformation
an invaluable tool for studying the development of broken symmetry in interacting Fermi systems.

13.5.4 Generalizations to real variables and repulsive interactions

The method outlined in the previous section can also be applied to real fields. If we have a real
Hamiltonian we can introduce a real white noise field as follows

HI = −
g
2

∑

j
A2
j →

∑

j


−

g
2
A2
j +

q2
j

2g


 (13.165)

and then by redefining q j = Qj + gAj, one obtains

−
g
2

∑

j
A2
j →

∑

j


QjAj +

Q2
j

g


 (13.166)

For example, we can use the Hubbard Stratonovich transformation to replace an attractive interac-
tion between fermions by a white noise potential with variance g:

HI = −
g
2

∑

j
(n j)2 →

∑

jσ
Vjn j +

V2
j

2g

where n j = n j↑ + n j↓.
But what about repulsive interactions? These require a little more care, because we can’t just

change the sign of g in (13.166) for the integral over the white noise fields will no longer be conver-
gent. Instead, after introducing the dummy white noise fields as before,

HI =
g
2
A2
j →

∑

j



g
2
A2
j +

q2
j

2g


 , (13.167)

to absorb the interaction, we shift each variable in the path integral q j(τ) by an imaginary amount,
q j(τ) = Qj(τ) + igA j(τ), to obtain 3

g
2

∑

j
A2
j →

∑

j


iQ jA j +

Q2
j

2g


 (13.168)

3One might be worried about the legitimacy of shifting a real field by an imaginary quantity. However, just as the
integral ∫ ∞

−∞
dQe−Q2/2 =

∫ ∞+iA

−∞+iA
dQe−Q2/2 =

is unaffected by a constant shift of the variable Q by an imaginary amount, Q→ Q+ iA axis, a multi-variable path integral
∫

D[Q]e−
∫
dτQ(τ)2/2

is similarly unaffected by shifting the integration variable Q(τ) by an amount iA(τ), Q(τ)→ Q(τ) + iA(τ).
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Note finally, that if one replaces Qj = −iQ̃ j, this takes the form

g
2

∑
A2
j →

∑

j


Q̃ jA j −

Q̃2
j

2g


 (13.169)

Which first sight, looks like the generalization of (13.166) to negative g excepting now, the integrals
over the each Qj(τ) traverse the imaginary, rather than the real axis.

Example 13.6: Using the Hubbard Stratonovich transformation, show that the Coulomb inter-
action can be decoupled in terms of a fluctuating potential as follows:

HI =
1
2

∫

x, x′
ρ(x)ρ(x′) e2

4πε0|x − x′| →
∫

x

[
eρ(x)φ(x) − ε0

(∇φ)2

2

]
(13.170)

What is the interpretation of the new term, quadratic in the potential field (and why is the sign
negative)?
Solution: Because of the non-local nature of the Coulomb interaction, it is more transparent to
make this transformation in momentum space. Writing

ρ(x) =
∫

q
ρqeiq·x,

1
ε0|x − x′| =

∫

q

1
ε0q2 e

iq·(x−x′) (13.171)

where
∫

q ≡
∫ d3q

(2π)3 , the interaction becomes

HI =
1
2

∫

q

(eρq)(eρ−q)
ε0q2

We now add in a dummy white noise term,

HI → H′I =
1
2

∫

q

[ (eρq)(eρ−q)
ε0q2 − ε0q2φqφ−q

]
,

with the understanding that in the path integral, the φq field is to be integrated along the imagi-
nary axis φq = iφ̃q. Now if we shift φq → φq −

eρq
ε0q2 , we obtain

H′I =
∫

q

[
(eρq)φ−q −

ε0
2
q2φqφ−q

]

Finally, Fourier transforming back into real space, (q2 → −∇2) we obtain

H′I =
∫

x

[
eρ(x)φ(x) +

ε0
2
φ∇2φ

]
(13.172)

Integrating the last term by parts gives

H′I =
∫

x

[
eρ(x)φ(x)

−ε0E2/2︷!!!!!︸︸!!!!!︷
−
ε0
2

(∇φ)2
]

(13.173)
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We can identify the last term in this expression as −ε0E2/2, which is the electrostatic contribu-
tion to the action. The minus sign can be traced back to the fact that inside the electromagnetic
(Maxwell) action

S EM =
∫

d3xdτ
[
B2

2µ0
−
ε0E2

2

]
(13.174)

the electrostatic contribution to the action enters with the opposite sign to the magnetic part.
The complete path integral for interacting electrons in this representation is then

Z =
∫
D[ψ̄, ψ, φ] exp

[
−

∫ β

0
dτ

∫
d3x

(
ψ̄
(
−

1
2m
∇2 + eφ(x) − µ

)
ψ −
ε0
2

(∇φ)2
)]
.

Thus by carrying out a Hubbard Stratonovich transformation, the action becomes local. This
formulation is ideal for the development of RPA approximations to the electron gas, while
mean-field solutions of this path integral can be used to explore the formation of Wigner crys-
tals.

13.6 Example: Magnetism in the Hubbard model.
To illustrate the Hubbard Stratonovich transformation, we now examine its application to the treat-
ment of magnetism in the Hubbard model. Without spin, all matter would be magnetically inert (nei-
ther diamagnetic nor paramagnetic). Quantum mechanics provides an explanation of magnetism as
a consequence of the orientational ordering of electron spins. This connection between magnetism
and spin is one of the huge accomplishments of quantum mechanics.

13.6.1 Development of the theory of Itinerant Magnetism

Before our example, let me make a few remarks about the development of the theory of magnetism
[14, 15]. A century ago, the ferro-magnetism of simple metals, such as iron, cobalt or nickel was an
unsolved mystery. In 1906 the French physicist, Pierre Weiss working at ETH, Zurich, discovered
that if you look at an ferromagnet on a small enough scale, it consists of magnetic domains. This
led him to propose the first “mean-field theory”, introducing the concept concept of an emergent
“molecular” contribution to the effective internal magnetic field[16, 17]

HE = H +
molecular Weiss field︷︸︸︷

IM . (13.175)

But the origin of the Weiss field was unknown. Worst, it quickly became clear that magnetism can’t
be understood using classical mechanics: indeed, according to the “Bohr-van Leeuwen theorem”,
independently proven by Neils Bohr and Hendrika van Leeuwen[18, 19] a fluid of (spinless) classi-
cal electrons in thermal equilibrium has zero magnetization, 4 even in a field[20].

4The Bohr-van Leeuwen theorem follows simply from the fact that the classical partition function of a gas of interact-
ing particles can be transformed to show it is entirely independent of the applied field. The classical partition function is
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This mystery was resolved by quantum mechanics and the discovery of “spin”. In 1928, Werner
Heisenberg, working at Leipzig made the critical link between magnetization and electron spin
polarization; he also identified the Coulomb exchange interaction as the driving force for ferromag-
netism [21] and the origin of the mysterious “I” in Weiss’ theory. In the 1930’s Edmund Stoner at
Leeds University and John Slater at Harvard University developed the basis for an itinerant theory
of ferromagnetism in metals[22, 23, 24]. A key idea here, is that strong interactions drive a metal
to become unstable towards the development of a spontaneous spin polarization. In the simplest
case, a ferromagnet develops, but later Albert Overhauser, working at Ford Labs in the early 1960s,
showed the instability can also occur at a finite wavevector Q to form a spin density wave[25], as in
the case of metallic chromium. This instability occurs when the product of the electron interaction
I and “bare” magnetic susceptibility of the non-interacting electron gas at this wavevector χ0(Q)
reaches unity

IQχ0(Q) = 1, (Stoner criterion).

Later in the 1960s, Junjiro Kanamori[26] at Osaka University and John Hubbard[27] in Har-
well, England reformulated the theory of magnetism using the model we now call the Hubbard
model. Sebastian Doniach and Stanley Engelsberg[28] at Imperial College London, and Norman
Berk and Robert Schrieffer[29] at the University of Pennsylvannia, refined this work, demonstrating
that quantum fluctuations of the magnetization play a crucial role: these fluctuations act to suppress
the magnetization and become particularly strong near the point of instability or critical point. It is
only recently that physicists have been able to experimentally examine such quantum critical points.

Itinerant magnetism is only one part of the story of magnetism, for in magnetic materials where
the electrons are localized, the magnetization derives from “localized magnetic moments”. High
performance neodynium-iron alloy magnets derive their strength from localized moments on at the
neodynium sites. Many of the most fascinating systems of current study, such as the high temper-
ature cuprate and iron-based superconductors appear to lie in a murky region between “intineracy”
and “localization”, where electrons are on the brink of localization. This is a topic we shall return
to chapter 15.

written

Z =
∫ ∏

i=1,N
d3pid3xie−βH (13.176)

where

H[p, x] =
∑

i

(pi − eA(xi))2

2m
+

∑

i< j

U(xi − x j) + eφ(xi)

where all the magnetic field dependence lies in the vector potential term, given by A = 1
2 B × x in the Landau gauge.

However, one can always make the change of variable p′ = p+ eA(x), x′ = x, for which the Jacobian is unity, completely
absorbing all dependence on the external magnetic field. The equilibrium magnetization, M = −TδlnZ/δB(x) = 0 is
therefore zero. This also implies that the isothermal magnetic susceptibility of a classical plasma is zero. Note how-
ever that a classical electron gas does have a diamagnetic response when a field is applied adiabatically, rather than
isothermally.
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13.6.2 Path integral formulation of the Hubbard Model

We encountered the Hubbard model in Chapter 5. It consists of a single band of electrons moving
on a tight-binding lattice, with a localized interaction of strength U, described by the Hamiltonian

H =
∑

k,σ
εkc†kσckσ + U

∑

j
n j↑n j↓. (13.177)

where
ckσ =

1
√
Ns

∑
c† jσeik·r j

creates an electron of wavevector k with energy εk. To explore magnetism in this model we rewrite
the interaction term in terms of the spin operators as follows

Unj↑n j↓ = −
U
2

(n j↑ − n j↓)2 +
U
2

(n j↑ + n j↓). (13.178)

where we have used the fact that n2
j↑ = n j↑. Now as written, the above decoupling emphasizes the

magnetic fluctuations along the z− axis. Indded, we might have made the decoupling around any
spin quantization axis, and since we are interested in keeping track of magnetic fluctuations along
all axes it makes sense to average over all three directions, writing the decoupling as

Unj↑n j↓ = −
U
6

(
σ j

)2
+
U
2

(n j↑ + n j↓), (13.179)

where we have introduced the notationσ j = (c† jασαβc jβ) for the magnetization at site j. The second
term in this expression can be absorbed into a redefinition of the chemical potential, by writing
µ = µ′ + U/2. The minus sign in this interaction manifestly displays magnetic exchange effect of
the Coulomb interaction, whereby a repulsion between charges leads to an attraction between spins.

We now formulate the problem as a path integral

Z =

∫
D[c]e−S

S =

∫ β

0
dτ

[∑

k,σ
c̄kσ(∂τ + εk)ckσ −

I
2

∑

j

(
σ j

)2
]
, (I = U/3), (13.180)

where we have introduced the coupling constant I = U/3. At this point, we carry out a Hubbard
Stratonovich transformation. Adding a white noise field mj into the action, so that

−
I
2

∑

j

(
σ j)2 → −

I
2

∑

j

(
σ j)2 +

∫ β

0
dτ

∑

j

m2
j

2I
, (13.181)

and then shifting m j =M j − Iσ j, we obtain

−
I
2
(
σ j

)2 → −M j(τ) · σ j +
M j(τ)2

2I
, (13.182)
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where M j(τ) is a fluctuating Weiss field. We have chosen the sign of the first term to reflect the role
of the Weiss field as “effective magnetic field”. The transformed partition function

Z =

∫
D[M, c̄, c]e−S [c̄,c,M],

S [c̄, c,M] =
∫ β

0
dτ



∑

k,σ
c̄kσ(∂τ + εk)ckσ +

∑

j

[
−M j · σ j +

M j
2

2I

] , (13.183)

describes electrons moving through a lattice of fluctuating magnetization. We can emphasize this
interpretation by moving the magnetization integral to the outside, writing

Z =
∫
D[M]e−S E[M] (13.184)

where the effective action
e−S E[M] =

∫
D[c̄, c]e−S [c̄,c,M] (13.185)

describes the action associated with a particular space-time configuration {M j(τ)} of the magneti-
zation. Since the exponential S [c̄, c,M] in (13.185) is a quadratic function of fermion fields, the
integral is Gaussian and can be evaluted in closed form. To carry out the integral, it is convenient to
Fourier transform the fields, writing c jσ = 1√

Ns

∑
k ckσeik·x j , so that

∑

jσ
M j · σ j =

∑

jσ
M j · (c̄ jασαβc jβ) =

∑

k,k′,σ
c̄k′α

(Mk′−k · σαβ
)
ckβ (13.186)

where Mq =
1
Ns

∑
j M je−iq·R j is the Fourier transform of the magnetization. The effective action can

be written in the compact form

e−S E[M] =

∫
D[c̄, c] exp


−

∫ β

0
dτ


c̄(∂τ + hE[M])c +

∑

j

M2
j

2I





 (13.187)

where,
[hE]k′,k = εkδk,k′ −Mk′−k(τ) · σ (13.188)

describes the effective Hamiltonian for the electrons moving in the (time dependent) magnetization
field. Carrying out the Gaussian integral over c̄ and c using (13.133 ) then gives

e−S E[M] = Det
[
∂τ + hE[M]

]
exp


−

∑

j

∫ β

0
dτ

M2
j

2I


 , (13.189)

or more explicitly,
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S E[M] =
− ln Det[∂τ+hE]︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷

−Tr ln
[
(∂τ + εk)δk′,k −Mk′−k · σ

]
+

∑

j

∫ β

0
dτ

M2
j

2I
. (13.190)

Note that

• In general, we can only evaluate S E analytically for simple static configurations of M j(τ) =
M j. These provide the basis for mean-field theories.

• The factor e−S E[M] in (13.189) resembles a Boltzmann distribution in classical statistical me-
chanics. However, in striking distinction with its classical counterpart, in certain non-uniform
configurations of the magnetization the weigth function e−S E[M] acquires negative values.
These configurations are in many ways, the most interesting configurations of the path in-
tegral, and when they proliferate, standard Metropolis Monte Carlo approaches become ex-
ceedingly inaccurate. This is “the minus sign problem” of many body physics - one of the
major unsolved problems of numerical Many Body physics.

It is also useful to cast the effective action in terms of Feynman diagrams. To do this, we first
rewrite the magnetization in terms of its Matsubara Fourier modes,

Mq ≡Mq(iνn) =
1
β

∫ β

0
dτMq(τ)eiνnτ (13.191)

In Fourier space, we replace ∂τ → −iωn in the Fermionic Determinant of (13.190 ) to obtain

S E[M] = −Tr ln
[
(−iωn + εk)δk,k′ −Mk−k′ · σ

]
+ Nsβ

∑

q

|Mq|2

2I
. (13.192)

We can factor out (−iω + εk) inside the logarithm, which permits us to split it into two terms,

S E[M] = −Tr ln
[
(−iωn + εk)(1 + (iωn − εk)−1Mk−k′ · σ)

]
+ Nsβ

∑

q

|Mq|2

2I

= −Tr ln [(−iωn + εk)] −
Tr ln(1−G0V)︷!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!︷

Tr ln
[
1 −G0(k)Vk,k′

]
+Nsβ

∑

q

|Mq|2

2I
. (13.193)

where
G0(k) = (iωn − εk)−1,Vk,k′ = −Mk−k′ · σ. (13.194)

Here we have used the identity Tr[ln(AB)] = Tr ln A + Tr ln B to seperate the terms inside the
logarithm. Normalized with respect to the volume of space time, The first term in (13.193) can be
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normalized to give the free energy density fo the non-interacting system

F0 =
S 0
Nsβ
= −

1
Nsβ

Tr ln [(−iωn + εk)] .

The second term is the change in the Free energy of the fermions due to the magnetization field: the
overbrace shows how we can rewrite it in terms of the bare propagator G0 = (iωn − εk)−1 and the
scattering potential Vk′,k = −Mk′−k ·σ. This term can be reinterpreted as an infinite sum of Feynman
diagrams, describing repeated scattering off the exchange field

Tr ln(1 −G0V) = Tr[−G0V −
1
2

(G0V)2 −
1
3

(G0V)3 + . . . ]

= Nsβ




+ + + + . . .



. (13.195)

The pre-factor Nsβ, the volume of space-time, is included because we are working in Fourier space,
with the convention that all internal momentum and frequency sums are normalized with a measure

1
Nsβ

∑
k,iωn . The effective free energy (per site) FE[M] = S E/(Nsβ) can then be written diagrammat-

ically as

FE[M] = F0 −




+ + + + . . .



+

∑

q

|Mq|2

2I
. (13.196)

13.6.3 Saddle point and the Mean field theory of magnetism

To explore broken symmetry solutions, we now make a saddle point approximation, approximating
the partition function by its value at the saddle-point M =M0

Z =
∫
D[M]e−S E[M] ≈ e−S E[M0] (13.197)

where
δS E[M]
δM

∣∣∣∣∣M=M(0)
= 0. (13.198)

Equations (13.197) and (13.198) contain the essence of mean-field theory and deserve some
discussion. We discussed in Chapter 13 how a system develops a spontaneously broken symmetry
when the Landau functional F[M] develops a minimum at a non-zero value of the order parameter.
A full-fledged calculation of this functional would involve calculating the full path-integral Z[h]
with a symmetry breaking field h in place, using a Legendre transformation to calculate S [M] =
S [h] − h.δS/δh, ultimately taking h to zero the end of the calculation. The mean-field approach
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approximates S [M] ≈ S E[M]. Such “saddle point” or “mean-field” solutions serve as the staging
point to compute the fluctuations around the broken symmetry state. The ultimate consistency of
any mean-field approximation depends on the fluctuations being small enough that they do not wash
out the broken symmetry solution.

If we differentiate S E[M] in (13.185), we see that the saddle point condition (13.198 ) implies

δS E
δM j

= =
1

e−S E

∫
D[c̄, c]

δS [c̄,c,M]
δM j︷!!!!!!!!!!!︸︸!!!!!!!!!!!︷(M j

I
− c̄ jσc j

)
e−S [c̄,c,M] =

M j

I
− 〈c† jσc j〉

∣∣∣∣∣∣hE
. (13.199)

where we have used (13.183) to calculate δS [c̄, c,M]/δM j. In this way the saddle point condition
(13.198) automatically satisfies the mean-field relation

δS [M]
δM j

∣∣∣∣∣∣M=M0

= 0, ⇐⇒ M(0)
j = I 〈c

†
jσc j〉

∣∣∣hE[M(0)]

Saddle point condition Mean field theory. (13.200)

This makes life a lot easier: instead of labouring to impose the self-consistency condition on the
right-hand side, we can simply generate mean-field solutions by minimizing the effective action.
Generally, we’re interested in a static saddle point, where M j(τ) = M(0)

j , In this situation, the
effective action is directly related to the mean-field partition function

e−S E[M(0)] = Tr
[
e−βĤMF

]
(13.201)

where

ĤMF = c†hE[M(0)] c +
∑

j

(M(0)
j )2

2I
, (13.202)

is read off from the action in the path integral (13.187 ).
In a ferromagnet, the magnetization is uniform: for convenience we choose the spin-polarization

along the z-axis, writing
M(0)

j = Mẑ, (13.203)

or in in Fourier space Mq = Mδq ẑ. In this case, the mean-field Hamiltonian is diagonal:

HMF =
∑

kσ
c†kσ(εk − σM)ckσ + Ns

M2

2I
(13.204)

since Mq = Mδq0. We see that when M is finite, the up and down Fermi surfaces are now ex-
change split by an amount ∆ = 2M. By carrying out the Gaussian integral over the Fermi fields, or
substituting into (13.192) we can immediately write down the effective action as

S E[M] = −
∑

k,iωn

Tr ln
[
εk − Mσz − iωn

]
+ Nsβ

M2

2I
(13.205)
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Figure 13.6: Phase diagram for 3D “Stoner model” computed using using (13.211) and (13.212).
The horizontal axis is the coupling constant Ī = IN(0), where the critical value Īc = 1.

The result of carrying out the Matsubara sum on this expression gives the well known form

FE[M] = −
1
Nsβ

∑

k,σ
ln

[
1 + e−β(εk−σM)] +

M2

2I

= −
T
2

∫
dεN(ε)

∑

σ

ln
[
1 + e−β(ε−σM)] +

M2

2I
, (13.206)

where FE = S E/(βNs) is the Free energy per unit volume, and we have rewritten the momentum
summation as an integral, over the density of states per site N(ε).

To find the stationary point of the action, we differentiate it with respect to M to get

−
∂FE[M]
∂M

= 0 =
M
I
−

〈σz〉︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷
1
2

∑

σ=±1

∫
dεN(ε) f (ε − σM)σ (13.207)

or
M =

I
2

∑

σ=±1

∫
dεN(ε) f (ε − σM)σ (13.208)

which expresses the mean-field condition M = I〈σz〉. We can obtain the second-order phase transi-
tion temperature Tc by letting M → 0+. Replacing f (ε − σM)→ f (ε) − σM f ′(ε) gives

1 = I

χ0(Tc)︷!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!︷∫
dεN(ε)

(
−
d f
dε

)∣∣∣∣∣∣T=Tc
= Iχ0(Tc) (Stoner Criterion)
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where we have identified bracketed term as the spin-susceptibility of the non-interacting gas at Tc.
At a finite temperature the Stoner Criterion defines the Curie temperature Tc of the electron gas.
In the ground-state at absolute zero, we can replace the derivative of the Fermi function by a delta
function −d f /dε → δ(ε) so the Stoner Criterion becomes

IcN(0) = 1 (Stoner Criterion T = 0)

where I = Ic is the critical value of the interaction I, beyond which the paramagnetic ground-state
becomes unstable to magnetism, as shown in Fig (13.6). This is a quantum phase transition, driven
not by thermal, but by quantum fluctuations.

Example 13.7: Calculate the magnetic phase boundary Tc(I) for the 3D continuum Stoner
model, where the density of states N(ε) = N(0)

√
ε+µ
εF

, where εF is the Fermi temperature and
N(0) the density of states at the Fermi surface.
Solution: In three dimensions, the Stoner Criterion can be written

1 = IN(0)
∫ ∞

0
dE

√
E
εF

f (E − µ)[1 − f (E − µ)]
Tc

= I
√

Tc
2εF

∫ ∞

0
dx
√
x sech2[x − µβc/2] (13.209)

If we were interested in the problem at constant chemical potential, we could stop here, however
if we wish to take account of the drift of the chemical potential at finite temperature, we need
to impose the condition of constant particle density n0,

n0 = N(0)
∫ ∞

0
dE

√
E
εF
f (E − µ)

= N(0)εF
(
Tc
εF

) 3
2
∫ ∞

0
dx
√
x

1
ex−µβc + 1

. (13.210)

At zero temperature, this gives n0 =
2
3N(0)εF , so that

2
3
N(0)εF = N(0)εF

(
Tc
εF

) 3
2
∫ ∞

0
dx
√
x

1
ex−µβc + 1

.

enabling us to write Tc as a parametric function of y = µβc

Tc(y) = εF
[
3
2

∫ ∞

0
dx
√
x

1
ex−y + 1

]−2/3

. (13.211)

Inserting (13.211) into (13.209) we can also write Ī = IN(0) as a parametric function of y = µβc,

Ī(y) =

[
3
2

∫ ∞
0 dx

√
x 1
ex−y+1

]1/3
.

1√
2

∫ ∞
0 dx

√
x sech2[x − y/2]

(13.212)

Fig (13.6) shows the phase diagram computed using (13.211) and (13.212)
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To finish this section, let us calculate the Landau expansion of the Free energy. If we make a
binomial expansion of the logarithm in S E[M] in powers of M, we obtain

−
T
2

∑

σ

ln
[
1 + e−β(ε−σM)] = −T ln

[
1 + e−βε

]
+

∞∑

r=1

M2r

(2r)!
d2r−1 f (ε)
dε2r−1 (13.213)

where odd powers of M vanish and f (ε) is the Fermi function. Thus

F [M] = F0 +
∞∑

r=1

M2r

(2r)!

∫
dεN(ε)

d2r−1 f (ε)
dε2r−1 +

M2

2I
. (13.214)

If we integrate in (13.214) by parts, we obtain

F [M] = F0 −
∑

r

M2r

(2r)!

N(2r−2)(0)︷!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!︷∫
dε

(
−
d f
dε

)
N(2r−2)(ε)+

M2

2I
. (13.215)

where N(r) = drN(ε)/dεr is the r-th derivative of the density of states and N(r)(0) is its corresponding
thermal average around the Fermi surface. If we take terms up to M4, we obtain

F = F0 +
1
2
M2

(
1
I
− χ0(T )

)
+
M4

4!
(−N′′(0)) + O(M6) (13.216)

where (−N′′(0)) denotes the thermal average average of the second derivative of the density of states
around the Fermi energy. This is the Landau energy function predicted by the “Stoner theory” of
itinerant ferromagnet. Note that

• The quartic coefficient in the Free energy is positive, only if N′′(0) < 0 is negative, i.e, if the
density of states has a downward curvature. If this requirement is not met, the ferromagnetic
phase transition becomes first order. Most transition metal ferromagnets, such as iron and
cobalt, involve narrow bands in three dimensions with a large negative curvature of the den-
sity of states and the transition is second-order. However, in quasi-two dimensional systems
where the density of states has mostly positive curvature, the ferromagnetic phase transition
is expected to be first order.

• The mean-field parameters in the above action are likely to be modified by fluctuations. In
our mean-field theory, an isotropic decoupling gave I = U/3, but had we chosen an Ising
decoupling, just in the z direction, we would have obtained I = U, which is most likely an
over-estimate of I. Mean-field theories can not in general give a very reliable indication of
the absolute size of such parameters.

• There is a formal “large N limit” in which the above mean-field theory does become exact. If
instead of the original model, we chose a multi-band (N-band) model, with the action

S =
∫ β

0
dτ



∑

k,λσ
c̄kλσ(∂τ + εk)ckσ −

I
2N

∑

j

(∑

λ

σλ( j)
)2


 (13.217)
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where the band index λ ∈ [1,N]. Here the interaction I can be regarded as a “Hund’s”
interaction between the different bands. For large N the action of this model grows extensively
with N, and in this situation, the path integral becomes saturated by the saddle-point solution,
so the mean-field theory becomes exact.

Example 13.8:
(a) Show from the Landau energy (13.216), that near the quantum critical point at T = 0,
I = Ic = 1/N(0), the magnetic moment is given by

M =

√(
I − Ic
IIc

)
6

−N′′(0)
∼

√
I − Ic. (13.218)

(b) By expanding the density of states in a power-series about the Fermi energy, show that the
transition temperature predicted by (13.216) is

Tc =

√
6
π2

(
1
I
− N(0)

)
1

(−N′′(0))
.

Solution: (a) We begin by writing the Landau free energy as

F =
rM2

2
+
uM4

4

where r = I−1 − N(0), u = −N′′(0)/6. At zero temperature,

r =
(

1
I
−

1
Ic

)
, u =

−N′′(0)
6

where Ic = 1/N(0). Setting ∂F/∂M2 = 0, we obtain rM + uM3 = 0, or

M =
√
r
u
=

√(
I − Ic
IIc

)
6

−N′′(0)
∼

√
I − Ic.

(b) Carrying out a Taylor expansion of the density of states,

N(0) =
∫

dε
(
−
d f
dε

) [
N(0) + εN′(0) +

ε2

2
N′′(0)

]
= N(0) +

π2T 2

6
N′′(0)

it follows that at a small finite temperature

r(T ) =
(

1
I
−

1
Ic
+
π2T 2

6
(−N′′(0))

)

Setting r(Tc) = 0, it follows that

Tc =

√
6
π2

(
1
I
− N(0)

)
1

(−N′′(0))
.
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13.6.4 Quantum fluctuations in the magnetization

Figure 13.7: Illustrating (a) mean-field theory (b) fluctuations about mean-field theory.

The beauty of the saddle point approach, is that it allows one to go beyond the mean-field theory
to examine the fluctuations in the order parameter. The basic idea is to expand the magnetization in
fluctuations around the saddle point, writing

M j(τ) =M(0) + δM j(τ) (13.219)

or in Fourier space
Mq =M(0)δq=0 + δMq, (q ≡ (q, iνn)) (13.220)

Because the effective action is stationary with respect to variations in M at the saddle point, the
leading order corrections to the effective action are quadratic in the fluctuations,

S E[M] = S E[M(0)] +
1
2

∑

q

δ2S
δMa

qδMb
−q
δMa

qδMb
−q + O(δM3)

Notice that all linear terms in the fluctuations vanish by virtue of the fact that the mean-field action
is stationary with respect to fluctuations. Provided the fluctuations are small compared to the order
parameter, one can use the quadratic approximation to the effective action to examine the leading
fluctuations of the magenization in the ferromagnetic state.

In a magnet these fluctuations take place against a broken symmetry background. The elec-
trons scattering off the fluctuations are partially spin polarized and governed by the “renormalized”
propagator, denoted by the double line

k
= G(k) = (iωn − εk − σzM)−1.
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where we have underlined G(k) to emphasize that it is a two-dimensional, albeit diagonal, matrix.
Let us now expand the effective action S E[M] in (13.192) in the fluctuations by substituting

Mk−k′ = Mδk−k′ + δMk−k′ to obtain

FE[M] = −
1
Nsβ

Tr ln
[
−G(k)−1δk,k′ − δMk−k′ · σ

]
+

∑

q

|Mẑδq + δMq|2

2I
. (13.221)

If we now expand this expression in powers of δMq, we get a Feynman diagram expansion in terms
of the renormalized propagators, as follows

FE = −
1
Nsβ

Tr ln[−G(k)−1] −




+ + + + . . .




+
∑

q

|Mẑδq + δMq|2

2I
. (13.222)

where the wavy line denotes scattering off the order-parameter fluctuations. Now since the action is
stationary with respect to fluctuations, all terms linear in δMq must cancel. which leads to

∆FE[M] = −




+ + + . . .



+

∑

q

|δMq|2

2I
, (13.223)

where ∆FE[M] = FE[M] − FE[M(0)]. Only first diagram and the final term in this expression, are
quadratic in δMq. Combining them, and dropping the higher order terms, we obtain the “Gaussian
action” for the magnetization fluctuations

∆FG[M] =
1
2

∑

q
δMa
−q



δab
I
− σa

k

k + q

σb



δMb

q

=
1
2
δMa
−q

[δab
I
− χ(0)

ab (q)
]
δMb
−q (13.224)

Gaussian Action of Fluctuations.

where

χ(0)
ab (q) = σa

k

k + q

σb = −
1
βNs

∑

k
Tr

[
σaG(k + q)σbG(k)

]
(13.225)
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is the “bare” susceptibility of the polarized metal. Now the presence of a magnetization means that
the off-diagonal terms χ(0)

xy (q) = χ(0)
yx (−q) are non-zero. To diagonalize the magnetic fluctuations,

it is convenient to work in terms of the raising and lowering components of the transverse spin,
σ± =

1
2 (σx ± iσy), and the corresponding components of the magnetization

M±q = Mx
q ± iM

y
q.

The non-zero components of the transverse susceptibility are then

χ(0)
+−(q) = −

1
βNs

∑

k
Tr

[
σ+G(k + q)σ−G(k)

]

χ(0)
−+(q) = −

1
βNs

∑

k
Tr

[
σ−G(k + q)σ+G(k)

]
= χ(0)

+−(−q) (13.226)

where the identity χ(0)
−+(q) = χ(0)

+−(−q) follows by changing variables k → k − q inside the sum.
Rewriting M · σ = Mz

qσz + M+σ− + M−σ+, the Gaussian effective action then becomes

∆FG[M] =
1
2

∑

q

[
δMz
−q

(
1
I
− χ(0)

zz (q)
)
δMz

q

+ δM−−q
(

1
2I
− χ(0)
+−(q)

)
δM+q + δM+−q

(
1
2I
− χ(0)

−+(q)
)
δM−q

]
(13.227)

Now since the magnetization is a real variable, follows that δM±q = δM∓−q (where we use a bar to
denote complex conjugate) so we can rewrite this expression in the form

∆FG[M] =
1
2

∑

q

[
δMz
−q

(
1
I
− χ(0)

zz (q)
)
δMz

q

+ δM+q
(

1
2I
− χ(0)
+−(q)

)
δM+q + δM+−q

(
1
2I
− χ(0)

−+(q)
)
δM+−q

]
(13.228)

It is this quadratic functional that provides the argument for the Gaussian distribution function of
the magnetic fluctuations p[Mq] = Z−1e−∆S [M] = e−βNs∆FG[M]. Now by (13.226), χ(0)

−+(q) = χ(0)
+−(q)

so we can combine the last terms into one. The final results describing the distribution function for
the Gaussian magnetic fluctuations about the Stoner mean-field theory for an intinerant ferromagnet
are

p[Mq] ∝ e−∆S [M] = e−βNs∆FG[M] (13.229)

∆FG[M] =
∑

q

[
1
2
δMz
−q

(
1
I
− χ(0)

zz (q)
)
δMz

q + δM+q
(

1
2I
− χ(0)
+−(q)

)
δM+q

]
. (13.230)
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From the Gaussian form of this distribution, we can immediately read off the fluctuations in mag-
netization. Denoting

〈δMαq δM
β
−q′ 〉 =

1
βNs
δq,q′ × 〈δMαq δM

β
−q〉 (13.231)

the fluctuations in magnetization are given by

〈δMz
qδMz

−q〉 =
1

1
I − χ

(0)
zz (q)

〈δM+q δM+−q〉 =
1

1
2I − χ

(0)
+−(q)

(13.232)

Let us now convert these results into spin correlation functions. If we go back to the original Hub-
bard Stratonovich transformation, (13.182), we recall that to decouple the interaction, we had to in-
troduce a dummy white noise variable, let us call it m j(τ), with distribution function 〈ma

j(τ)m
b
j(τ
′)〉 =

Iδabδ(τ − τ′), or 〈ma
qmb
−q〉 = Iδab. To carry out the Hubbard Stratonovich transformation we rede-

fined this varible, writing m j(τ) → M j − Iσ j. It follows that the variable we are working with is
related to the original white noise variable by M j(τ) = m j(τ) + Iσ j(τ). Consequently, the Gaussian
fluctuations in the magnetization are given by

〈σaqσ
b
−q〉 =

1
I2



〈δMa

qδMb
−q〉 −

Iδab︷!!!!!!!︸︸!!!!!!!︷
〈δma

qδmb
−q〉




It follows that

〈σzqσ
z
−q〉 = χzz(q) =

1
I2




1
1
I − χ

(0)
zz (q)

− I

 =

χ(0)
zz (q)

1 − Iχ(0)
zz (q)

(Longitudinal)

〈σ+qσ
−
−q〉 = χ+−(q) =

1
I2




1
1
2I − χ

(0)
+−(q)

− 2I

 =

χ(0)
+−(q)

1 − 2Iχ(0)
+−(q)

(Transverse)(13.233)

RPA spin fluctuations

These are the celebrated “RPA” spin fluctuations of an intinerant Ferromagnet.
It is particularly interesting to examine the transverse spin fluctuations in (13.233). A uniform

transverse spin fluctuation corresponds to a rotation of the magnetization, which costs no energy
due to the rotational invariance of the system. If we carry out a slow twist of the magnetization, this
costs an energy that goes to zero as the pitch of the twist goes to infinity. The corresponding normal
mode is the “Goldstone mode” of the magnet.

One can analtyically calculate the transverse spin fluctuations of a ferromagnet with a quadratic
dispersion εk = k2

2m − µ, because the bare susceptibilities χ(0)(q) can be calculated as Lindhardt
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Figure 13.8: The energy spectrum of quantum magnetic fluctuations in an intinerant ferromagnet.
The above spectrum was computed for a magnetization M = 0.9εF corresponding to an almost fully
polarized Fermi sea.

functions. The transverse bare susceptibility (per unit cell) is given by

χ(0)
+−(q) = −

1
Nsβ

∑

k,iωn

[
σ+G(k + q)σ−G(k)

]
= σ+

k ↑

k + q ↓

σ−

= −
1
Nsβ

∑

k,iωn

[
G↓(k + q)G↑(k)

]

= a3
∫

k

fk↑ − fk+q↓

(εk+q↓ − εk↑) − iνn
(13.234)

where εkσ = εk − σM, (σ =↑, ↓). These sort of expressions are a type of Lindhard function already
encountered in chapter 8. Following the same lines as section 8.62, we analytically continuing to
real frequencies, and rewrite the integrals as follows

χ(0)
+−(q, ν) = a3

∫

k

(
fk↑

(εk+q − εk) − (ν − 2M)
+

fk↓
(εk−q − εk) + (ν − 2M)

)
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=
∑

σ=±
a3

∫ kFσ

0

k2dk
2π2

∫
d cos θ

2

[
1

(εk+q − εk) − σ(ν − 2M)

]

=
1
2

∑

σ

(
mkFσ
π2

)
F

(
q

2kFσ
, σ
ν − 2M

4εF

)
(13.235)

where εFσ = εF + σM and kFσ = kF(1 + M
εF

) 1
2 are the Fermi energy and momenta of the spin

σ = (↑, ↓) Fermi surfaces and

F [q̃, ν̃] =
1
8q̃

[
(1 − A2) ln

(
A + 1
A − 1

)
+ 2A

]
,

A = q̃ −
ν̃

q̃
(13.236)

is the Lindhard function.
Fig. (13.8) shows a density plot of the transverse dynamical spin susceptibility χ′′+−(q, ν) =

Imχ+−(q, ν − iδ) predicted by the Gaussian (RPA) theory. The spectrum of magnetic fluctuations
about the mean-field theory is determined by the energies at which one can excite a particle-hole
pair by flipping a spin. Unlike a non-magnetic metal, the energy to flip a spin at q = 0 is twice the
Weiss field εk↓ − εk↑ = 2M. The continuum of spin-flip particle-hole excitations is thus lifted up at
low momenta, forming what is known as the “Stoner continuum”. The threshold energy for a spin-
flip excitation finally drops to zero at the wavevector q = kF↑ − kF↓. Below the Stoner continuum
is a sharp Goldstone mode, labelled by the dotted line in Fig ()13.8), corresponding to a low-energy
pole in the dynamic susceptibility located at frequencies ωq determined by the condition

2Iχ+−(q, ωq) = 1.

A careful evaluation of this condition shows that

ωq = Z(M/εF)
q2

2m
, (13.237)

where

Z(x) =
4
5x

[
(1 + x)5/2 − (1 − x)5/2 − 5

(1 + x)3/2 − (1 − x)3/2 .

]
(13.238)

This is the relation used to determine the dotted line-curve in Fig. (13.8).

13.7 Summary

Casting many body quantum mechanics as a path integral. Key result. So second nature, that most
condensed matter physicists use the same notation for the operators and their c-number representa-
tion inside the path integral.

With these approaches, one has to have the Hamiltonian in the form of canonical operators.
Poses problems in strongly correlated systems, where the strong interactions between the particles
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force us to introduce new operators that do not obey canonical commutation relations. We will
return to these issues in Chapter ***.

As an example, we examined how these methods can be applied to itinerant ferromagnetism. In
the process, we encountered the new concept of a “quantum phase transition”, a point in the phase
diagram where the long range order is destroyed by quantum, rather than thermal fluctuations. This
is a subject of immense current interest Though we didn’t follow it in detail, we remarked that the
saddle point could be made exact in the large N limit of 1/N expansion. These methods are believed
to break down in two dimensions (ref to Metilsky and Sun Silk Lee), and the resolution of this
situation is at this time, an unsolved problem of great interest.

13.8 Appendices

Appendix 13A Derivation of key properties of bosonic coherent states.

Here we derive the matrix elements and the completeness properties of bosonic coherent states.

Matrix elements. Matrix elements of normal ordered operators O[b̂†, b̂] between two coherent
states are obtained simply by replacing the operators b̂ and b̂† by the c-numbers b and b̄ respectively:

〈b̄1|Ô[b̂†, b̂]|b2〉 = O[b̄1, b2] × 〈b̄1|b2〉 = O[b̄1, b2] × eb̄1 |b2 (13.239)

To derive the matrix elements of coherent states, we first note that the properties of coherent states
guarantee that

〈b̄|(b̂†)nb̂m|b〉 = (b̄†)nbm〈b̄|b〉 = (b̄)nbmeb̄b. (13.240)

Thus if Ô[b̂†, b̂] =
∑
m,n Omn(b̂†)mbn is a normal ordered operator, (all annihilation operators on the

right), it follows that

〈b̄|Ô[b̂†, b̂]|b〉 =
∑

m,n
Omn b̄mbn × 〈b̄|b〉 = O[b̄, b] × eb̄b.

or
Ô[b†, b] coherent states

−−−−−−−−−−−−−−−−−−→ O[b̄, b] × 〈b̄|b〉

Note that if one has an operator that is not normal ordered, then one has to normal-order the op-
erator prior to applying this theorem. For example, if O = (b̂ + b̂†)2, then O =: O : +1, and
〈b̄|O|b〉 = [(b + b̄)2 + 1]eb̄b.

Completeness.

The unit operator can be decomposed in terms of coherent states as follows

1̂ =
∑

b̄,b

|b〉〈b̄|, (13.241)
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where ∑

b̄,b

≡
∫

db̄db
2πi

e−b̄b (13.242)

is the normalized measure for summing over coherent states. To demonstrate the completeness
relation, we will first derive the orthogonality relation between the wavefunctions φn(b) = 〈n|b〉 of
the coherent states:

Inm =
∫

db̄db
2πi

e−b̄b〈n|b〉〈b̄|m〉 = δnm. (13.243)

To prove this, let us substitute b = reiφ and b̄ = re−iφ. Although b̄ and b are complex conjugates of
each other, they are derived from two independent real variables, and so the measure for integrating
over them is two-dimensional. We can transform the measure into polar co-ordinates by introducing
a Jacobian, as follows:

db̄db =

δ[b̄,b]/δ[r,φ]︷!!!!!!︸︸!!!!!!︷eeeeeeeeeeee

δb̄
δr

δb̄
δφ

δb
δr

δb
δφ

eeeeeeeeeeee
drdφ =

eeeeeeeeee
e−iφ −ire−iφ
eiφ ireiφ

eeeeeeeeee drdφ = 2irdrdφ

so that (13.243) factorizes into a radial and an angular integral,

Inm =
1
√
n!m!

∫
db̄db
2πi

b̄nb̄me−b̄b =
1
√
n!m!

∫ ∞

0
2rdrrn+me−r

2
×

δmn︷!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!︷∫ 2π

0

dφ
2π
eiφ(n−m),(13.244)

where we have substituted 〈n|b〉 = 1√
n!
bn and 〈b̄|m〉 = 1√

m!
b̄m. The angular integral vanishes unless

n = m. Changing variables r2 → x, 2rdr = dx in the first integral we then obtain

Inm =
δnm
n!

∫ ∞

0
dx xne−x = δnm (13.245)

proving the orthogonality relation. Now since δnm = 〈n|m〉, we can write the orthogonality relation
(13.243) as

〈n|m〉 =
∫

db̄db
2πi

e−b̄b〈n|b〉〈b̄|m〉 = 〈n|
(∫

db̄db
2πi

e−b̄b|b〉〈b̄|
)
|m〉.

Since this holds for all states |n〉 and |m〉, it follows that the quantity in brackets is the unit operator,

1̂ =
∫

db̄db
2πi

e−b̄b|b〉〈b̄| =
∫

db̄db
2πi
|b〉〈b̄|
〈b̄|b〉

≡
∑

b̄,b

|b〉〈b̄| (13.246)

Completeness relation

Appendix 13B Grassman Differentiation and Integration

Differentiation is defined to have the normal linear properties of the differential operator. We denote

∂c ≡
∂

∂c
, ∂c̄ ≡

∂

∂c̄
(13.247)
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so that

∂cc = ∂c̄c̄ = 1. (13.248)

If we have a function
f (c̄, c) = f0 + f̄1c + c̄ f1 + f12c̄c (13.249)

then differentiation from the left-hand side gives

∂c f = f̃1 − f12c̄
∂c̄ f = f1 + f12c (13.250)

where the minus sign in the first expression occurs because the ∂̄ operator must anticommute with c.
But how do we define integration? This proves to be much easier for Grassman variables, than for
regular c-numbers. The great sparseness of the space of functions dramatically restricts the number
of linear operations we can apply to functions, forcing differentiation and integration to become the
same operation :

∫
dc ≡ ∂c,

∫
dc̄ ≡ ∂c̄ (13.251)

In other words, ∫
dc̄c̄ = 1,

∫
dcc = 1,

∫
dc̄ =

∫
dc = 0 (13.252)
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Appendix 13C Grassman calculus: Change of variables

Suppose we change variables, writing



c1
...
cr



= A




ξ1
...
ξr




(13.253)

where A is c-number matrix, then we would like to know how to evaluate the Jacobian for this
transformation, which is defined so that

∫
dc1 . . . dcr [. . . ] =

∫
J
(
c1 . . . c
ξ1 . . . ξr

)
dξ1 . . . dξr [. . . ] (13.254)

Now since integration and differentiation are identical for Grassman variables, we can evaluate the
fermionic Jacobian using the chain rule for differentiation, as follows

∫
dc1 . . . dcr [. . . ] =

∂r

∂c1 . . . ∂cr
[. . . ]

=
∑

P

(
∂ξP1

∂c1
. . .
∂ξPr
∂cr

)
∂r

∂ξP1 . . . ∂ξPr
[. . . ] (13.255)

where P =
(

1 . . . r
P1 . . . Pr

)
is a permutation of the sequence (1 . . . r). But we can order the differen-

tiation in the second term, picking up a factor (−1)P where P is the signature of the permutation, to
obtain

∫
dc1 . . . dcr [. . . ] =

∑

P
(−1)P

(
∂ξP1

∂c1
. . .
∂ξPr
∂cr

)
∂r

∂ξ1 . . . ∂ξr
[. . . ]

= Det[A−1]
∂r

∂ξ1 . . . ∂ξr
[. . . ]

=

∫
Det[A−1]dξ1 . . . dξr [. . . ] (13.256)

where we have recognized the prefactor as the determinant of the inverse transformation ξ = A−1c.
From this result, we can read off the Jacobian of the transformation as

J
(
c1 . . . cr
ξ1 . . . ξr

)
= Det[A]−1 =

∣∣∣∣∣
∂c1 . . . cr
∂ξ1 . . . ξr

∣∣∣∣∣
−1

(13.257)

which is precisely the inverse of the bosonic Jacobian. This has important implications for super-
symmetric field theories, where the Jacobian of the bosons and fermions precisely cancel. For our
purposes however, the most important point, is that for a Unitary transformation, the Jacobian is
unity.
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Appendix 13D Grassman Calculus: Gaussian Integrals

The basic Gaussian integral is simply
∫

dc̄dce−ac̄c =
∫

dc̄dc(1 − ac̄c) = a (13.258)

If now we introduce a set of N variables, then
∫ ∏

j
dc̄ jdc j exp−[

∑

j
a jc̄ jc j] =

∏

j
a j (13.259)

Suppose now, we carry out a unitary transformation, for which the Jacobian is unity, then since

c = Uξ, c̄ = ξ̄U†,

the integral then becomes ∫ ∏

j
dξ̄ jdξ j exp[−ξ̄ · A · ξ] =

∏

j
a j

where Ai j =
∑
l U†ilalUl j is the matrix with eigenvalues al. It follows that

∫ ∏

j
dξ̄ jdξ j exp[−ξ̄ · A · ξ] = Det[A] (13.260)

Finally, by shifting the variables ξ → ξ + A−1 j, where j is an arbitrary vector, we find that

Z[ j] =
∫ ∏

j
dξ̄ jdξ j exp[−(ξ̄ · A · ξ + j̄ · ξ + ξ̄ · j)] = Det[A] exp[ j̄ · A−1 · j] (13.261)

This is the basic Gaussian integral for Grassman variables. Notice that using the result lnDet[A] =
Trln[A], it is possible to take the logarithm of both sides to obtain

S [ j] = −lnZ[ j] = −Trln[A] − j̄ · A−1 · j. (13.262)

The main use of this integral, is for evaluating the Path integral for free field theories. In this case,
the matrix A → −G−1 becomes the inverse propagator for the fermions, and ξn → ψ(iωn) is the
Fourier component of the Fermi field at Matsubara frequency iωn.
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13.9 Exercises
1. In this problem consider ! = 1. Suppose |0〉 is the ground-state of a harmonic oscillator problem,

where b|0〉 = 0. Consider the state formed by simultaneously translating this state in momentum and
position space as follows:

|p, x〉 = exp
[
−i(xp̂ − px̂)

]
|0〉.

By rewriting b̂ = (x̂ + ip̂)/
√

2, z = (x + ip)/
√

2, show that this state can be rewritting as

|p, x〉 = eb
†z−z̄b|0〉

Using the relation eA+B = eAeBe 1
2 [A,B], provided [A, [A, B]] = [B, [A, B]] = 0, show that |p, x〉 is equal

to a normalized coherent state
|p, x〉 ≡ |z〉e−z̄z/2 = eb

†z|0〉e−
1
2 z̄z

showing that the coherent state |z〉 represents a minimum uncertainty wavepacket centered at (q, p) in
phase space.

2. Repeat the calculation of section 13.33. without taking the continuum limit. Show that the path integral
for a single boson with Hamiltonian H = εb†b with a large, but finite number of time slices is given by

lnZN =
N∑

n=1
ln

(
ε − iνnF(νn∆τ/2)

)

where F(x) = (1 − e−x)/x. If you approaximate each term in the sum by its value at ∆τ = 0, and then
take N → ∞ the result obviously converges to the continuum limit. But the error contribution from
N such terms appears to be of order O(N × ∆τ) = O(1). Use contour integration to show that this is
fortunately an over-estimate, and that the actual error is O(∆τ) = O(1/N).

3. Using path integrals, calculate the partition function for a single Zeeman-split electronic level de-
scribed by the action

S =
∫

dτ f̄α
(
δαβ∂τ + σαβ · B

)
fβ

Why is your answer not the same as the partition function of a spin S = 1/2 in a magnetic field?

4. Suppose
M = e

1
2
∑
i, j Ai jc† ic† j

where Ai j is an N × N antisymmetric matrix, and the c† j are a set of N canonical Fermi creation
operators. Using coherent states, calculate

Tr[MM†]

where the trace is over the 2N dimensional Hilbert space of fermions. (Hint: notice that MM† is
already normal ordered, so that by using the trace formula, you can rewrite this in terms of a simple
Grassman integral.)

5. Calculate, to Gaussian order, the change in the BCS effective action for a fluctuation in the gap function
of the following form

∆(τ) = ∆0 +
1
√
β

∑

n
δ∆ne−iνnτ
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where νn = 2πTn is the Bose Matsubara frequency and ∆0 is a value of ∆which minimizes the effective
action. Use your result to confirm that the BCS Free energy per unit volume is accurate to O(1/V),
where V is the volume.

6. Re-derive table 1. for the case of bosonic coherent states.

|b〉 = ebb̂
†
|0〉

where the Grassman variable is now replaced by a conventional c-number b.

7. (a) Suppose H = εc†c represents a single fermion state. Consider the approximation to the partition
function obtained by dividing up the period τ ∈ [0, β] into N equal time-slices,

ZN = Tr[(e−∆τH)N] (13.263)

where ∆τ = β/N. By using coherent states |c〉 = eĉ†c|0〉, and approximating the matrix element from
time τ j to time τ j+1, where τ j = j∆τ by

〈c̄ j+1|e−∆τH |c j〉 = eαc̄ j+1c j + O(∆τ2) (13.264)

where α = (1 − ∆τε), (Fig. 1.)

0ττ
3 2 1

β=τ
(13.265)

show that Z3 can be written as a “toy functional integral”,

Z3 =

∫
dc̄3dc3dc̄2dc2dc̄1dc1 exp



−(c̄3, c̄2, c̄1)




1 −α 0
0 1 −α
α 0 1







c3
c2
c1







(13.266)

(b) Evaluate Z3.
(c) Generalize the result to N time slices and obtain an expression for ZN . What is the limiting value
of your result as N → ∞?

8. Derive the completeness and trace formulae for a set of bosonic coherent states,

|α〉 = eb
†α|0〉 (13.267)

You may assume the basic result

δnm =

∫
db̄db
2πi

e−b̄bbnb̄m

In particular
(a) Show that the completeness relation is given by

∑

|b〉, |b̄〉

|b〉〈b̄| = 1

∑

|b〉, |b̄〉

=

∫
db̄db
2πi

e−b̄b (13.268)
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(b) Show that the trace formula is given by

Tr[Â] =
∑

|b〉, |b̄〉

〈b̄|Â|b〉

(c) What is the key difference between the derivation of the Bosonic and the Fermionic path integrals?

9. The one dimensional electron gas is prone to the development of charge-density wave instabilities.
The treatment of these instabilities bears close resemblance to the BCS theory of superconductivity.
Suppose we have a one-dimensional conductor, described by the Hamiltonian

H − µN = Ho + HI ,

Ho = −t
∑

j, σ

(
ψ† j+1 σψ j σ + ψ

†
j σψ j+1 σ

)
,

HI = −g
∑

j
n j↑n j↓ (13.269)

where g > 0 and ψ† jσ creates an electron with spin σ = ± 1
2 at site j. The separation between sites is

taken to be unity and the chemical potential has been chosen to be zero, giving a half-filled band.
(a) Show that Ho can be diagonalized in the form

Ho = −
∑

k σ
(2t cos k)c†kσckσ, (13.270)

where ckσ = 1√
N

∑
j ψ jσe−ik j, k = 2π

N (0, 1, . . .N − 1) . Please note that the band is exactly half-filled,
so that the Fermi surfaces are separated by a distance π in momentum space and the average electron
density is 1 per site.
(b) Suppose a staggered potential Vj = −(−1) jΦ is applied to the conductor. This will induce a
staggered charge density to the sample

〈n jσ〉 =
1
2
+ (−1) j∆ j/g (13.271)

At low temperatures, the staggered order will remain even after the applied potential is removed.
Why? If the RMS fluctuations in the staggered charge density can be ignored, show that the interaction
Hamiltonian can be recast in the form

HI →
∑

j


(−1) j∆ jn̂ j +

∆2
j

g


 + O(δn̂2

j). (13.272)

(c) How can the above transformation be elevated to the status of an exact result using a path integral?
(Note that the order parameter is no longer complex- does this change your discussion?)
(d) Calculate the excitation spectrum in the presence of the uniformly staggered order parameter ∆ j =
∆. (Hint: write the mean field Hamiltonian in momentum space and treat the terms that scatter from
one-side of the Fermi surface in an analogous fashion to the pairing terms in superconductivity. You

may find it useful to work with the spinor Ψkσ =
(
ckσ
ck+πσ

)
.)

(e) Calculate the Free energy F[∆] and sketch your result as a function of temperature. Write down
the gap equation for the value of ∆(T ) that develops spontaneously at low temperatures.
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Chapter 14

Superconductivity and BCS theory

14.1 Introduction: Superconductivity pre-history

As a specific illustration of the above approach, we shall now develop the BCS theory of supercon-
ductivity using the path integral method.

Before we start, a brief diversion about the history of superconductivity. Superconductivity - the
phenomenon whereby the resistance of metal spontaneously drops to zero upon cooling below its
critical temperature, was discovered by Kamerlingh Onnes in 1906. However, it took more than 50
years to fully develop the conceptual framework required to understand this collective phenomenon.
During this time, many great physicists, including Bohr, Pauli and Feynman tried, yet failed to
develop a microscopic theory of the phenomenon.

Some highlights in the development of the theory of superconductivity were

• Discovery of the Meissner effect in 1933 by Meissner and Ochsenfeld. When a supercon-
ductor is cooled in a small magnetic field, the flux is spontaneously excluded as it becomes
superconducting. The Meissner effect demonstrates that a superconductor is, in essence a
perfect diamagnet.

• London’s observation in 1937, that perfect diamagnetism develops if the wavefunction devel-
ops a rigidity which prevents the paramagnetic component of the current evolving to screen
out the diamagnetic current. (See earlier discussions) Using this reasoning, London deduced
the famous relationship

%j = −
nse2

m
%A, (%∇ · A = 0).

• Development of the Landau Ginzburg theory in 1951. Landau and Ginzburg extended the
Landau theory of phase transitions, proposing that superconductivity involves a complex or-
der parameter Ψ(x). Using arguments of gauge invariance, LG reasoned that the Free energy
must contain a gradient term of the form

f =
∫

d3x
1

2m∗
|(−i!%∇ − e∗ %A)ψ(x)|2
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Although we now know that e∗ = 2e, in the original version of the theory, Landau erroneously
convinced Ginzburg that he had an argument based on gauge invariance, that proves e∗ = e.
The vitally important aspect of this free energy function is that once ψ ! 0, the electromag-
netic field develops a mass giving rise to a super-current

%j = −
δ f
δ%A(x)

= −
(e∗)2

m∗
|ψ|2 %A(x)

The BCS Hamiltonian is one of the earliest examples of “model Hamiltonians”. By the early
fifties, the observation of the isotope effect by Bernie Serin at Rutgers University, had lead to the re-
alization that the mechanism of superconductivity in conventional metals was driven by the electron
phonon interaction. Frohlich had proposed his Hamiltonian for the electron phonon interaction, and
had discovered that these interactions can give rise to sliding charge density waves. Frohlich’s theo-
retical prediction of charge density waves was twenty five years ahead of its time, but it also misled
him into thinking that charge density waves could provide the explanation of the Meissner effect.
Frohlich’s error was to neglect the effect of pining, which in any disordered materials, prevents
incommensurate charge density waves from sliding freely.

In the early fifties, Bardeen and Pine’s recognized that to make progress with the theory of
superconductivity, it would be necessary to simplify the Hamiltonian by carrying out a canonical
transformation that eliminates the phonon degrees of freedom, giving rise to an effective electron-
electron interaction. The Bardeen Pine Hamiltonian is the immediate predecessor of the BCS model

14.2 The BCS Hamiltonian

We start with the BCS Hamiltonian

H =
∑

kσ
εkσc†kσckσ −

g0
V
A†A

where
A =

∑

k,|εk |<ωD

c−k↓ck↑, A† =
∑

k
c†k↑c†−k↓,

are the operators that annihilate or create a uniform pair density. Note how the interaction between
electrons is limited to within an energy ωD of the Fermi energy. This “simplified” pairing Hamilto-
nian is the one originally used by BCS. Notice how the interaction

HI = −
g0
V

∑

k,k′
c†k↑c†−k↓c−k′↓ck′↑,

involves pairs of infinite spatial extent (all momenta summed over). This feature enhances the
mean-field properties of the model to the point where mean-field theory actually gives the exact
solution.
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(i) Decoupled
from Fermions

Δ

Seff

0

δΔ
S =

∫
d4x
|∆|2

g

white noise

(ii) Coupled to
Fermions: δΔ

Δ

Δο

Seff

0

S e f f =
∫

d4x
|∆|2

g
− Trln(∂τ + he f f [∆̄,∆])

∆o ! 0

Fig. 3 Effective action for auxilliary field.

The volume normalizing factor 1/V is required so that this term grows linearly, rather than quadrat-
ically with volume V . We shall redefine g = g0/V to simplify our maniupations, re-instating the
volume at the end of the calculation.

The appearance of just one A and A† in the Hamiltonian makes it particularly easy to apply the
methods introduced in the last section. We begin by writing the problem as a path integral

Z =
∫
D[c̄, c]e−S

where

S =
∫ β

0

∑

kσ
c̄kσ(∂τ + εk)ckσ − gĀA
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Next we introduce the identity
∫
D[∆̄,∆] exp

[1
g

∫ β

0
dτ∆̄(τ)∆(τ)

]
= 1 (14.1)

into the path integral. By shifting the variables ∆→ ∆ + gA, ∆̄→ ∆̄ + gĀ, we obtain

Z =

∫
D[∆̄,∆, c̄, c]e−S

S =

∫ β

0
dτ



∑

kσ
c̄kσ(∂τ + εk)ckσ + ∆A + Ā∆ +

1
g
∆̄∆


 (14.2)

where ∆(τ) is a function of time only. In a Nambu notation, this can be re-written

S =
∫ β

0
dτ



∑

k
ψ̄k(∂τ + hk)ψk +

1
g
∆̄∆


 (14.3)

where
ψk =

(
ck↑
c̄−k.↓

)
(14.4)

defines the Nambu spinor and

hk =

[
εk ∆(τ)
∆̄(τ) −εk

]
= εkτ3 + ∆1τ1 + ∆2τ2 (14.5)

is the matrix Hamiltonian, where ∆ = ∆1 − i∆2, ∆̄ = ∆1 + i∆2, and (τ1, τ2, τ3) are the three Pauli
matrices. ( By convention the symbol τ is used to denote an “isospin” from a conventional spin.)
Notice that the action is now quadratic in the Fermi fields, so we can formally carry out the Gaussian
integral of the Fermi fields, “integrating out” the Fermions to obtain

e−S e f f [∆̄,∆] =
∏

k
det[∂τ + hk(τ)]e−

∫ β
0 dτ ∆̄∆g

for the effective action, where we have separated the fermionic determinant into a product over each
decoupled momentum. Thus

S e f f [∆̄,∆] =
∫ β

0
dτ
∆̄∆

g
+

∑

k
Trln(∂τ + hk).

where we have replaced lndet→ Trln. Except for certain uniform, or almost uniform configurations
of ∆, we can not calculate S e f f explicitly. It turns out however, that these configurations dominate
the path integral in the limit V → ∞. To see this consider the path integral

Z =
∫
D[∆̄,∆]e−S e f f [∆̄,∆]
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The effective action is actually extensive in the volume, V , so that as V → ∞, S/V is a constant. This
means that when we find the configuration of ∆ = ∆o which minimizes S e f f , the cost of fluctuations
δ∆ around this configuration will also be of order O(V), i.e. the amplitude for a small fluctuation is
given by

e−S = e−S o+O(V)×|δ∆|2

The appearance of V in the coefficient of this Gaussian distribution implies the variance of small
fluctuations around the minimum will be of order O(1/V), so that to a good approximation,

Z = e−S e f f [∆̄o,∆o]+O(1)

This is why the mean-field approximation to the path integral is essentially exact for the BCS model.
Since the original problem is translationally invariant, we expect the configurations that mini-

mize the action to also be uniform. The mean-field approximation to the path integral is made by
replacing the integral over the ∆ field by its uniform “saddle-point” value, obtained by replacing
∆(τ) with a uniform field ∆(τ) = ∆1 − i∆2. In this case, we can use momentum and frequency
eigenstates for the Nambu fields

ψk(τ) =
1
√
β

∑

n
ψkne−iωnτ

In this basis,
∂τ + h→ [−iωn + hk]

so that the determinant

det[∂τ + hk] =
∏

n
det[−iωn + hk] =

∏

n
[ω2

n + ε
2
k + |∆|

2]

and the effective action for a uniform field is

Fe f f =
S e f f
β
= −T

∑

kn
ln[ω2

n + ε
2
k + |∆|

2] +
|∆|2

g

We see that this is nothing more than the mean-field free-energy for the BCS model. Minimizing
Fe f f w.r.t ∆ gives us the gap equations

∂Fe f f
∂∆̄

= −
∑

kn

∆

ω2
n + E2

k
+ V
∆

g0
= 0 (14.6)

or

1
g0
=

1
βV

∑

kn

1
ω2
n + E2

k
BCS Gap equation (14.7)
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where
Ek =

√
ε2k + |∆|

2

is the quasiparticle energy and we have re-instated g0 = g/V . This is the BCS gap equation.
Actually, for most of our purposes, it proves easier to manipulate the Free energy in its discrete,

Matsubara form. We can in fact carry out the Matsubara sum at any stage in the above manipulation.
Using the contour integration method,

Fe f f = −
∑

k

∮
dz
2πi

f (z)ln[z2 − E2
k] + V

|∆|2

g0

where the integral runs anti-clockwise around the poles of the Fermi function. The logarithm inside
the integral can be split up into two terms

ln[z2 − E2
k]→ ln[Ek − z] + ln[−Ek − z]

which we immediately recognize as the contributions from fermions with energies ±Ek, so that the
result of carrying out the contour integral, is

Fe f f = −TV
∫

d3k
(2π)3

[
ln[1 + e−βEk] + ln[1 + eβEk]

]
+ V
|∆|2

g0

= −2TV
∫

|εk |<ωD

d3k
(2π)3

[
ln[2 cosh(βEk/2)]

]
+ V
|∆|2

g0
(14.8)

Differentiating w.r.t. ∆̄ and setting ∂Fe f f /∂∆̄ = 0, then gives

1
g0
=

∫

|εk |<ωD

d3k
(2π)3

[ tanh(βEk/2)
2Ek

]
(14.9)

If we approximate the density of states by a constant N(0) per spin over the narrow shell of states
around the Fermi surface, we may replace the momentum sum by an energy integral

1
g0
= N(0)

∫ ωD

0
dε

[ tanh(β
√
ε2 + ∆2/2)

√
ε2 + ∆2

]
. (14.10)

14.3 Computing Tc
To compute Tc we shall take the Matsubara form of the gap equation (14.7), which we rewrite
replacing the sum over momenta by an integral near the Fermi energy, replacing 1

V
∑

k → N(0)
∫
dε

we get
1
g0
= TN(0)

∑

n

∫ ∞

−∞
dε

1
ω2
n + ε

2
k + ∆

2 = πTN(0)
∑

|ωn |<ωD

1
√
ω2
n + ∆2
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where we have extended the limits of integration over energy to infinity. By carrying out the integral
over energy first, we are forced to impose the cut-off on the Matsubara frequencies.

If we now take T → 0 in this expression, we may replace

T
∑

ωn

= T
∑ ∆ωn

2πT
→

∫
dω
2π

(14.11)

so that at zero temperature and set T = 0, we obtain

1 = gN(0)
∫ ωD

0

dε
√
ε2 + ∆2

= gN(0)
[
sinh−1

(ωD
∆

)]
≈ gN(0) ln

(
2ωD
∆

)

where we have assumed gN(0) is small, so that ωD/∆ >> 1. We may now solve for the zero
temperature gap, to obtain

∆ = 2ωDe−
1

gN(0) (14.12)

To calculate the transition temperature, we note that just below the transition temperature, the gap
becomes infinitesimally small, so that ∆(T−c ) = 0. Substituting this into (14.11), we obtain

1
gN(0)

= πTc
∑

|ωn |<ωD

1
|ωn|
= 2πTc

∞∑

n=0

(
1
ωn
−

1
ωn + ωD

)

where we have imposed the limit on ωn by subtracting off an identical term, with ωn → ωn + ωD.
Simplifying this expression gives

1
gN(0)

=

∞∑

n=0




1
n + 1

2
−

1
ωn +

1
2 +

ωD
2πTc




At this point we can use an extremely useful identity of the digamma function ψ(z) = d
dz lnΓ(z),

ψ(z) = −C −
∞∑

n=0

(
1

z + n
−

1
1 + n

)

where C = 0.577 is the Euler constant, so that

1
gN(0)

=

≈ln(ωD/(2πTc))︷!!!!!!!!!!︸︸!!!!!!!!!!︷
ψ(

1
2
+
ωD

2πTc
)−ψ(

1
2

) = ln


ωDe−ψ( 1

2 )

2πTc


 ,

We we have approximated ψ(z) ≈ ln(z) for large |z|. Thus,

Tc =

≈1.13︷!!!!!︸︸!!!!!︷(
e−ψ(1/2)

2π

)
ωDe

− 1
g0N(0) (14.13)
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Notice that the details of the way we introduced the cut-off into the sums affects both the gap ∆ in
(14.12) and the transition temperature in (14.13). However, the ratio of twice the gap to TC ,

2∆
Tc
= 8πeψ( 1

2 ) ≈ 3.53

is universal for BCS superconductors, because the details of the cut-off cancel out of this ratio.
Experiments confirm that this ratio of gap to transition is indeed observed in phonon mediated
superconductors.

14.4 BCS Wavefunction and Boguilubov quasiparticles
Below the transition temperature, the finite pairing field ∆ modifies the motion of the electrons.
Let us examine the Hamiltonian which appears in (14.5). If restore the Grassman variables to full-
fledged operators, we see that

H =
∑

k
: ψ†khkψk :

=
∑

k
: (c†k↑, c−k↓)

[
εk ∆

∆̄ −εk

] (
ck↑
c̄−k.↓

)
:

=
∑

kσ
εkc†kσckσ +

∑

k

[
∆̄c−k↓ck↑ + ∆c†k↑c†−k↓

]
(14.14)

Notice how the off-diagonal terms associated with the pair condensate cause electrons to intercon-
vert into holes with the same momentum and spin. This kind of scattering is sometimes referred to
as “Andreev scattering”1. In making this transformation, charge 2e is transferred into the electron
condensate.

One of the interesting aspects of superconductivity, is that it can be regarded as closely anal-
ogous to a magnetic ordering process. Magnetism involves an ordering or condensation of spins.
Superconductivity takes place in charge rather than spin space, and we may regard the Nambu
isospin operators %τ as a direct analog of the Pauli spin operators, operating in charge or “isospin”
space.

It is very convenient to introduce the unit vector, defined by

n̂k =

(
∆1
Ek
,
∆2
Ek
,
εk
Ek

)

where as before, Ek =
√
ε2k + |∆|

2 is the energy of the paired electrons. Notice that n̂2 = 1 is a unit
vector. For the discussion here, we shall choose the phase of ∆ so that ∆2 = 0. In terms of this
vector,

hk = εkτ3 + ∆1τ1 + ∆2τ2 = Ekn̂k · %τ
1Andreev noticed that although the momentum of the hole is the same as the incoming electron, its group velocity

∇k(−ε−k) = ∇k(−εk) = −∇kεk, is reversed. Andreev reasoned that such scattering at the interface of a superconductor
leads to non-specular reflection of electrons, which scatter back as holes movign in the opposite direction to incoming
electrons.
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where %τ = (τ1, τ2, τ3). The vector n̂ points “upwards” above the Fermi surface, and “downwards”
beneath it. In a normal metal, the n̂ vector abruptly reverses at the Fermi surface forming a sharp
domain wall. In a superconductor, the n̂ vector is aligned at an angle θ to the ẑ axis, where

cos θ =
εk
Ek
,

and the domain wall is now spread out over a kinetic energy range of order ∆, as shown in figure
(14.1). From this perspective, %Bk = −Ekn̂k is a kind of “Weiss field” acting in isopsin space. This

θ

Δ

FS

ε<0

εk

εk

εk

(b)

(a) 

FS
ε>0

Figure 14.1: Showing the reversal of the isospin direction n̂ around the Fermi momentum for (a) a
normal metal and (b) a superconductor.

is the basis of Anderson’s “pseudo-spin” interpretation of the BCS ground-state. According to this
picture, one expects the isospin at each momentum k to align itself parallel to this field, i.e

〈ψ†k%τψk〉 = −n̂k = −(sin θk, 0, cos θk)

In a normal metal, the “z” component of the isospin is given by

ψ†kτ3ψk = nk↑ + nk↓ − 1 =
{
−1 (k > kF)

1 (k < kF)
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but in a superconductor, this becomes

2nk − 1 = −
εk√
ε2k + ∆

2

so the occupancy becomes smeared around the Fermi surface.
Let us begin by constructing the BCS ground-state wavefunction. We wish to construct a state

where the isospin at each k vector is rotated to be antiparallel to the effective field %Bk = −Ekn̂k. At
each k vector, we shall identify the empty state and doubly occupied state as “down” and “up” states
respectively:

| ⇓k〉 ≡ |nk = 0〉
| ⇑k〉 ≡ |nk = 2〉 = c†k↑c†−k↓|0〉. (14.15)

To produce the state where the isospin is rotated through an angle θk about the y axis, we act on the
vacuum with the isospin rotation operator as follows

|θk〉 = e−i
θk
2 ψ
†kτyψk | ⇓k〉 =

(
cos
θk
2
− i sin

θk
2
ψ†kτyψk

)
| ⇓k〉

= cos
θk
2
| ⇓k〉 − sin

θk
2
| ⇑k〉

=

(
cos
θk
2
− sin

θk
2
c†k↑c†−k↓

)
| ⇓k〉 (14.16)

The ground-state will then be a product of these isospin states

|BCS 〉 =
∏

k
|θk〉 =

∏

k

(
cos
θk
2
− sin

θk
2
c†k↑c†−k↓

)
|0〉 (14.17)

By convention, the coefficients cos
(
θk
2

)
and sin

(
θk
2

)
are labelled uk and vk respectively, where,

writing

u2
k ≡ cos2

(θk
2

)
=

1
2

[
1 +

εk
Ek︷!!︸︸!!︷

cos θk
]
=

1
2

[
1 +
εk
Ek

]

v2
k ≡ sin2

(θk
2

)
=

1
2

[
1 − cos θk

]
=

1
2

[
1 −
εk
Ek

]
(14.18)

By convention, the normalization of this state is dropped, and the BCS wavefunction is written

|BCS 〉 =
∏

k
|θk〉 =

∏

k

(
1 + γkc†−k↓c†k↑

)
|0〉, (γk =

vk
uk

) (14.19)

Remarks
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• Since (c†−k↓c†k↑)2 = 1, (1+ γkc†−k↓c†k↑) = Exp(γkc†−k↓c†k↑), the BCS wavefunction can be
re-written as an explicit coherent state

|BCS 〉 = eb
†
|0〉

where
b† =

∑

k
γkc†−k↓c†k↑

is the bosonic pair operator that condenses.

• The BCS ground-state has an indefinite number of particles and can be written as a linear
combination of states of definite numbers of particles

|BCS 〉 =
∑ 1

n!
|n〉

where |n〉 = (b†)n|0〉 is a state of n electron pairs. Since the pair operator has condensed, it
costs no energy to add a pair, and in the thermodynamic limit, each of these states has the
same free energy per unit volume.

• If the phase of the electron operator is changed c†kσ → eiθc†kσ, the pair order parameter
∆ = −g

∑
k〈c−k↓ck↑〉, until now assumed to be real, acquires a phase ∆ → e−2iθ∆, and the

BCS wavefunction becomes

|θ〉 =
∏

k
|θk〉 =

∏

k

(
1 + ei2θγkc†−k↓c†k↑

)
|0〉 =

∑ 1
n!
ei2nθ|n〉 (14.20)

The action of the number operator N̂ on this state may be represented as a differential with
respect to phase,

N̂ |θ〉 =
∑ 1

n!
2nei2nθ|n〉 = −i

d
dθ
|θ〉.

so that
N̂ ≡ −i

d
dθ
.

In other words, the phase of the order parameter is conjugate to the number operator, and like
position and momentum, or energy and time, the two variables therefore obey an uncertainty
principle

∆θ∆N >
˜

1.

so that a state of matter with a precise phase, has an ill-defined particle number.

• The electron pair operator b† can also be rewritten as a real-space operator

b† =
∫

d3r
∫

d3r′γ(%r − %r′)ψ†↓(%r)ψ†↑(%r′)
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where γ(%r)is the Fourier transform of γk. In this way, we see that b† creates a single Cooper
pair with a spatial wavefunction given by γ(%x − %x′). The spatial extent of the Cooper pair is
governed by the region of momentum space where uk and vk deviate significantly from unity
or zero - i.e the area within a momentum ∆kF of the Fermi surface, where vF∆k<˜∆. The
corresponding spatial extent of the Cooper pair is then

ξ ∼
1
∆k
=
vF
∆

This length is known as the “coherence length” of a superconductor. Notice how the larger the
gap, the smaller the coherence length. Conventional superconductors have coherence lengths
of several hundreds of Angstroms, but high temperature superconductors, which have very
large gaps, and in heavy electron superconductors, which have very small Fermi velocities,
the coherence length can drop to a size comparable with the lattice constant.

Let us now construct the quasiparticle operators that diagonalize the mean-field Hamiltonian for
the paired superconductor. In a superconductor, the Andreev scattering mixes particle and holes to
produce the gapped spectrum illustrated in Fig. 14.2. We accordingly expect that the quasiparticle
operators are linear combinations of electron and hole states.

Figure 14.2: In a superconductor, the presence of the pair condensate Andreev scatters particles into
holes, producing a gap in the quasiparticle excitation spectrum

Let us first recall that for any one-particle Hamiltonian H = ψ†αhαβψβ, we can construct “quasi-
particle” operators a†λ = ψ†β〈β|λ〉 which transform H into the diagonal form H =

∑
λ Eλa†λaλ.

Now the matrix element between the original one particle state |α〉 = ψ†α|0〉 and the quasiparticle
state |λ〉 = a†λ|0〉 is 〈α|Ĥ|λ〉 = hαβ〈β|λ〉 == Eλ〈α|λ〉, in other words, 〈β|λ〉 is an eigenvector of hαβ.
Now in BCS theory, the ψ†α ≡ (c†k↑, c−k↓) are the components of the Nambu spinor, whose first and
second components respectively create a particle and and a hole. Remarkably then, the procedure
of diagonalizing the one-particle Hamiltonian must mix particle and hole.
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To construct the quasiparticles, we note that the Nambu Hamiltonian,

hk = Ekn̂ · %τ

has two eigenvalues, ±Ek with eigenvectors
(
uk
vk

)
and

(
−vk
uk

)
which describe isospins that are parallel

and antiparallel to n̂, respectively. These satisfy

n̂ · %τ
(
uk
vk

)
=

(
uk
vk

)
, n̂ · %τ

(
−vk
uk

)
= −

(
−vk
uk

)

It follows that the appropriate quasiparticle operators for the BCS Hamiltonian are

α†k↑ = ψ†k

(
uk
vk

)
= c†k↑uk + c−k↓vk Boguilubov quasiparticles

α−k↓ = ψ†k

(
−vk
uk

)
= c−k↓uk − c†k↑vk (14.21)

which respectively create a spin up quasiparticle and quasihole with momentum k. The transfor-
mation that mixes particle and hole in this way is called a Boguilubov transformation. Boguilubov
originally studied this kind of transformation for interacting bosons inside a Bose-Einstein conden-
sate.

We can combine these two quasiparticle operators into a single Nambu spinor α†k as follows

α†k = (α†k↑, α−k↓) = ψ†k

=Uk︷!!!!!!︸︸!!!!!!︷(
uk −vk
vk uk

)
= ψ†kUk

where Uk is a unitary matrix whose columns are the eigenvectors of hk. Taking the Hermitian
conjugate, αk = U†kψk and since UU† = 1, it follows that ψk = Ukαk. Now since Uk contains the
eigenvectors of hk,

hkψk =

UkEkτ3︷︸︸︷
hkUk αk = UkEkτ3αk

so that
H =

∑

k
ψ†khkψk =

∑

k
α†kEkτ3αk

is diagonal in the quasiparticle basis. Written out explicitly,

H =
∑

k
Ek(α†k↑αk↑ − α−k↓α

†
−k↓)

=
∑

kσ
Ek(α†kσαkσ) −

∑

k
Ek (14.22)
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from which we see that the ground-state energy is given by

Eg = −
∑

k
Ek

Let us now explicitly check our results by verifying that the destruction operators αkσ annihilate the
BCS ground-state, αkσ|BCS 〉 = 0 To see this, first note that αk↑ commutes with (uk′+vk′c†−k′↓c†k′↑)
unless k′ = k, and in this case,

αk↑(uk + vkc†−k↓c†k↑) = (uk + vkc†−k↑c†k↑)αk↑ + vk

−ukc†−k↑︷!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!︷
[αk↑, c†−k↑c†k↑]

= uk(uk + vkc†−k↑c†k↑)ck↑ (14.23)

so that

αk↑|BCS 〉 = αk↑
∏

k′

(
uk′ + vk′c†−k′↓c†k′↑)|0〉 = uk

∏

k′

(
uk′ + vk′c†−k′↓c†k′↑)ck↑|0〉 = 0

The down-spin case can be proved in a similar fashion.

14.5 The Nambu Greens function

To describe the propagation of electrons and this interconversion between electron and hole, we
require a matrix Greens function, often called the Nambu Greens function, which is just the Greens
function formed from two Nambu spinors:

Gαβ(k, τ) = −〈Tψkα(τ)ψ†kβ(0)〉 (14.24)

which may be written out more explicitly as

G(k, τ) = −
〈
T

(
ck↑(τ)
c̄−k↓(τ)

)
⊗ (c†k↑(0), c−k↓(0))

〉

= −
[
〈Tck↑(τ)c†k↑(0)〉 〈Tck↑(τ)c−k↓(0)〉
〈Tc†−k↓(τ)c†k↑(0)〉 〈Tc†−k↓(τ)c−k↓(0)〉

]
(14.25)

The off-diagonal elements of this propagator result from the Andreev reflection. These anomalous
parts of the propagator were first discussed by Gorkov, and are written as

F(k, τ) = −〈Tck↑(τ)c−k↓(0)〉, F̄(k, τ) = −〈Tc†−k↓(τ)ck↑(0)〉, (14.26)

From our general path integral result (13.133), we note that just as in the normal metal,

1
iωn − εk

= −
∫ β

0
dτeiωnτ〈Tckσ(τ)c†kσ〉, (14.27)
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in the matrix generalization,

[iωn − hk]−1 =

∫ β

0
dτeiωnτG(k, τ) (14.28)

is the Nambu propagator in Fourier space. From (14.5), we have hk = εkτ3 + ∆1τ1 + ∆2τ2. For
simplicity, lets assume that ∆ is real, so that ∆2 = 0, then

G(k) =
1

iωn − εkτ3 + ∆τ1
=
iωn + εkτ3 + ∆τ1

(iωn)2 − E2
k

(14.29)

Written out explicitly, this is

G(k, iωn) =
1

(iωn)2 − E2
k

[
iωn + εk ∆

∆ iωn − εk

]
(14.30)

where Ek =
√
ε2k + ∆

2 is the quasiparticle energy. (One can restore a complex ∆ by replacing
∆→ ∆̄ in the lower-left component of G(k)).

Let us now examine how to obtain the same results diagrammatically. The Andreev scattering
converts a particle into a hole, so we we may associate scattering vertices with the Andreev reflection
events as follows:

∆̄c−k↓ck↑ ≡
Δk −k

∆̄

∆c†k↑c†−k↓ ≡
Δ−k k

∆ (14.31)

The “bare” propagators for the electron and hole are the diagonal components of the bare Nambu
propagator

G0(k) =
1

iωn − εkτ3
=

[ 1
iωn−εk 1

iωn+εk

]
. (14.32)

We denote these two components by the diagrams
k

≡ G0(k) =
1

iωn − εk−k
≡ −G0(−k) =

1
iωn + εk

(14.33)

(The minus sign in the second term is because we have commuted creation and annihilation opera-
tors to construct the hole propagator. ) The Feynman diagrams for the conventional propagator are
given by

= ...k −kk k k −k −kk k
(14.34)

Notice how the electron Andreev scatters an even number of times. This enables us to identify
a “self-energy” term that takes the form

k

Σ = Σ(k) =
−k

=
|∆|2

iωn + εk
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Inserting this into the propagator, yields

G(k) = ...ΣΣΣ

=
1

iωn − εk − Σ(iωn)
=

1
iωn − εk − |∆|2

iωn+εk

=
iωn + εk

(iωn)2 − E2
k
. (14.35)

In a similar way, the anomalous propagator is given by

= ...−k k k−k k −k

=
−k k (14.36)

so that
F(k) =

∆

iωn + εk
1

iωn − εk − |∆|2
iωn+εk

=
∆

(iωn)2 − E2
k

Finally, note that we can also see the quasiparticle structure in the Nambu propagators. The
operators

P+(k) =
1
2

(1 + n̂ · %τ), P−(k) =
1
2

(1 − n̂ · %τ),

satisfy P2
+ = P+, P2

− = P− and P+ + P− = 1, and furthermore,

P+(k)(n̂k · %τ) = P+(k), P−(k)(n̂k · %τ) = −P−(k),

so that these operators conveniently project the isospin onto the directions ±nk.
We can use the projectors P±(k) to project the Nambu propagator as follows

G = (P+ + P−)
1

iωn − Ekn̂ · %τ
= P+

1
iωn − Ekn̂ · τ̂

+ P−
1

iωn − Ekn̂ · τ̂
= P+

1
iωn − Ek

+ P−
1

iωn + Ek
(14.37)

we can interpret these two terms as the “quasiparticle” and “quasi-hole” parts of the Nambu propa-
gator. If we explicitly expand out this expression, using

P± =
1
2
±



εk
Ek

∆
2Ek

∆
2Ek

− εk2Ek




we find that the diagonal part of the Green’s function is given by

G(k) =
u2

k
iωn − Ek

+
v2

k
iωn + Ek

.

confirming that uk and vk determin the overlap between the electron and the quasiparticle and quasi-
hole, respectively.
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Example 14.1:

(a) Starting with the equation of motion of the Boguilubov quasiparticle, If the Boguilubov
quasiparticle α†k↑ = c†k↑uk + c−k↓vkα−k↓,

[H, α†k↑] =
∂α†k↑

∂τ
= Ekα

†
k↑ (14.38)

where Ek is the quasiparticle energy, explicitly show that
(
uk
vk

)
must be an eigenvector of

hk that satisfies

hk

(
uk
vk

)
=

(
εk ∆

∆ −εk

) (
uk
vk

)
= Ek

(
uk
vk

)

(b) By solving the eigenvalue problem assuming the gap is real, show explicitly that

u2
k =

1
2



1 +

εk√
ε2k + ∆

2




v2
k =

1
2



1 −

εk√
ε2k + ∆

2




(14.39)

Solution:

(a) We begin by writing

αk↑ = ψ
†

k ·
(
uk
vk

)

where ψ†k = (c†k↑, c−k↓) is the Nambu spinor. Now since [H, ψ†k] = ψ†k hk, it follows
that

[H, α†k↑] = ψ†k hk

(
uk
vk

)
(14.40)

Comparing (14.38) and (14.40), we see that the spinor
(
uk
vk

)
is an eigenvector of hk,

hk

(
uk
vk

)
=

(
εk ∆

∆ −εk

) (
uk
vk

)
= Ek

(
uk
vk

)
(14.41)

(b) Taking the determinant of the eigenvalue equation, det[hk − Ek1] = E2
k − ε

2
k − ∆

2=0, and

imposing the condition that Ek > 0, we obtain obtain Ek =
√
ε2k + ∆

2.
Expanding the eigenvalue equation (14.41) we obtain

(Ek − εk)uk = ∆vk
∆uk = (Ek + εk)vk (14.42)

Multiplying these two equations, we obtain (Ek − εk)u2
k = (Ek + εk)v2

k, or εk(u2
k + v

2
k) =

εk = Ek(u2
k − v

2
k), since u2

k + v
2
k = 1 . It follows that u2

k − v
2
k = εk/Ek. Combining this with

u2
k + v

2
k = 1, we obtain the results given in ( 14.39 ).
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14.6 Twisting the phase: the superfluid stiffness
One of the key features in a superconductor is the appearance of a complex order parameter, with
a phase. It is the rigidity of this phase that endows the superconductor with its ability to sustain a
superflow of electrons. This feature is held in common between superfluids and superconductors -
and indeed, the liquid He− 3 undergoes a pairing instability around 3mK, involving a condensation
of triplet Cooper pairs.

The feature of superconductors that makes them stand apart from their neutral counterparts, is
our ability to couple to the phase of the condensate with the electromagnetic field. The important
point here, is that the phase of the order parameter, and the vector potential are linked by gauge
invariance. To see this, consider that the the microscopic Kinetic energy term

T =
∫

d3x
1

2m
ψ†σ(x)(−i!%∇ − e%A(x))2ψσ(x))

is invariant under the gauge transformations

ψσ(x) → eiα(x)ψσ(x)
%A(x) → %A(x) +

!

e
%∇α(x) (14.43)

If we now consider the order parameter

Ψ(x) = 〈ψ↓(x)ψ↑(x)〉

we see that under a gauge transform, Ψ(x) → ei2α(x)Ψ(x), in other words, the phase of the order
parameter Ψ(x) = |Ψ(x)|eiφ(x), transforms as

φ(x)→ φ(x) + 2α(x)

Now if the phase becomes “rigid” beneath Tc, then the overall energy of the superconductor must
acquire a phase stiffness term of the form

F ∼
∫

x

ρs
2

(∇φ)2 (14.44)

However, such a coupling term is not gauge invariant under the combined transformation

φ → φ + 2α,
%A → %A +

!

e
%∇α(x) (14.45)

Indeed, in order that the Free energy gauge invariant, the phase stiffness must take the form

F ∼
∫

x

ρs
2

(
%∇φ(x) −

2e
!
%A(x)

)2
+ Fem[A]

=

∫

x

Q
2

(
%A(x) −

!

2e
%∇φ(x)

)2
+ Fem[A] (14.46)
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where Fem[A] is the Free energy of the electromagnetic field and we have substituted

Q =
(2e)2

!2 ρs

Since Fem is invariant under gauge transformations, it becomes possible to redefine the vector po-
tential

A(x)→ %A(x) −
!

2e
%∇φ(x)

to “absorb” the phase of the order parameter. Once the phase of the order parameter is absorbed
into the electromagnetic field,

F ∼
∫

x

4e2ρs
2!2

%A(x)2 + Fem[A], (14.47)

and the vector potential has acquired a mass. This phenomenon whereby the gauge field, “eats
up” the phase of a condensate, losing manifest gauge invariance by acquiring a mass is called the
“Anderson-Higgs” mechanism. This is the root mechanism by which gauge fields acquire a mass in
particle physics.

Shortly after the importance of this mechanism for relativistic Yang Mills theories was noted by
Higgs and Anderson, Weinberg and Salem independently applied the idea to develop the theory of
“electro-weak” interactions. According to this picture, the universe we live is a kind of cosmological
Meissner phase, formed in the early universe, which excludes the weak force by making the vector
bosons which carry it, become massive. It is a remarkable thought that the very same mechanism
that causes superconductors to levitate lies at the heart of the weak nuclear force responsible for
nuclear fusion inside stars. In trying to discover the Higg’s particle, physicists are in effect trying to
probe the cosmic superconductor above its gap energy scale.

If we now look back at (14.46), we see that the electrical current carried by the condensate is

%j = −
δF
δ%A(x)

= −Q
(
%A(x) −

!

2e
%∇φ(x)

)
.

This permits us to identify Q with the “London Kernel” introduced earlier in the study of electron
transport. What is different here, is that this quantity is now finite in the DC, zero frequency limit.
Thus, once a charged order parameter develops a rigidity, the matter becomes a perfect diamagnet,
developing superconductivity.

Let us now continue to calculate the phase stiffness or “superfluid density” of a BCS supercon-
ductor. Formally, to twist the phase of the order parameter, we need to allow the order parameter to
become a function of position, so that now the interaction that gives rise to superconductivity can
not be infinitely long-ranged. In the simplest case, we can simply consider a local interaction

HI = −g
∫

d3xψ†↑(x)ψ†↓(x)ψ↓(x)ψ↑(x)

Under the Hubbard Stratonovich transformation, this becomes

HI →
∫

d3x
[
∆̄(x)ψ↓(x)ψ↑(x) + ψ†↑(x)ψ†↓(x)∆(x) +

∆̄(x)∆(x)
g

]
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so that now, the phase of the order parameter can develop a non-uniform configuration. We’ll
imagine a superconductor on a torus in which the phase of the order parameter is twisted, so that
∆(L) = ei∆φ∆(0). Let us consider a uniform twist, so that

∆(x) = ei%a·%x∆0,

where %a = ∆φL x̂. Now by gauge invariance, this twist of the order parameter can be removed by a
gauge transformation,

∆(x) → e−i%a·%x∆(x) = ∆0

%A = %A −
!

2e
%a (14.48)

so a twist in the order parameter is gauge equivalent to a uniform vector potential %A = !

2e%a, and vice
versa- a uniform vector potential is gauge equivalent to a twisted order parameter field.

So to calculate the stiffness we need to compute the Free energy in the presence of a uniform
vector potential. On a taurus, this implies a threaded magnetic flux. Indeed, the total change in the
phase of the order paramter is given by

∆φ = αL =
2e
!
AL =

2e
!
Φ = 2π



Φ
h
2e




where Φ is the magnetic flux through the torus. The twist angle can by written

∆φ = 2π
Φ

Φ0
,

where
Φ0 =

!

2e
is known as the superconducting flux quantum. Each time the flux through the taurus increases by
Φ0, the superconducting order parameter is twisted by an additional 2π.

Introduction of vector potential ε%k → ε%k−e%A, so inside hk

ε%kτ3 →
(
ε%k−e%A

−ε−%k−e%A

)
=

(
ε%k−e%A

−ε%k+e%A

)
≡ ε%k−e%Aτ3 (14.49)

i.e ,
h%k → h%k−e %Aτ3 = ε%k−e%Aτ3τ + ∆τ1

The Free energy in a field is then

F = −T
∑

k,iωn

Tr ln[ε%k−e%Aτ3τ + ∆τ1 − iωn] +
∆2

g

We need to calculate
Qab = −

1
V
∂2F
∂Aa∂Ab
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Taking the first derivative with respect to the vector potential gives us the steady-state diamagnetic
current

−〈Ja〉 =
1
V
∂F
∂Aa
= −

1
βV

∑

k≡(k,iωn)
Tr

[
e∇aε%k−e%Aτ3 G(k − eA)

]

where we have introduced the shorthandG(k − eA) = [iωn − h%k−e %Aτ3 ]−1 = [iωn − ε%k−e%Aτ3τ3 −∆τ1]−1.
Taking one more derivative,

Qab =
1
V
∂2F
∂Aa∂Ab

∣∣∣∣∣∣A=0
=
e2

βV

∑

k




diamagnetic part
︷!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!︷
∇2
abε%kTr [τ3G(k)]+

paramagnetic part
︷!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!︷
∇aε%k∇bε%kTr [G(k)G(k)]




where we first used the relation ∂
∂AbG(k − eA) = e∇bε%kG(k − eA)2 and then set A = 0. We may

identify the above expression as a sum of the diamagnetic, and paramagnetic parts, respectively, of
the superfluid stiffness. The diamagnetic part of the response can be integrated by parts, to give

e2

βV

∑

k,n
∇2
abε%kTr [τ3G(k)] = −

e2

βV

∑

k,n
∇aε%kTr [τ3∇bG(k)]

= −
e2

βV

∑

k,n
∇aε%k∇bε%kTr [τ3G(k)τ3G(k)] (14.50)

Notice how this term is identical to the paramagnetic term, apart from the τ3 insertions. We now
add these two terms, to obtain

Qab = −
e2

βV

∑

k
∇aε%k∇bε%k




diamagnetic part
︷!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!︷
Tr [τ3G(k)τ3G(k)]−

paramagnetic part
︷!!!!!!!!!!︸︸!!!!!!!!!!︷
Tr [G(k)G(k)]



.

Notice, that when pairing is absent, the τ3 commute with G(k), and the diamagnetic and paramag-
netic contributions exactly cancel. We can make this explicit, by writing

Qab = −
e2

2βV

∑

k
∇aε%k∇bε%kTr

[
[τ3,G(k)]2

]
.

Now
[τ3,G(k)] = 2i

∆τ2

(iωn)2 − E2
k

so
−Tr

[
[τ3,G(k)]2

]
= 8

∆2

[(ωn)2 + ε2k + ∆
2]2 .

so that

Qab =
4e2

βV

∑

k
∇aε%k∇bε%k

∆2

[(ωn)2 + ε2k + ∆
2]2 .. (14.51)
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Remarkably, although the diamagnetic and paramagnetic parts of the superfluid stiffness involve
electrons far away from the Fermi surface, the difference between the two is dominated by electrons
near the Fermi surface. This enables us to replace

2
V

∑

k
∇aε%k∇bε%k {. . . } = N(0)

∫ ∞

−∞
dε

∫
1
3 v

2
Fδab︷!!!!︸︸!!!!︷

dΩk̂
4π

vavb {. . . } =
δab
3
N(0)v2

F

∫ ∞

−∞
dε {. . . } .

Note that the factor of two is absorbed into the total density of states of up and down electrons. We
have taken advantage of the rapid convergence of the integrand to extend the limits of the integral
over energy to infinity. Replacing 1

3N(0)v2
F =

n
m , we can now write Qab = Qδab, where

Q(T ) =
ne2

m
T

∑

n

∫ ∞

−∞
dε

2∆2

(ε2 + ω2
n + ∆2)2 =

(
ne2

m

)
πT

∑

n

∆2

(ω2
n + ∆2) 3

2

To evaluate this expression, it is useful to note that the argument of the summation is a total deriva-
tive so that

Q(T ) =
(
ne2

m

)
πT

∑

n

∂

∂ωn

(
ωn

(ω2
n + ∆2)1/2

)

Now at absolute zero, we can replace T
∑
n →

∫
dω
2π , so that

Q(0) ≡ Q0 =

(
ne2

m

)
=1︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷∫ ∞

−∞

dω
2

d
∂ω

(
ω

(ω2 + ∆2)1/2

)
=

(
ne2

m

)
.

In other words, all of the electrons have condensed to form a perfect diamagnet. To evaluate the
stiffness at a finite temperature, we rewrite the Matsubara sum as a clockwise contour integral
around the poles of the Fermi function

Q(T ) = πQ0

#

Im axis

dz
2πi

f (z)
d
dz

(
z

√
∆2 − z2

)
(14.52)

By deforming the integral to run anti-clockwise around the branch-cuts along the real axis, and then
integrating by parts we obtain:

Q(T ) = Q0π

"

real axis

dz
2πi

f (z)
d
dz

(
z

√
∆2 − z2

)

= Q0

∫ ∞

−∞
dω f (ω)

d
dω

Im
(

z
√
∆2 − z2

)

z=ω−iδ

= Q0


 f (ω)Im

(
z

√
∆2 − z2

)

z=ω−iδ



∞

−∞
+ Q0

∫ ∞

−∞
dω

(
−
d f (ω)
dω

)
Im

(
z

√
∆2 − z2

)

z=ω−iδ
.(14.53)

Now a careful calculation of the imaginary part of the integrand gives

Im



ω
√
∆2 − (ω − iδ)2


 = Im




ω
√
−(ω2 − ∆2) + iδ sgn(ω)


 =

(
−

|ω|
√
ω2 − ∆2

)
θ(ω2 − ∆2) (14.54)
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so the finite temperature stiffness can then be written

Q(T ) = Q0

[
1 − 2

∫ ∞

∆(T )
dω

(
−
d f (ω)
dω

) (
ω

√
ω2 − ∆2

)]
(14.55)

where the factor of two derives from folding over the contribution from the negative region of the
integral. The second term in this expression is nothing more that the thermal average of the quasi-
particle density of states Nqp(E) = N(0) E√

E2−∆2 . This term can thus be interpreted as the reduction
in the condensate fraction due to a thermal depopulation of the condensate into quasiparticles. We
can alternatively re-write this expression as a formula for the temperature dependent penetration
depth

1
λ2
L(T )

=
1
λ2
L(0)


1 − 2

(Nqp(E)
N(0)

) .

where 1/λ2
L(0) = µ0ne2

m
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Chapter 15

Local Moments and the Kondo effect.

15.1 Strongly Correlated Electrons

One of the fascinating growth areas in condensed matter physics concerns “strongly correlated sys-
tems”: states of matter in which the many body interaction energies dominate the kinetic energies,
becoming large enough to qualitatively transform the macroscopic properties of the medium. Some
of the growing list of strongly correlated systems include

• Cuprate superconductors, where interactions amongst electrons in localized 3d-shells form
an antiferromagnetic “Mott” insulator, which develops high temperature superconductivity
when doped.

• Heavy electron compounds, in which localized magnetic moments immersed within the metal
give rise to electron quasiparticles with effective masses in excess of 1000 bare electron
masses.

• Fractional Quantum Hall systems, where the interactions between electrons in the lowest
Landau level of a two-dimensional electron fluid generate a incompressible state with quasi-
particles of fractional charge and statistics.

• “Quantum Dots”, which are tiny pools of electrons in semiconductors that act as artificial
atoms. As the gate voltage is changed, the Coulomb repulsion between electrons in the dot
leads to the a “Coulomb Blockade”, whereby electrons can be added one by one to the quan-
tum dot.

• Cold atomic gases, in which the interactions between the neutral atoms governed by two-body
resonances, can be tuned by external magnetic fields to create a whole new world of strongly
correlated quantum fluids.

In each case, the interactions between the particles have been tuned - by electronic or nuclear
chemistry, by geometry or nanofabrication, to give rise to a state of condensed matter in which
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the interactions between the particles are large compared with their typical kinetic energy. The
next two chapters will introduce a corner strongly correlated electron physics: the physics of local
moments and heavy fermion compounds. A large class of strongly correlated materials contain
atoms with partially filled d, or f orbitals. Heavy electron materials are an extreme example, in
in which one component of the electron fluid is highly localized, usually inside f-orbitals giving
rise to the formation of magnetic moments. The interaction of localized magnetic moments with
the conduction sea provides the driving force for the strongly correlated electron physics in these
materials.

Figure 15.1: The Kmetko-Smith diagram, showing the broad trends towards increasing electron
localization in the d- and f-electron compounds.

Within the periodic table, there are broad trends that govern strongly correlated electron be-
havior. The most strongly interacting electrons tend to reside in partially filled orbitals that are
well-localized around the nucleus. The weak overlap between these orbitals and the orbitals of
other nearby atoms promotes the formation of narrow electron bands, while the interactions be-
tween electrons are maximized when they occupy the same, highly localized orbital.
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In order of increasing degree of localization, the unfilled electron orbitals of the central rows of
the periodic table may be ordered

5d < 4d < 3d < 5 f < 4 f .

There are two trends operating here: first, orbitals with higher principle quantum numbers tending
to be more delocalized, so that 5d < 4d < 3d and 5 f < 4 f . Second, as we move from d to f
orbitals, or along a particular row of the periodic table, the increasing nuclear charge reduces the
size of the orbitals. These trends are summarized by the Kmetko-Smith diagram in Fig 15.1, in
which the central rows of the periodic table are stacked in order of increasing localization. Moving
up and to the right in this diagram leads to increasingly localized atoms In metals lying on the
bottom-left hand side of this diagram, the d-orbitals are highly itinerant giving rise to the metals
exhibit conventional superconductivity at low temperatures. By contrast, in metals towards the top
right hand side of the diagram, the electrons in the rare earth or actinide ions are localized, forming
magnets, or more typically, antiferromagnets.

The materials that lie in the cross-over between these two regions are particularly interesting,
for these materials are “on the brink of magnetism”. With some exceptions, it is in this region that
the the cerium and uranium heavy fermion materials, and the iron based superconductors are found.

15.2 Local moments

To understand heavy electron materials, we need to understand how electrons form local moments,
and how those local moments interact with the electrons in the conduction sea. The simplest ex-
ample of a localized moment is an unpaired electron bound in an isolated atom, or ion (15.2 (a)).
At temperatures far below the ionization energy |E f |, the only remaining degree of freedom of this
localized electron is its magnetic moment, described by the operator

%M = µB%σ

where %σ denotes the Pauli matrices and µB = e!
2m is the Bohr magneton. In a magnetic field, the

Hamiltonian describing low energy physics is simply H = − %M · %B = −µB%σ · %B, giving rise giving
rise to a “Curie” susceptibility

χ(T ) =
∂M
∂B
= −
∂2F
∂B2 =

µ2
B
T

The classic signature of local moments is the appearance of Curie paramagnetism with a high-
temperature magnetic susceptibility of the form

χ ≈ ni
M2

3(T + θ)
M2 = g2µ2

BJ(J + 1), (15.1)

where, ni is the concentration of magnetic moments while M is the magnetic moment with total
angular momentum quantum number J and gyro-magnetic ratio (“g-factor”) g. θ is the “Curie
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Weiss” temperature, a phenomenological scale which takes account of interactions between spins1.
For a pure spin, J = S is the total spin and g = 2, but for rare earth and actinide ions, the orbital
and spin angular momentum combine into a single entity with angular momentum %J = %L + %S for
which g lies between one and two. For example, a Ce3+ ion contains a single unpaired 4f-electron
in the state 4 f 1, with l = 3 and s = 1/2. Spin-orbit coupling gives rise to low-lying multiplet with
j = 3 − 1

2 =
5
2 , consisting of 2 j + 1 = 6 degenerate orbitals |4 f 1 : Jm〉, (mJ ∈ [− 5

2 ,
5
2 ]) with an

associated magnetic moment M = 2.64µB.

Figure 15.2: (a) In isolation, the localized atomic states of an atom form a stable, sharp excitation
lying below the continuum. (b) The inverse of the Curie-Weiss susceptibility of local moments χ−1

is a linear function of temperature, intersecting zero at T = −θ.

Though the concept of localized moments was employed in the earliest applications of quantum
theory to condensed matter2, a theoretical understanding of the mechanism of moment formation did
not develop until the early sixties, when experimentalists began to systematically study impurities
in metals. 3 In the early 1960s, Clogston, Mathias and collaborators[? ] showed that when small
concentrations ni of magnetic ions, such as iron are added to a metallic host, they do not always
form magnetic moments. For example, iron impurities in pure niobium do not develop a local
moment, but they do so in the niobium-molybdenum alloy, Nb1−xMox once the concentration of
molybdeneum exceeds 40% (x > 0.4). It was these observations that led Anderson to develop his
model for local moment formation.

1A positive θ > 0 indicates an antiferromagnetic interaction between spins, while a negative θ < 0 is associated with
ferromagnetic interactions. giving rise to a divergence of the susceptibility at the Curie temperature Tc = −θ.

2The concept of a local moment appears in Heisenberg’s original paper on ferromagnetism[? ]. Landau and Néel
invoked the notion of the localized moment in their 1932 papers on antiferromagnetism, and in 1933, Kramers used this
idea again in his theory of magnetic superexchange.

3It was not until the sixties that materials physicists could control the concentration of magnetic impurities in the parts
per million range required for the study of individual impurities. The control of purity evolved during the 1950s, with the
development of new techniques needed for semiconductor physics, such as zone refining.
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15.3 Anderson’s Model of Local Moment Formation
Anderson’s model for moment formation, proposed in 1963, combines two essential ideas[? ]:

• the localizing influence of Coulomb interactions. Peierls and Mott [? ? ] had reasoned
in the 1940s that strong-enough Coulomb repulsion between electrons in an atomic state
would blockade the passage of electrons, converting a metal into what is now called a “Mott
insulator”. These ideas were independently explored by Van Vleck and Hurvitz in an early
attempt to understand magnetic ions in metals[? ].

• the formation of an electronic resonance. In the 1950’s Friedel and Blandin [? ? ? ] proposed
that electrons in the core states of magnetic atoms tunnel out into the conduction sea, forming
a resonance.

Anderson unified these ideas in a second-quantized Hamiltonian

H =

Hresonance︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷∑

k,σ
εknkσ +

∑

k,σ

[
V(k)c†kσ fσ + V∗(k) f †σckσ

]
+ E f n f + Unf↑n f↓︸!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!︸

Hatomic

, (15.2)

Anderson model.

where Hatomic describes the atomic limit of an isolated magnetic ion containing a Kramer’s doublet
of energy E f . The engine of magnetism in the Anderson model is the Coulomb interaction

U =
e2

4πε0

∫

r,r′

1
|r − r′|ρ f (r)ρ f (r′)

of a doubly occupied f-state, where ρ f (r) = |Ψ f (r)|2 is the electron density in a single atomic
orbital ψ f (r). The operator c†kσ creates a conduction electron of momentum k, spin σ and energy
εk = Ek − µ, while

f †σ =
∫

r
Ψ f (r)ψ̂†σ(r), (15.3)

creates an f-electron in the atomic f-state. Unlike the electron continuum in a vacuum, a conduction
band in a metal has a finite energy width, so in the model, the energies are taken lying in the range
εk ∈ [−D,D]. Hresonance describes the hybridization with the Bloch waves of the conduction sea that
develops when the ion is immersed in a metal. The quantity

V(k) = 〈k|Vion| f 〉 =
∫

d3re−ik·rVion(r)Ψ f (%r). (15.4)

is the hybridization between the ionic potential and a plane wave. This term is the result of applying
first order perturbation theory to the degenerate states of the conduction sea and the atomic f-orbital.
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A competition between localization and hybridization.

To understand the formation and properties of local moments, we need to examine the two limiting
types of behaviour in the Anderson model:

• Localized moment behavior, described by the limiting case where the hybridization vanishes.

• Virtual bound-state formation, described by the limiting case where the interaction is negligi-
ble.

Figure 15.3: Phase diagram for Anderson impurity model in the atomic Limit. For U > |E f + U/2,
the ground-state is a magnetic doublet. When U < 0, the ground-state is degenerate charge doublet
provided E f + U/2 = 0.

15.3.1 The Atomic limit.

The atomic physics of an isolated ion, described by

Hatomic = E f n f + Unf↑n f↓. (15.5)

is the engine at the heart of the Anderson model that drives moment formation. The four atomic
quantum states are

| f 2〉
| f 0〉

E( f 2) = 2E f + U
E( f 0) = 0

}
non-magnetic

| f 1 ↑〉, | f 1 ↓〉 E( f 1) = E f . magnetic.

(15.6)
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The cost of adding or removing to the magnetic f 1 state is given by

adding: E( f 2) − E( f 1) = U + E f
removing: E( f 0) − E( f 1) = −E f

}
⇒ ∆E =

U
2
± (E f +

U
2

) (15.7)

In other words, provided (Fig. 15.3)

U/2 > |E f + U/2| (15.8)

the ground-state of the atom is a two-fold degenerate magnetic doublet. Indeed, provided it is
probed at energies below the smallest charge excitation energy, ∆Emin = U/2− |E f +U/2|, only the
spin degrees of freedom remain, and the system behaves as a local moment - a “quantum top”. The
interaction between such a local moment and the conduction sea gives rise to the “Kondo effect”
that will be the main topic of this chapter.

Although we shall be mainly interested in positive, repulsive U, we note that in the attractive
region of the phase diagram (U < 0) the atomic ground-state can form a degenerate “charge” doublet
(| f 0〉, | f 2〉) or “isospin”. For U < 0, when E f + U/2 = 0 the doubly occupied state | f 2〉 and the
empty state | f 0〉 become degenerate. This is the charge analog of the magnetic doublet that exists
for U > 0, and when coupled to the sea of electrons, gives rise to an effect known as the “charge
Kondo effect”. Such charge doublets are thought to be important in certain “negative U” materials,
such as Tl doped PbTe.

Figure 15.4: (a) The immersion of an atomic f state in a conduction sea leads to hybridization
between the localized f-state and the degenerate conduction electron continuum, forming (b) a res-
onance in the density of states.
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Example 15.1: Derivation of the non-interacting Anderson model
Consider an isolated ion, where the f-state is a solution of the one-particle Schrödinger equation

[
−∇2 + V̂ion

]
| f 〉 = Eionf | f 〉, (15.9)

where Vion(r) is the ionic potential and Eionf < 0 is the energy of the atomic f-level. In a metal,
the positive ionic background draws the continuum downwards to become degenerate with the
f-level as shown in Fig. 15.4. A convenient way to model this situation is to use “muffin tin
potential”, 4

V(r) = (Vion(r) +W) θ(R0 − r) (15.10)
equal to the ionic potential, shifted upwards by an amountW inside the muffin tin radius R0. The
f-state is now an approximate eigenstate ofH = −∇2+ V̂ that is degenerate with the continuum.
Derive the non-interacting component of the Anderson model using degenerate perturbation
theory, evaluating the matrix elements of H between the conduction states |k〉 and the local
f-state | f 〉. You may assume that the muffin tin R0 is much smaller than the Fermi wavelength,
so that the conduction electron matrix elements Vk,k′ = 〈k|V |k′〉 are negligible.
Solution:
To carry out degenerate perturbation theory on H we must first orthogonalize the f-state to the
continuum | f̃ 〉 = | f 〉 −

∑
εk∈[−D,D] |k〉〈k| f 〉, where D is the conduction electron band-width. Now

we need to evaluate the matrix elements ofH = −∇2 + V . If we set

Vk,k′ =

∫

r<R0

d3rei(k′−k)·r(Vion(r) +W), (15.11)

then the conduction electron matrix elements are

〈k|H|k′〉 = Ekδk,k′ + Vk,k′ ≈ Ekδk,k′ (15.12)

while 〈 f̃ |H| f̃ 〉 ≈ Eionf is the f-level energy.
The hybridization is given by the off-diagonal matrix element,

V(k) = 〈k|H| f̃ 〉 = 〈k| − ∇2 + V̂ | f̃ 〉 = Ek〈k| f̃ 〉 + 〈k|V̂ | f̃ 〉 = 〈k|V̂ | f̃ 〉, (15.13)

where we have used the orthogonality 〈k| f̃ 〉 = 0 to eliminate the kinetic energy. Infact, since
the f-state is highly localized, its overlap with the conduction electron states is small 〈k| f 〉 ≈ 0,
so we can now drop the tilde, approximating 〈k|V̂ | f̃ 〉 ≈ 〈k|V̂ion +W | f 〉 ≈ 〈k|V̂ion| f 〉, so that

V(k) ≈ 〈k|Vion| f 〉 =
∫

d3re−ik.rVion(r)ψ f (r). (15.14)

In this way, the only surviving term contributing to the hybridization is the atomic potential
- only this term has the high-momentum Fourier components to create a significant overlap
between the low momentum conduction electrons and the localized f-state.
Putting these results together, the non-interacting Anderson model can then be written

Ĥresonance =
∑

k

εk︷!!!!!!!!!!︸︸!!!!!!!!!!︷
(Ek +W − µ) c†kσckσ +

∑

kσ
(V(k)c†kσ fσ + H.c) +

E f︷!!!!!︸︸!!!!!︷
(Eionf − µ) n f .
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15.3.2 Virtual bound-state formation: the non-interacting resonance.

When the magnetic ion is immersed in a sea of electrons, the f-electrons within the core of the atom
can tunnel out, hybridizing with the Bloch states of surrounding electron sea [? ] as shown in Fig.
15.4.

In the absence of interactions, this physics is described by

Hresonance =
∑

k,σ
εknkσ +

∑

kσ

[
V(k)c†kσ fσ + H.c.

]
+ E f n f , (15.15)

where c†kσ creates an electron of momentum k, spin σ and energy εk = Ek − µ in the conduction
band. The hybridization broadens the localized f-state, and in the absence of interactions, gives rise
to a resonance of width ∆ given by Fermi’s Golden Rule.

∆ = π
∑

%k

|V(k)|2δ(εk − E f ) (15.16)

This is really an average of the density of states ρ(ε) =
∑

k δ(ω − εk) with the hybridization |V(k)|2.
For future reference, we shall define

∆(ε) = π
∑

%k

|V(k)|2δ(εk − ε) = πρ(ε)V2(ε) (15.17)

as the “hybridization” function.
Let us now examine the resonant scattering off a non-interacting f-level, using Feynman dia-

grams. We’ll denote the propagator of the bare f-electron by a full line, and that of the conduction
electron by a dashed line, as follows:

f , ω
G(0)
f (ω) =

1
ω − E f

k, ω
G(0)(k, ω) =

1
ω − εk

. (15.18)

For simplicity, we will ignore the momentum dependence of the hybridization, taking V(k) =
V(k)∗ ≡ V . The hybridization is a kind of off-diagonal potential scattering which we denote by
a filled dot, as follows:

f k

V

k f

V (15.19)

Now the hybridization permits the f-electron to tunnel back and forth into the continuum, a
process we can associate with the “self-energy” diagram

k, ω

V V
= Σc(ω) =

∑

k

V2

ω − εk
. (15.20)
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We can view this term as an effective scattering potential for the f-electrons, one that is frequency
dependent and hence retarded in time, reflecting the fact that an f-electron can spend large amounts
of time out in the conduction band. The Feynman diagrams describing the multiple scattering of the
f-electron off this potential are then:

f
= +

k′
+

k′ k′′
+ . . .

(15.21)

Each time the electron tunnels into the conduction band, it does so with a different momentum, so
the momenta of the conduction electrons are independently summed over in the intermediate states.
As in previous chapters, we can sum these terms as a geometric series to obtain a familiar-looking
self-energy correction to the f-propagator.

Gf (ω) = G(0)
f

[
1 + ΣcG(0)

f +
(
ΣcG(0)

f

)2
+ . . .

]
= [ω − E f − Σc(ω)]−1 (15.22)

Now for a broad conduction band there is a very useful approximation for Σc. To derive it,
we re-write the momentum sum in the self-energy as an energy integral with the density of states,
replacing

∑
k →

∫
dερ(ε), so that

Σc(ω) =
∫

dε
π
ρ(ε)

πV2

ω − ε
=

∫
dε
π

∆(ε)
ω − ε

, (15.23)

where ∆(ε) = πρ(ε)V2. In the complex plane, Σc(ω) has a branch cut along the real axis with a
discontinuity in its imaginary part proportional to the hybridization:

ImΣc(ω ± iδ) =
∫

dε
π
∆(ε)

∓iπδ(ω−ε)︷!!!!!!!!!!︸︸!!!!!!!!!!︷
Im

1
ω − ε ± iδ

,= ∓∆(ω). (15.24)

Consider the particular case where ∆(ε) = ∆ is constant for ε ∈ [−D,D], so that

Σ(ω ± iδ) =
∆

π

∫ D

−D

dε
ω − ε ± iδ

=
∆

π
ln

[ω ± iδ + D
ω ± iδ − D

]

=
∆

π

O(ω/D)︷!!!!!!︸︸!!!!!!︷
ln

∣∣∣∣∣
ω + D
ω − D

∣∣∣∣∣∓i∆θ(D − |ω|) (15.25)

which is a function with a branch-cut stretching from ω = −D to ω = +D. The frequency dependent
part of ReΣc = O(ω/D) is negligible in a broad band. We can extend this observation to more
general functions ∆(ω) that vary slowly over the width of the resonance (lumping any constant part
of Σc into a shift of E f .) With this observation, for a broad band, we drop the real part of Σc, writing
it in the form

Σc(ω + iω′) = −i∆sgn(ω′), (15.26)
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whereω′ is the imaginary part of the frequency. (at the Matsubara frequencies, Σc(iωn) = −i∆sgnωn).
On the real axis, the f-propagator takes a particularly simple form

Gf (ω − iδ) =
1

(ω − E f − i∆)
, (15.27)

that describes a resonance with a width ∆, centered around energy E f , with a Lorentzian density of
states

ρ f (ω) =
1
π
ImG f (ω − iδ) =

∆

(ω − E f )2 + ∆2 .

Now let us turn to see how the conduction electrons scatter off this resonance. Consider the
repeated scattering of the conduction electrons, represented by the dashed line, off the f-level as
follows:

k k′
=

k
+

k k′
+

k k′′ k′
+ . . .

Now using (15.21) we see that third and higher terms can be concisely absorbed into the second
term by replacing the bare f-propagator by the full (broadened) f-propagator, as follows

k k′
=

k
+

k k′

G(k′,k, ω) = δk′,kG(0)(k, ω) + G(0)(k, ω)V2Gf (ω)G(0)(k′, ω)

. (15.28)

We can identify
t(ω) = V2Gf (ω) (15.29)

as the scattering t-matrix of the resonance. Infact, this relationship holds quite generally, even
when interactions are present, because the only way conduction electrons can scatter, is by passing
through the localized f-state. The full conduction electron propagator can then be written

G(k′,k, ω) = δk′,kG(0)(k, ω) +G(0)(k, ω)t(ω)G(0)(k′, ω). (15.30)

Scattering theory tells us that the t-matrix is related to the S-matrix S (ω) = e2iδ(ω), where δ(ω) is
the scattering phase shift, by the relation S = 1 − 2πiρ t(ω + iη)(here we use η as the infinitesimal
to avoid confusion with the notation for the phase shift), or

t(ω + iη) =
1

−2πiρ
(S (ω) − 1) = −

1
πρ
×

1
cotδ(ω) − i

. (15.31)

Substituting our explicit form of the f-Green’s function,

t(ω + iδ) = V2Gf (ω + iη) =
1
πρ
×

∆︷︸︸︷
πρV2

ω − E f + i∆
= −

1
πρ
×

1
(E f−ω
∆

) − i
(15.32)
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Comparing (15.31) and (15.32), we see that scattering phase shift is given by

δ f (ω) = cot−1
(E f − ω
∆

)
= tan−1

(
∆

E f − ω

)
. (15.33)

δ f (ω) is a monotonically increasing function, rising from δ f = 0 at ω << 0 to δ f = π at high
energies. On resonance, δ(E f ) = π/2, corresponding to the strongest kind of “unitary scattering”.

The Friedel Sum Rule

Remarkably, the phase shift δ f ≡ δ f (0) at the Fermi surface determines sets the amount of charge
bound inside the resonance. Here, we can see this by using the f-spectral function to calculate the
ground-state occupancy:

n f = 2
∫ 0

−∞
dωρ f (ω) = 2

∫ 0

−∞

dω
π

∆

(ω − E f )2 + ∆2 =
2
π

cot−1
(E f

∆

)
≡ 2 ×

δ f

π
, (15.34)

Note that when δ(0) = π/2, n f = 1. This is a particular example of the “Friedel sum rule”, - a very
general relation between the number of particles ∆n bound in a potential well and the sum of the
scattering phase shifts at the Fermi surface

∆n =
∑

λ

δλ
π

(15.35)

where δλ denotes the scattering phase shift in the partial wave state labelled by the orbital quantum
numbers λ. 5

We can understand the Friedel sum rule by looking at the scattering wavefunction far from
the impurity. The asymptotic radial wavefunctions of the incoming and the phase-shifted outgoing
electrons on the Fermi surface take the form

ψ(r) ∼
[
e−ikFr

r
+ e2iδ f e

ikFr

r

]
∼
eiδ sin(kFr + δ f )

r

which corresponds to a radial wave in which the wavefunction of the electrons is shifted by an
amount

∆r = −
δ f

kF
= −
λF
2
×
δ f

π
.

Thus for a positive phase shift, electrons are drawn inwards by the scattering process. Each time
δ f passes through π, one more node of the wavefunction passes through the boundary at infinity,
corresponding to an additional bound electron. Anderson has called Friedel’s sum rule a “node
counting theorem”.

5For a spherical atom, without spin-orbit coupling λ = (l,m, σ), where l, m and σ are the angular momentum and spin
quantum numbers. With spin orbit coupling, λ = ( j,m) denote the quantum numbers of total angular momentum j.
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Figure 15.5: Illustrating the Friedel sum rule. As the scattering phase shift grows, the nodes of the
eigenstates at the Fermi surface are drawn into the potential well. Each time the phase shift passes
through π one more node passes into the well, leading to one more bound-electron.

Example 15.2: Anderson Model as a path integral
Formulate the Anderson model as a path integral and show that the conduction electrons can be
“integrated out”, giving rise to an action of the following form[? ]

S F =
∑

σ,iωn

f̄σn
{
−iωn + E f − i∆sgn(ωn)

}
fσn +

∫ β

0
dτUn↑n↓. (15.36)

where fσn ≡ β−
1
2
∫ β

0 dτeiωnτ fσ(τ) is the Fourier transform of the f-electron field.
Solution: We begin by writing the partition function of the Anderson model as a path integral

Z =
∫
D[ f , c]e−S (15.37)

where the action S = S A + S B is the sum of two terms, an atomic term

S A =

∫ β

0
dτ[

∑

σ

f̄σ(∂τ + E f ) fσ + Unf↑n f↓]

and a bath term

S B =
∫ β

0
dτ



∑

kσ
c̄kσ(∂τ + εkσ)ckσ + V

[
f̄σckσ + c̄kσ fσ

]

 (15.38)
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describing the hybridization with the surrounding sea of conduction electrons.
We can re-arrange the path integral so that the conduction electron integral is carried out first,

Z =
∫
D[ f ]e−S F

ZB[{ f }]︷!!!!!!!!!︸︸!!!!!!!!!︷∫
D[c]e−S B , (15.39)

where ZB[{ f }] contains the change to the f-electron induced by “integrating out” the conduction
electrons. The bath action is free of interactions and can be written schematically as a quadratic
form

S B = c̄ · A · c + c̄ · j + j̄ · c (15.40)
where A ≡ (∂τ + εk)δ(τ − τ′) is the matrix acting on the fields between the fields c ≡ ckσ(τ) and
c̄ = c̄kσ(τ), while j(τ) = V fσ(τ) and j̄ = f̄σ(τ)V are source terms. You may find it reassuring to
recast S B in Fourier space, where A = (−iωn + εk) is explicitly diagonal.
Using the standard result for Gaussian fermion integrals,

ZB =
∫
D[c]e−c̄Ac− j̄c+c̄ j = det A × exp[ j̄.A−1. j].

or explicitly,

ZB[{ f }] =
ZC=e−βFC︷!!!!!!!!︸︸!!!!!!!!︷

det[∂τ + εk] exp


∫ β

0
dτ f̄σ



∑

k

V2

∂τ + εk


 fσ


 (15.41)

The first term is the partition function ZC of the conduction sea in the absence of the magnetic
ion. Substituting ZB[{ f }] back into the full path integral (15.39) and combining the quadratic
terms then gives

Z = ZC ×
∫
D[ f ] exp


−

∫
dτ


 f̄σ

(
∂τ + E f −

∑

k

V2

∂τ + εk

)
fσ + Un↑n↓





 .

If we transform the first term into Fourier space, substituting fσ(τ) = β−1/2 ∑
n fσne−iωnτ, f̄σ(τ) =

β−1/2 ∑
n f̄σneiωnτ so that ∂τ → −iωn, the action can be written

S F =
∑

σ,iωn

f̄σn
{
−iωn + E f +

−i∆sgn(ωn)
︷!!!!!!!!!︸︸!!!!!!!!!︷
∑

k

V2

iωn − εk

}

︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸
−G−1

f (iωn)

fσn +
∫ β

0
dτUn↑n↓ (15.42)

The quadratic coefficient of the f-electrons is the inverse f-electron propagator of the non-
interacting resonance. We immediately recognize the self-energy term Σc(iωn) = −i∆sgn(ωn)
introduced in (15.20). From this path integral derivation, we can see that this term accounts for
the effect of the conduction bath electrons, even in the presence of interactions. If we now use
the large band-width approximation Σ(iωn) = −i∆sgnωn introduced in the (15.26), the action
can be compactly written

S F =
∑

σ,iωn

f̄σn
{
−iωn + E f − i∆sgn(ωn)

}
fσn +

∫ β

0
dτUn↑n↓. (15.43)
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Figure 15.6: Mean field phase diagram of the Anderson model, illustrating how the f-electron reso-
nance splits to form a local moment. A) U < π∆, single half-filled resonance. B) U > π∆, up and
down components of the resonance are split by an energy U.

15.3.3 Mean-field theory

In the Anderson model, the Coulomb interaction and hybridization compete with one-another.
Crudely speaking, we expect that when the Coulomb interaction exceeds the hybridization, local
moments will develop. To gain an initial insight into the effect of hybridization on local moment
formation, Anderson originally developed a Hartree mean-field treatment of the repulsive U inter-
action, decoupling

Un↑n↓ → Un↑〈n↓〉 + U〈n↑〉n↓ − U〈n↑〉〈n↓〉 + O(δn2). (15.44)

We can understand this kind of decoupling procedure as the result of a saddle point description of
the path integral, treated in more detail in the following excercise Ex 16.3. Using this mean-field
approximation, Anderson concluded that for the symmetric Anderson model, local moments would
develop provided

U >
˜
Uc = π∆. (15.45)

Let us now rederive his result. From (15.44), the mean-field effect of the interactions produces
a shift the f-level position,

E f → E fσ = E f + U〈n f−σ〉 (15.46)
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which, using (15.34) implies that the scattering phase shift for the up and down channels are no-
longer equal, but given by

δ fσ = cot−1
(E fσ

∆

)
. (15.47)

Using the “Friedel sum rule” (15.34), we then obtain the mean-field equations

〈n fσ〉 =
δ fσ

π
=

1
π

cot−1
(E f + U〈n f−σ〉

∆

)
(15.48)

It is convenient to introduce an occupancy n f =
∑
σ〈n fσ〉 and magnetization M = 〈n f↑〉 − 〈n f↓〉, so

that 〈n fσ〉 = 1
2 (n f + σM) (σ = ±1). The mean-field equation for the occupancy and magnetization

are then

n f =
1
π

∑

σ=±1
cot−1

(E f + U/2(n f − σM)
∆

)
(15.49)

M =
1
π

∑

σ=±1
σ cot−1

(E f + U/2(n f − σM)
∆

)
(15.50)

To find the critical size of the interaction strength where a local moment develops, we set M → 0+

in (15.49) to obtain E f+Ucn f /2
∆

= cot
(πn f

2

)
. Linearing (15.50) in M, we obtain

1 =
Uc
π∆

1

1 +
(E f+Unf /2

∆

)2 =
Uc
π∆

sin2
(πn f

2

)
. (15.51)

so that for n f = 1,

Uc = π∆ (15.52)

For larger values of U > Uc, there are two solutions, corresponding to an “up” or “down” spin
polarization of the f-state. We will see that this is an over-simplified description of the local moment,
but it gives us a approximate picture of the physics. The total density of states now contains two
Lorentzian peaks, located at E f ± UM:

ρ f (ω) =
1
π

[
∆

(ω − E f − UM)2 + ∆2 +
∆

(ω − E f + UM)2 + ∆2

]

The critical curve obtained by plotting Uc and E f as a parametric function of n f is shown in Fig.
15.6.

The Anderson mean-field theory allows a qualitatively understand the experimentally observed
formation of local moments. When dilute magnetic ions are dissolved in a metal to form an alloy,
the formation of a local moment is dependent on whether the ratio U/π∆ is larger than, or smaller
than zero. When iron is dissolved in pure niobium, the failure of the moment to form reflects the
higher density of states and larger value of ∆ in this alloy. When iron is dissolved in molybdenum,
the lower density of states causes U > Uc, and local moments form. [? ]
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Example 15.3: Factorizing the interaction in the Anderson model

a) Show that the interaction in the Anderson model can be decoupled via a Hubbard
Stratonovich decoupling to yield

∫ β

0
dτUn↑n↓ →

∫ β

0
dτ

[
φ↑n↑ + φ↓n↓ −

φ↑φ↓
U

]
(15.53)

where φσ = φ0 + iλ(τ) − σh(τ) is the sum of a real and an imaginary field.
b) Derive the mean-field partition function obtained by assuming that the path-integral over
φ can be approximated by the saddle point configuration where φσ is independent of time,
given by

ZMF =

∫
D[ f ]e−S MF [φσ, f ]

S MF =
∑

σ,iωn

f̄σn
[
−G−1

fσ(iωn)
]
fσn +

β

U
φ↑φ↓. (15.54)

where
G−1
fσ(iωn) = iωn − E f − φσ + i∆sgn(ωn)

is the inverse mean-field f-propagator
c) Carry out the Gaussian integral in (15.54) to show that the mean-field free energy is

FMF = −kBT
∑

σ,iωn

ln
[
−G−1

fσ(iωn)
]
−

1
U
φ↑φ↓.

and by setting ∂F/∂φσ = 0, derive the mean-field equations

φ−σ = U〈n fσ〉 = U
∫ ∞

−∞

dω
π
f (ω)

∆

(ω − E f − φσ)2 + ∆2 .

Solution:

a) The interaction in the Anderson model can be rewritten as a sum of two terms,

Un↑n↓ =

“charge”
︷!!!!!!!!!︸︸!!!!!!!!!︷
U
4

(n↑ + n↓)2 −

“spin”
︷!!!!!!!!!︸︸!!!!!!!!!︷
U
4

(n↑ − n↓)2

that we can loosely interpret as a repulsiion between charge fluctuations and an attraction
between spin fluctuations. Following the results of Section **.*, inside the path integral,
the attractive magnetic interaction can be decoupled in terms of a fluctuating Weiss h(τ)
field, while the the repulsive charge interaction can be decoupled in terms of a fluctuating
potential field φ(τ) = φ0 + iλ(τ), as follows

−
1
2
×
U
2

(n↓ − n↑)2 → −h(n↑ − n↓) +
h2

2 × (U/2)
,
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+
1
2
×
U
2

(n↑ + n↓)2 → φ(n↑ + n↓) −
φ2

2 × (U/2)
, (15.55)

with the understanding that for repulsive U > 0, fluctuations of φ(τ) are integrated along
the imaginary axis, φ(τ) = φ0 + iλ(τ). Adding these terms gives

∫ β

0
dτUn↑n↓ →

∫ β

0
dτ

[
(φ − σh)nσ +

h2 − φ2

U

]
=

∫ β

0
dτ

[
φ↑n↑ + φ↓n↓ +

φ↑φ↓
U

]

(15.56)
where φσ = φ − σh. The decoupled path integral then takes the form

ZF =

∫
D[φσ]

∫
D[ f ]e−S F [φσ, f ]

S F =

∫
dτ


 f̄σ

(
∂τ + E f + φσ −

∑

k

V2

∂τ + εk

)
fσ −

1
U
φ↑φ↓


 . (15.57)

Note how the Weiss fields φσ shift the f-level position: E f → E f + φσ(τ). In this way, the
Anderson model can be regarded as a resonant level immsersed in a white noise magnetic
field that modulates the splitting between the up and down spin resonances.

b) Anderson’s mean-field treatment corresponds to to a saddle point approximation to the
integral over the φσ fields. At the saddle point, 〈δS/δφσ〉 = 0 . From (15.57), we obtain

δS F
δφσ
= f̄σ fσ −

1
U
φ−σ

so the saddle point condition 〈δS F/δφσ〉 = 0 implies φ−σ = U〈n fσ〉, recovering the
Hartree mean field theory. We can clearly seek solutions in which φσ(τ) = φ(0)

σ is a
constant. With this understanding, the saddle point approximation is

ZF ≈ ZMF =
∫
D[ f ]e−S F [φ(0)

σ , f ] (15.58)

where

S MF =
∫

dτ

 f̄σ

(
∂τ + E f + φ

(0)
σ −

∑

k

V2

∂τ + εk

)
fσ −

1
U
φ(0)
↑ φ

(0)
↓


 . (15.59)

Now since φ(0) is a constant, we can Fourier transform the first term in this expression,
replacing ∂τ → −iωn, to obtain

S MF =
∑

σ, iωn

f̄σn

−G−1
fσ(iωn)

︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷(
−iωn + E f + φ

(0)
σ −

∑

k

V2

−iωn + εk
︸!!!!!!!!!!!︷︷!!!!!!!!!!!︸
−isgn(ωn)∆

)
fσn −

β

U
φ(0)
↑ φ

(0)
↓ , (15.60)

where in the broad-band width limit, we can replace

G−1
fσ(iωn) = iωn − E f − φ(0)

σ + isgn(ωn)∆. (15.61)
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c) Carrying out the Gaussian integral in (15.58), we obtain

ZMF = det[−G−1
fσ(iωn)]e

β
U φ↑φ↓ =

∏

σ,iωn

[−G−1
fσ(iωn)]e

β
U φ↑φ↓ ,

or
FMF = −kBT lnZMF = −kBT

∑

σ,iωn

ln
[
−G−1

fσ(iωn)
]
eiωn0+ −

1
U
φ↑φ↓. (15.62)

where we have included the convergence factor eiωn0+ . By (15.61),
∂G−1

fσ(iωn)
∂φσ

= −1, so
differentiating (15.62 ) with respect to φσ, we obtain

0 = kBT
∑

iωn

G fσ(iωn)eiωn0+ −
1
U
φ−σ, (15.63)

or
φ−σ = U〈n fσ〉 = UkBT

∑

iωn

G fσ(iωn)eiωn0+ .

Carrying out the sum over the Matsubara frequencies by the standard contour integral
method, we obtain

φ−σ = −U
"

Im axis
dz
2πi

f (z)Gfσ(z) = U
"

Re axis
dz
2πi

f (z)Gfσ(z)

= U
∫ ∞

−∞

dω
π
f (ω)ImGfσ(ω − iδ)

= U
∫ ∞

−∞

dω
π
f (ω)

∆

(ω − E f − φ0σ)2 + ∆2 . (15.64)

15.3.4 The Coulomb Blockade: local moments in quantum dots

A modern realization of the physics of local moments is found within quantum dots. Quantum
dots are a tiny electron pools in a doped semi-conductor, small enough so that the electron states
inside the dot are quantized, loosely resembling the electronic states of an atom. Quantum dot
behavior also occurs in nanotubes. Unlike a conventional atom, the separation of the electronic
states in quantum dot is of the order of milli-electron volts, rather than volts. The overall position
of the quantum dot energy levels can be changed by applying a gate voltage to the dot. It is then
possible to pass a small current through the dot by placing it between two leads. The differential
conductanceG = dI/dV is directly proportional to the density of states ρ(ω) inside the dotG ∝ ρ(0).
Experimentally, when G is measured as a function of gate voltage Vg, the differential conductance
is observed to develop a periodic structure, with a period of a few milli-electron volts. [? ]

This phenomenon is known as the “Coulomb blockade”[? ? ] and it results from precisely the
same physics that is responsible for moment formation. A simple model for a quantum dot considers
it as a sequence of single particle levels at energies ελ, interacting via a single Coulomb potential U,
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Figure 15.7: Variation of zero bias conductance G = dI/dV with gate voltage in a quantum dot.
Coulomb interactions mean that for each additional electron in the dot, the energy to add one elec-
tron increases by U. When the charge on the dot is integral, the Coulomb interaction blocks the
addition of electrons and the conductance is suppressed. When the energy to add an electron is de-
generate with the Fermi energy of the leads, unitary transmission occurs, and for symmetric leads,
G = 2e2/h.

according to the model
Hdot =

∑

λ

(ελ + eVg)nλσ +
U
2
N(N − 1) (15.65)

where nλσ is the occupancy of the spin σ state of the λ level, N =
∑
λσ nλσ is the total number of

electrons in the dot and Vg the gate voltage. This is a simple generalization of the single atom part
of the Anderson model. Notice that the capacitance of the dot is C = e2/U.

The energy difference between the n electron and n + 1 electron state of the dot is given by

E(n + 1) − E(n) = nU + ελn − |e|Vg,

where λn is the one-particle state into which the n-th electron is being added. As the gate volt-
age is raised, the quantum dot fills each level sequentially, as illustrated in Fig. 15.7, and when
|e|Vg = nU + ελn , the n-th level becomes degenerate with the Fermi energy of each lead. At this
point, electrons can pass coherently through the resonance giving rise to a sharp peak in the con-
ductance. At maximum conductance, the transmission and reflection of electrons is unitary, and the
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Figure 15.8: Experimentally measured conductance for a voltage-biased quantum dot after [? ],
showing the splitting of the Coulomb blockade into two components, shifted up and down by the
voltage bias, ±eVsd/2. In the white diamond-shaped regions, G(Vsd) ≈ 0 as a result of Coulomb
blockade. The number of particles N is fixed in each of the diamond regions. The lines outside the
diamonds, running parallel to the sides, identify excited states.

conductance of the quantum dot will reach a substantial fraction of the quantum of conductance,
e2/h per spin. A calculation of the zero-temperature conductance through a single non-interacting
resonance coupled symmetrically to two leads gives

G(Vg) =
2e2

h
∆2

(ελ − |e|Vg)2 + ∆2 (15.66)

where the factor of two derives from two spin channels. This gives rise to a conductance peak
when the gate voltage |e|Vg = ελ. At a finite temperature, the Fermi distribution of the electrons in
the leads is thermally broadened, and the conductance involves a thermal average about the Fermi
energy

G(Vg,T ) =
2e2

h

∫
dε

(
−
∂ f
∂ε

)
∆2

(ελ − |e|Vg − ε)2 + ∆2 (15.67)

where f (ε) = 1/(eβε + 1) is the Fermi function. When there are multiple levels, the each successive
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level contributes to the conductance, to give

G(Vg,T ) =
∑

n≥0

2e2

h

∫
dε

(
−
∂ f
∂ε

)
∆2

(nU + ελn − |e|Vg − ε)2 + ∆2

where the n-th level is shifted by the Coulomb blockade.
The effect of a bias voltage on these results is interesting. In this situation, the energy distribution

function of the two leads are now shifted relative to one-another. An crude model for the effect of
a voltage is obtained replacing the Fermi function by an average over both leads, so that f ′(ε) →
1
2
∑
± f ′(ε± eVsd2 ), which has the effect of splitting the conductance peaks into two, peaked at voltages

|e|Vg = ελn + nU ± |e|Vsd/2 (15.68)

as shown in Fig. 15.8.
It is remarkable that the physics of moment formation and the “Coulomb blockade” operate in

both artificial mesoscopic devices and naturally occurring magnetic ions.

15.4 The Kondo Effect

Although Anderson’s mean-field theory provides a mechanism for moment formation, it raises new
questions. While the mean-field treatment of the local moment would be appropriate for an ordered
magnet involving a macroscopic number of spins, rigidly locked together, for a single magnetic
impurity there will will always be a finite quantum mechanical amplitude for the spin to tunnel
between an up and down configuration.

e−↓ + f
1
↑ " e−↑ + f

1
↓

This tunneling rate τ−1
s f defines a temperature scale

kBTK =
!

τs f

called the Kondo temperature, which sets the cross-over between local moment behavior, where
the spin is free, and the low temperature physics, where the spin and conduction electrons are
entangled. Historically, the physics of this cross-over posed a major problem for the theoretical
physics community that took about a decade to resolve. It turns out that the process by which a
local moment disappears or “quenches” at low temperatures is analagous to the physics of quark
confinement. Today we name it the “Kondo effect” after the Japanese physicist Jun Kondo who
calculated the leading logarithmic contribution that signals this unusual behavior[? ].

The Kondo effect has a many manifestations in condensed matter physics: not only does it gov-
ern the quenching of magnetic moments in a magnetic alloy or a quantum dot[? ], it is responsible
for the formation of heavy fermions in dense Kondo lattice materials (heavy fermion compounds)
where the local moments transform into composite quasiparticles with masses sometimes in excess
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of a thousand bare electron masses.[? ] We will see that the Kondo temperature depends exponen-
tially on the strength of the Anderson interaction parameter U. In the symmetric Anderson model,
where E f = −U/2,

TK =
√

2U∆
π2 exp

(
−
πU
8∆

)
. (15.69)

We will derive the key elements of this basic result using perturbative renormalization group rea-
soning [? ], but it is also obtained from the exact Bethe ansatz solution of the Anderson model [? ?
? ].
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One can view the physics of local moments from two complimentary perspectives (see Fig.
(15.9)):

• an “adiabatic picture” which starts with the non-interacting resonant ground-state (U = 0) of
the Anderson model, and then considers the effect of dialing up the interaction term U.

• a “scaling approach”, which starts with the interacting, but isolated atom (V(k) = 0), and
considers the effect of immersing it in an electron sea, gradually “integrating out” lower and
lower energy electrons.

Figure 15.9: The phase diagram of the symmetric Anderson model. Below a scale T ∼ U local
moments develop. The Kondo temperature TK plays the role of the renormalized resonant level
width. Below a temperature T ∼ TK , the local moments become screened by the conduction sea via
the Kondo effect, to form a Fermi liquid.

The adiabatic approach involves dialing up the interaction, as shown by the horizontal arrow
in figure (15.9). From the adiabatic perspective, the ground-state remains in a Fermi liquid. In
principle, one might imagine the possibiity of a phase transition at some finite interaction strength
U, but in a single impurity model, with a finite number of local degrees of freedom, we don’t
expect any symmetry breaking phase transitions. In the scaling approach, we follow the physics as
a function of ever-decreasing energy scale, is loosely equivalent to dialing down the temperature, as
shown by the vertical arrow in figure (15.9) The scaling approach starts from an atomic perspective:
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it allows us to understand the formation of local moments, and at lower temperatures, how a Fermi
liquid can develop through the interaction of an isolated magnetic moment with a electron sea.

We shall first discuss one of the most basic manifestations of the Kondo effect: the appearance of
a a Kondo resonance in the spectral function of the localized electron. This part of our analysis will
involve rather qualitative reasoning based on the ideas of adiabaticity introduced in earlier chapters.
Afterwards we adopt the scaling apporach, first deriving derive the Kondo model, describing low-
energy coupling between the local moments and conduction electrons by using a “Schrieffer Wolff”
transformation of the Anderson model. Finally, we shall discuss the concept of renormalization and
apply it to the Kondo model, following the evolution of the physics from the local moment to the
Fermi liquid.

15.4.1 Adiabaticity and the Kondo resonance

The adiabatic approach allows us to qualitatively understand the emergence of a remarkable res-
onance in the excitation spectrum of the localized f-electron - the “Kondo resonance”. This reso-
nance is simply the adiabatic renormalization of the Friedel-Anderson resonance seen in the non-
interacting Anderson model. Its existence was first infered by Abrikosov and Suhl [? ? ], but today
it is colloquially refered to as the “Kondo resonance”.

To understand the Kondo resonance we shall study the effects of interactions on the f-spectral
function

Af (ω) =
1
π

ImGf (ω + iη) (15.70)

where Gf (ω − iδ) = is the advanced f-Green’s function. From a spectral decomposition (10.7.1) we
know that:

Af (ω) =




Energy distribution for adding one f-electron.
︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷∑

λ

∣∣∣〈λ| f †σ|φ0〉
∣∣∣2 δ(ω − [Eλ − E0]), (ω > 0)

∑

λ

|〈λ| fσ|φ0〉|2 δ(ω − [E0 − Eλ]),
︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸

Energy distribution for removing f-electron

(ω < 0)
(15.71)

where Eλ and E0 are the excited and ground-state energies. For negative energies ω < 0, this
spectrum corresponds to the energy spectrum of electrons emitted in X-ray photo-emission, while
for positive energies (ω > 0), the spectral function can be measured from inverse X-ray photo-
emission [? ? ]. The weight beneath the Fermi energy determines the f-charge of the ion

〈n f 〉 = 2
∫ 0

−∞
dωAf (ω) (15.72)

In a magnetic ion, such as a Cerium atom in a 4 f 1 state, this quantity is just a little below unity.
Fig. (15.16.) illustrates the effect of the interaction on the f-spectral function. In the non-

interacting limit (U = 0), the f-spectral function is a Lorentzian of width ∆. If we turn on the
interaction U, being careful to shifting the f-level position beneath the Fermi energy to maintain a
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Af (ω)

ω

0

U
ω = Ef + U

Δ TK

ω = Ef

Kondo

Infinite U Anderson

e− + f1 → f2

f 1→ f0+e−

Figure 15.10: Schematic illustrating the formation of a Kondo resonance in the f-spectral function
Af (ω) as interaction strength U is turned on. Here, the interaction is turned on while maintaining a
constant f-occupancy, by shifting the bare f-level position beneath the Fermi energy. The lower part
of diagram is the density plot of f-spectral function, showing how the non-interacting resonance at
U = 0 splits into an upper and lower atomic peak at ω = E f and ω = E f + U.

constant occupancy, the resonance splits into three peaks, two at energies ω = E f and ω = E f + U
corresponding to the energies for a valence fluctuation, plus an additional central “Kondo resonance”
associated with the spin-fluctuations of the local moment.

When the interaction is much larger than the hybridization width, U >> ∆, one might expect no
spectral weight left at low energies. But it turns out that the spectral function at the Fermi energy is
an adiabatic invariant determined by the scattering phase shift δ f :

Af (ω = 0) =
sin2 δ f

π∆
. (15.73)

This result, due to Langreth[? ? ], guarantees that a “Kondo resonance” is always present at the
Fermi energy. Now the total spectral weight

∫ ∞
−∞ dωAf (ω) = 1 is conserved, so if |E f | and U are

both large compared with ∆, most of this weight will be lie far from the Fermi energy, leaving a
small residue Z << 1 in the Kondo resonance. If the area under the Kondo resonance is Z, since
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the height of Kondo resonance is fixed ∼ 1/∆, the renormalized hybridization width ∆∗ must be of
order Z∆. This scale is set by the Kondo temperature, so that Z∆ ∼ TK .

The Langreth relation (15.73) follows from the analytic form of the f-Green’s function near the
Fermi energy. For a single magnetic ion, we expect that the interactions between electrons can
be increased continuously, without any risk of instabilities, so that the excitations of the strongly
interacting case remain in one-to-one correspondence with the excitations of the non-interacting
case U = 0, forming a “local Fermi liquid”. In this local Fermi liquid, the interactions give rise to
an f-electron self-energy, which at zero temperature, takes the form

ΣI(ω − iη) = ΣI(0) + (1 − Z−1)ω + iAω2, (15.74)

at low energies. As discussed in chapter 8, The quadratic energy dependence of ΣI(ω) ∼ ω2 follows
from the Pauli exclusion principle, which forces a quadratic energy dependence of the phase space
for the emission of a particle-hole pair. The “wavefunction” renormalization Z, representing the
overlap with the state containing one additional f-quasiparticle, is less than unity, Z < 1. Using this
result (15.74), the low energy form of the f-electron propagator is

G−1
f (ω − iη) = ω − E f − i∆ − ΣI(ω) = Z−1[ω −

E∗f︷!!!!!!!!!!!︸︸!!!!!!!!!!!︷
Z(E f + ΣI(0))−i

∆∗

︷︸︸︷
Z∆ −iO(ω2)

]

Gf (ω − iη) =
Z

ω − E∗f − i∆∗ − iO(ω2)
. (15.75)

This corresponds to a renormalized resonance of reduced weight Z < 1, located at postion E∗f with
renormalized width ∆∗ = Z∆. Now by (15.29) and (15.31 ), the f-Green’s function determines
the t-matrix of the conduction electrons t(ω + iη) = V2Gf (ω + iη) = −(πρ)−1eiδ(ω) sin δ(ω), so the
phase of the f-Green’s function at the Fermi energy determines the scattering phase shift, δ f , hence
Gf (0 + iη) = (Gf (0 − iη))∗ = −|Gf (0)|eiδ f . This implies that the scattering phase shift at the Fermi
energy is

δ f = Im
(
ln[−G−1

f (ω − iη)]
)∣∣∣∣
ω=0
= tan−1



∆∗

E∗f


 . (15.76)

Eliminating E∗f = ∆
∗ cot δ f from (15.75), we obtain

Gf (0 + iη) = −
Z
∆∗
e−iδ f sin δ f = −

1
∆
e−iδ f sin δ f , (15.77)

so that

Af (0) =
1
π

ImGf (0 − iη) =
sin2 δ f

π∆
. (15.78)

is an adiabatic invariant.
Photo-emission studies do reveal the three-peaked structure characteristic of the Anderson model

in many Ce systems, such as CeIr2 and CeRu2 [? ] (see Fig. 16.1). Materials in which the Kondo
resonance is wide enough to be resolved are more “mixed valent” materials in which the f- valence
departs significantly from unity. Three peaked structures have also been observed in certain U 5f
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Figure 15.11: Spectral functions for three different Cerium f-electron materials, measured using
X-ray photoemission (below the Fermi energy ) and inverse X-ray photoemission (above the Fermi
energy) after [? ]. CeAl is an antiferromagnet and does not display a Kondo resonance.

materials such as UPt3 and UAl2 [? ]materials, but it has not yet been resolved in UBe13. A three
peaked structure has recently been observed in 4f Yb materials, such as YbPd3, where the 4 f 13

configuration contains a single f hole, so that the positions of the three peaks are reversed relative
to Ce [? ].

15.4.2 Renormalization concept

The Anderson model illustrates a central theme of condensed matter physics - the existence of
physics on several widely spaced energy scales. In particular, the scale at which local moments
form is of order the Coulomb energy U, a scale of order 10eV , while the Kondo effect occurs on a
scale a thousand times smaller of order 10K ∼ 1meV . When energy scales are well-separated like
this, we use the “renormalization group” to fold the key effects of the high energy physics into a
small set of parameters that control the low energy physics. [? ? ? ? ]

Renormalization is built on the idea that the low energy physics of a system only depend on
certain gross features of the high energy physics. The family of systems with the same low energy
excitation spectrum constitute a “universality class” of models. (Fig. 15.12) We need the concept of
universality, for without without it we would be lost, for we could not hope to capture the physics
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of real-world systems with our simplified Hamiltonian models. The Anderson model, is itself a
renormalized Hamiltonian, notionally derived from the elimination of high energy excitations from
“the” microscopic Hamiltonian.

To carry out renormalization, the Hamiltonian of interest H(D) is parameterized by its cutoff
energy scale, D, the energy of the largest excitations. Renormalization involves reducing gthe cutoff
to a slightly smaller value D → D′ = D/b where b > 1. The excitations in the energy window
E ∈ [D′,D] that are removed by this process, are said to have been integrated out of the Hilbert
space, and in so doing they give rise to a new “effective” Hamiltonian H̃L that continues to faithfully
describe the the remaining low-energy degrees of freedom. The energy scales are then rescaled, to
obtain a new H(D′) = bH̃L and the whole process is repeated.

Generically, the Hamiltonian can be divided into a block-diagonal form

H =
[HL

V

∣∣∣∣∣∣
V†

HH

]
(15.79)

where HL and HH act on states in the low-energy and high-energy subspaces respectively, and
V and V† provide the matrix elements between them. The high energy degrees of freedom may
be “integrated out” 6 by carrying out a canonical transformation that eliminates the off-diagonal
elements in this Hamiltonian H̃L

H(D)→ H̃ = UH(D)U† =
[ H̃L

0

∣∣∣∣∣∣
0
H̃H

]
(15.80)

One then projects out the low energy component of the block-diagonalized Hamiltonian H̃L = PH̃P.
Finally, by rescaling

H(D′) = bH̃L (15.81)

one arrives at a new Hamiltonian describing the physics on the reduced scale. The transformation
from H(D) to H(D′) is referred to as a “renormalization group” (RG) transformation. This term
was coined long ago, even though the transformation does not form a real group, since there is no
inverse transformation.

Repeated application of the RG procedure leads to a family of Hamiltonians H(D). By taking
the limit b → 1, these Hamiltonians evolve, or “flow” continuously with D. Typically, H will
contain a series of dimensionless parameters (coupling constants) {gi} which denote the strength of
various interaction terms in the Hamiltonian. The evolution of these parameters with cut-off is given
by a scaling equation. In the the simplest case

∂g j
∂ lnD

= β j({gi})

A negative β function denotes a “relevant” parameter which grows as the cut-off is reduced. A
positive β function denotes an “irrelevant” parameter constant which shrinks towards zero as the cut-
off is reduced. There are two types of event that can occur in such a scaling procedure (Fig. 15.14):

6The term “integrating out” is originally derived from the path integral formulation of the renormalization group, in
which high energy degrees of freedom are removed by integrating over these variables inside the path integral.
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Figure 15.12: Scaling concept. Low energy model Hamiltonians are obtained from the detailed
original model by integrating out the high energy degrees of freedom. At each stage, the physics
described by the model spans a successively lower frequency window in the excitation spectrum.

• A crossover. When the cut-off energy scale D passes the characteristic energy scale of a
particular class of high frequency excitations, then at lower energies, these excitations may
only occur via a virtual process. When the effects of the virtual fluctuations associated with
these high energy process are included into the Hamiltonian, it changes its structure.

• Fixed Point. If the cut-off energy scale drops below the lowest energy scale in the problem,
then there are no further changes to occur in the Hamiltonian, which will now remain in-
variant under the scaling procedure (so that the β function of all remaining parameters in the
Hamiltonian must vanish). This “Fixed Point Hamiltonian” describes the essence of the low
energy physics.

Local moment physics involves a sequence of such cross-overs (Fig. 15.12.). The highest energy
scales in the Anderson model, are associated with “valence fluctuations” into the empty and doubly
occupied states

f 1
# f 2 ∆EI = U + E f > 0

554



bk.pdf June 28, 2011 278

c©2011 Piers Coleman Chapter 15.

f 1
# f 0 ∆EII = −E f > 0 (15.82)

The successive elimination of these processes leads to two cross-overs. Suppose ∆EI is the largest
scale, then once D < ∆EI , charge fluctuations into the doubly occupied state are eliminated and the
remaining low energy Hilbert space of the atom is

D < E f + U : | f 0〉, | f 1, σ〉 (σ = ±1/2) (15.83)

The operators that span this space are called “Hubbard operators”[? ], and they are denoted as
follows

Xσ0 = | f 1, σ〉〈 f 0| = P f †σ, X0σ = | f 0〉〈 f 1, σ| = f †σP,
Xσσ′ = | f 1, σ〉〈 f 1, σ′| (15.84)

where P = (1 − n f↑n f↓) projects out doubly occupied states. (Note that the Hubbard operators
Xσ0 = P f †σ, can not be treated as simple creation operators, for they do not satisfy the canonical
anticommutation algebra.) The corresponding renormalized Hamiltonian is the “Infinite U Ander-
son model”,

H =
∑

k,σ
εknkσ +

[
V(k)c†kσX0σ + V(k)∗Xσ0ckσ

]
+ E f

∑

σ

Xσσ. (15.85)

Infinite U Anderson model

In this model, all the interactions are hidden inside the Hubbard operators.
Finally, once D < ∆EII , the low-energy Hilbert space no longer involves the f 2 or f 0, states.

The object left behind is a quantum top - a quantum mechanical object with purely spin degrees of
freedom and a two dimensional7 Hilbert space

| f 1, σ〉, (σ = ±1/2).

Now the residual spin degrees of freedom still interact with the surrounding conduction sea, for
virtual charge fluctuations, in which an electron temporarily migrates off, or onto the ion lead,
to spin-exchange between the local moment and the conduction sea. There are two such virtual
processes:

e↑ + f 1
↓ ↔ f 2 ↔ e↓ + f 1

↑ ∆EI ∼ U + E f

e↑ + f 1
↓ ↔ e↑ + e↓ ↔ e↓ + f 1

↑ ∆EII ∼ −E f (15.86)

7In the simplest version of the Anderson model, the local moment is a S = 1/2, but in more realistic atoms much
large moments can be produced. For example, an electron in a Cerium Ce3+ ion atom lives in a 4 f 1 state. Here spin-orbit
coupling combines orbital and spin angular momentum into a total angular moment j = l − 1/2 = 5/2. The Cerium ion
that forms thus has a spin j = 5/2 with a spin degeneracy of 2 j+1 = 6. In multi-electron atoms, the situation can become
still more complex, involving Hund’s coupling between atoms.
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In both cases, spin exchange only takes place in the singlet channel, S = 0 state. From second-order
perturbation theory, we know that these virtual charge fluctuations will selectively lower the energy
of the singlet configurations by an amount of order ∆E = −J, where

J ∼ V2
[

1
∆E1

+
1
∆E2

]
= V2

[
1
−E f

+
1

E f + U

]
. (15.87)

Here V is the size of the hybridization matrix element near the Fermi surface. The selective re-
duction in the energy of the singlet channel constitutes an effective antiferromagnetic interaction
between the conduction electrons and the local moment. If we introduce %σ(0) =

∑
k,k′ c†kα%σαβck′β,

measuring the the electron spin at the origin, then the effective interaction that lowers the energy
of singlet combinations of conduction and f-electrons will have the form He f f ∼ J%σ(0) · %S f . The
resulting low-energy Hamiltonian that describes the interaction of a spin with a conduction sea is
the deceptively simple “Kondo model”

H =
∑

kσ
εkc†kσckσ +

Hint︷!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!︷
Jψ†(0)%σψ(0) · %S f . (15.88)

Kondo model

This heuristic argument was ventured in Anderson’s paper on local moment formation in 1961.
At the time, the antiferromagnetic sign in this interaction was entirely unexpected, for it had long
been that exchange forces always induce a ferromagnetic interaction between the conduction sea
and local moments. The innocuous-looking sign difference has deep consequences for the physics
of local moments at low temperatures, giving rise to an interaction that grows as the temperature
is lowered ultimately leading to a final cross-over into a low-energy Fermi liquid fixed point. The
remaining sections of the chapter are devoted to following this process in detail.

15.4.3 Schrieffer-Wolff transformation

We now carry out the transformation that links the Anderson and Kondo models via a canonical
transformation, first introduced by Schrieffer and Wolff[? ? ]. This transformation is a kind of one-
step renormalization process in which the valence fluctuations are integrated out of the Anderson
model. When a local moment forms, hybridization with the conduction sea induces virtual charge
fluctuations. It’s useful to consider dividing the Hamiltonian into two terms

H = H1 + λV

where λ is an expansion parameter. Here,

H1 = Hband + Hatomic =

[ HL

0

∣∣∣∣∣
0
HH

]

556



bk.pdf June 28, 2011 279

c©2011 Piers Coleman Chapter 15.

is diagonal in the low energy f 1 (HL) and the high energy f 2 or f 0 (HH) subspaces, whereas the
hybridization term

V = Hmix =
∑

jσ

[
V%kc
†
kσ fσ + H.c.

]
=

[ 0
V

∣∣∣∣∣∣
V†

0

]

provides the off-diagonal matrix elements between these two subspaces. The idea of the Schrieffer
Wolff transformation is to carry out a canonical transformation that returns the Hamiltonian to block-
diagonal form:

U
[HL

λV

∣∣∣∣∣∣
λV†

HH

]
U† =

[H∗

0

∣∣∣∣∣∣
0
H′

]
. (15.89)

This is a “renormalized” Hamiltonian, and the block-diagonal part of this matrix H∗ = PLH′PL in
the low energy subspace provides an effective Hamiltonian for the low energy physics. If we set
U = eS , then U† = U−1 = e−S (which implies S † = −S is anti-hermitian). Writing S as a power
series in λ,

S = λS 1 + λ
2S 2 + . . . ,

then by using the identity, eABe−A = B + [A, B] + 1
2! [A, [A, B]] . . . , (15.89) can also be expanded in

powers of λ as follows

eS (H1 + λV)e−S = H1 + λ
(
V + [S 1,H1]

)
+ λ2

(
1
2

[S 1, [S 1,H]] + [S 1,V] + [S 2,H1]
)
+ . . . .

SinceV is not diagonal, by requiring

[S 1,H1] = −V, (15.90)

we can eliminate all off-diagonal components to leading order in λ. To second order

eS (H1 + λV)e−S = H1 + λ
2
(
1
2

[S 1,V] + [S 2,H1]
)
+ . . . .

Since [S 1,V] is block-diagonal, we can satisfy (15.89 ) to second order by requiring S 2 = 0, so that
to this order, the renormalized Hamiltonian has the form

H∗ = HL + λ
2Hint

where
Hint =

1
2
PL[S 1,V]PL + . . .

is an interaction term induced by virtual fluctuations into the high-energy manifold. Writing

S =
[0
s

∣∣∣∣∣∣
−s†

0

]

and substituting into (15.90), we obtain V = −sHL+HHs. Now since (HL)ab = ELaδab and (HH)ab =
EHa δab are diagonal, it follows that

sab =
Vab

EHa − ELb
, −s†ab =

V†ab
ELa − EHb

, . (15.91)
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From (15.91), we obtain

(Hint)ab = −
1
2

(V†s + s†V)ab =
1
2

∑

λ∈|H〉



V†aλVλb
ELa − EHλ

+
V†aλVλb
ELb − E

H
λ




Some important points about this result

• We recognize this result as a simple generalization of second-order perturbation theory to
encompass both diagonal and off-diagonal matrix elements.

• Hint can also be written
Hint =

1
2

[T (Ea) + T (Eb)]

where T is given by

T̂ (E) = PLV
PH

E − H1
VPL

Tab(E) =
∑

λ∈|H〉



V†aλVλb
E − EHλ


 (15.92)

is the leading order expression for the many-body scattering T-matrix induced by scattering
off V. We can thus relate Hint to a scattering amplitude, and schematically represent it by a
Feynman diagram, illustrated in Fig. 15.13.

Figure 15.13: T-matrix representation of interaction induced between states |b〉 and |a〉 by integrating
out the virtual fluctuations into the high-energy states |λ〉.

• If the separation of the low and high energy subspaces is large, then the energy denominators
in the above expression will not depend on the initial and final states a and b, so that this
expression can be simplified to the form

Hint = −
∑

λ∈|H〉

V†P[λ]V
∆Eλ

(15.93)
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where ∆Eλ = EHλ − E
L is the excitation energy in the high energy subspace labeled by λ, and

the projector P[λ] =
∑
|a〉∈|λ〉 |a〉〈a| .

We now apply this method to the Anderson model for which the atomic ground-state is a local
moment f 1 configuration. In this case, there are two high-energy intermediate states correspond-
ing to f 0 and f 2 configurations. When a conduction electron or hole is excited into the local-
ized f-state to create these excited state configurations, the corresponding excitation energies are
∆E( f 1 → f 0) = −E f and ∆E( f 1 → f 2) = E f +U. The hybridizationV =

∑
kσ

[
V(k)c†kσ fσ + H.c

]

generates virtual fluctuations into these excited states. Using (15.93), the interaction induced by
these fluctuations is given by

Hint = −
VP[ f 2]V
E f + U

−
VP[ f 0]V
−E f

= −
∑

kα,k′β
V∗k′Vk

[
f 1+e−↔ f 2

︷!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!︷
(c†kα fα)( f †βck′β)

E f + U
+

f 1↔ f 0+e−︷!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!︷
( f †βck′β)(c†kα fα)

−E f

]
Pnf=1 (15.94)

where Pnf=1 = (n f↑ − n f↓)2 projects into the subspace of unit occupancy. Using the Fierz identity8

2δαγδηβ = δαβδηγ + %σαβ · %σηγ we may recast the spin exchange terms in terms of Pauli matrices as
follows

(c†kα fα)( f †βck′β) = (c†kα fγ)( f †ηck′β) ×

1
2 (δαβδηγ+%σαβ·%σηγ)︷!!!︸︸!!!︷

(δαγδηβ)

=
1
2
c†kαck′α − (ckα†%σαβck′β) · %S f , (15.95)

and similarly

( f †βck′β)(c†kα fα) = −
1
2
c†kαck′α − (ckα†%σαβck′β) · %S f . (15.96)

(where we have replaced n f = 1 and dropped residual constants in both cases). The operator

%S f ≡ f †σ
(
%σαβ

2

)
fβ, (n f = 1) (15.97)

describes the spin of the f-electron. The renormalized Hamiltonian then becomes

Hint =
∑

kα,k′β
Jk,k′c†kα%σck′β · %S f + H′

Jk,k′ = V∗k′Vk
[
f 1+e−↔ f 2
︷!!!︸︸!!!︷

1
E f + U

+

f 1↔ f 0+e−︷︸︸︷
1
−E f

]
. (15.98)

8This identity is obtained by expanding an arbitrary two dimensional matrix A in terms of Pauli matrices. If we write
Aαβ = 1

2 Tr[A1]δαβ + 1
2 Tr[A%σ] · %σαβ and read off the coefficients of A inside the traces, we obtain the inequality.
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Notice how, in the low energy subspace, the occupancy of the f-state is constrained to n f = 1.
This fermionic representation (15.97) of the spin operator proves to be very useful. Apart from a
constant, the second term

H′ = −
1
2

∑

k,k′σ
V∗k′Vk

[
1

E f + U
+

1
E f

]
c†kσck′σ

is a residual potential scattering term off the local moment. This term vanishes for the particle-hole
symmetric case E f = −(E f +U) and will be dropped, since it does not involve the internal dynamics
of the local moment. Summarizing, the effect of the high-frequency valence fluctuations is to induce
an antiferromagnetic coupling between the local spin density of the conduction electrons and the
local moment:

H =
∑

kσ
εkc†kσckσ +

∑

k,k′
Jk,k′c†kα%σck′β · %S f (15.99)

This is the famous “Kondo model”. For many purposes, the k dependence of the coupling constant
can be dropped, so that the Kondo model takes the deceptively simple form

H =
∑

kσ
εkc†kσckσ +

Hint︷!!!!!!︸︸!!!!!!︷
J%σ(0) · %S f . (15.100)

Kondo model

where ψα(0)
∑
ckα is the electron operator at the origin and ψ†(0)%σψ(0) is the spin density at the

origin. In other words, there is a simple point-interaction between the spin density of the metal at
the origin and the local moment.

15.4.4 “Poor Man” Scaling

We now apply the scaling concept to the Kondo model. This was originally carried out by Anderson
and Yuval[? ? ? ] using a method formulated in the time, rather than energy domain. The method
presented here follows Anderson’s “ Poor Man’s” scaling approach[? ? ], in which the evolution of
the coupling constant is followed as the band-width of the conduction sea is reduced. The Kondo
model is written

H =
∑

|εk |<D
εkc†kσckσ + H(I)

H(I) = J(D)
∑

|εk |,|εk′ |<D
c†kα%σαβck′β · %S f (15.101)

560



bk.pdf June 28, 2011 281

c©2011 Piers Coleman Chapter 15.

where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (15.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2

[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)
aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’σ’’σ

k
k’’

σ

λ
α βk’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =
∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (15.102)

In process (II),

kα

’’σ
σ ’σ

βk’

k’’λ

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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= −J2ρδD
[

1
E − D

]
(σbσa)βα(S aS b)σ′σ (15.103)

where we have assumed that the energies εk and εk′ are negligible compared with D. Adding (Eq.
15.102) and (Eq. 15.103) gives

δHint
k′βσ′;kασ = T̂ I + T̂ II = −

J2ρδD
D

[σa, σb]βαS aS b

=
J2ρδD
D
%σβα%S σ′σ. (15.104)

In this way we see that the virtual emission of a high energy electron and hole generates an antifer-
romagnetic correction to the original Kondo coupling constant

J(D′) = J(D) + 2J2ρ
δD
D

High frequency spin fluctuations thus antiscreen the antiferrromagnetic interaction. If we introduce
the coupling constant g = ρJ, we see that it satisfies

∂g
∂ lnD

= β(g) = −2g2 + O(g3).

This is an example of a negative β function: a signature of an interaction which is weak at high
frequencies, but which grows as the energy scale is reduced. The local moment coupled to the
conduction sea is said to be asymptotically free. The solution to this scaling equation is

g(D′) =
go

1 − 2go ln(D/D′)
(15.105)

and if we introduce the scale
TK = D exp

[
−

1
2go

]
(15.106)

we see that this can be written
2g(D′) =

1
ln(D′/TK)

This is an example of a running coupling constant- a coupling constant whose strength depends on
the scale at which it is measured. (See Fig. 15.14).

Were we to take this equation literally, we would say that g diverges at the scale D′ = TK . This
interpretation is too literal, because the above scaling equation has only been calculated to order g2,
nevertheless, this result does show us that the Kondo interaction can only be treated perturbatively
at energy scales large compared with the Kondo temperature. We also see that once we have written
the coupling constant in terms of the Kondo temperature, all reference to the original cut-off energy
scale vanishes from the expression. This cut-off independence of the problem is an indication that
the physics of the Kondo problem does not depend on the high energy details of the model: there is
only one relevant energy scale, the Kondo temperature.
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Figure 15.14: Schematic illustration of renormalization group flow from a repulsive “weak cou-
pling” fixed point, via a crossover to an attractive “strong coupling” fixed point.

It is possible to extend the above leading order renormalization calculation to higher order in
g. To do this requires a more systematic method of calculating higher order scattering effects. One
tool that is particularly useful in this respect, is to use the Abrikosov pseudo-fermion representation
of the spin, writing

%S = f †α
(
%σ

2

)

αβ

fβ

n f = 1. (15.107)

This has the advantage that the spin operator, which does not satisfy Wick’s theorem, is now factor-
ized in terms of conventional fermions. Unfortunately, the second constraint is required to enforce
the condition that S 2 = 3/4. This constraint proves very awkward for the development of a Feynman
diagram approach. One way around this problem, is to use the Popov trick, whereby the f-electron
is associated with a complex chemical potential

µ = −iπ
T
2

The partition function of the Hamiltonian is written as an unconstrained trace over the conduction
and pseudofermion Fock spaces,

Z = Tr
[
e−β(H+iπ

T
2 (n f−1))

]
(15.108)

Now since the Hamiltonian conserves n f , we can divide this trace up into contributions from the d0,
d1 and d2 subspaces, as follows:

Z = eiπ/2Z( f 0) + Z( f 1) + e−iπ/2Z( f 2)
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But since S f = 0 in the f 2and d0 subspaces, Z( f 0) = Z( f 2) so that the contributions to the partition
function from these two unwanted subspaces exactly cancel. You can test this method by applying
it to a free spin in a magnetic field. (see exercise)

Figure 15.15: Diagrams contributing to the third-order term in the beta function. A “crossed”
propagator line indicates that the contribution from high-energy electrons with energies |εk| ∈ [D −
δD,D] is taken from this line.

By calculating the higher order diagrams shown in fig 15.15 , it is straightforward, though
laborious to show that the beta-function to order g3 is given by

∂g
∂ lnD

= β(g) = −2g2 + 2g3 + O(g4) (15.109)

One can integrate this equation to obtain

ln
(
D′

D

)
=

∫ g

go

dg′

β(g′)
= −

1
2

∫ g

go
dg

[
1
g′2
+

1
g′
+ O(1)

]

A better estimate of the temperature TK where the system scales to strong coupling is obtained by
setting D′ = TK and g = 1 in this equation, which gives

ln
(TK
D̃

)
= −

1
2go
+

1
2

ln 2go + O(1), (15.110)

where for convenience, we have absorbed a factor
√

e
2 into the cut-off, writing D̃ = D

√
e
2 . Thus,

TK = D̃
√

2goe−
1

2go (15.111)

up to a constant factor. The square-root pre-factor in TK is often dropped in qualitative discussion,
but it is important for more quantitative comparison.

15.4.5 Universality and the resistance minimum

Provided the Kondo temperature is far smaller than the cut-off, then at low energies it is the only
scale governing the physics of the Kondo effect. For this reason, we expect all physical quantities
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to be expressed in terms of universal functions involving the ratio of the temperature or field to the
Kondo scale. For example, the susceptibility

χ(T ) =
1

4T
F(

T
TK

), (15.112)

and the quasiparticle scattering rate
1
τ(T )

=
1
τo
G(

T
TK

) (15.113)

both display universal behavior.
We can confirm the existence of universality by examining these properties in the weak coupling

limit, where T >> TK . Here, we find
1
τ(T )

= 2πJ2ρS (S + 1)ni, (S =
1
2

)

χ(T ) =
ni
4T

[
1 − 2Jρ

]

where ni is the density of impurities. Scaling implies that at lower temperatures Jρ → Jρ +
2(Jρ)2 ln D

T , so that to next leading order we expect
1
τ(T )

= ni
2π
ρ
S (S + 1)[Jρ + 2(Jρ)2 ln

D
T

]2, (15.114)

χ(T ) =
ni
4T

[
1 − 2Jρ − 4(Jρ)2 ln

D
T
+ O((Jρ)3)

]
(15.115)

results that are confirmed from second-order perturbation theory. The first result was obtained by
Jun Kondo. Kondo was looking for a consequence of the antiferromagnetic interaction predicted
by the Anderson model, so he computed the electron scattering rate to third order in the magnetic
coupling. The logarithm which appears in the electron scattering rate means that as the temperature
is lowered, the rate at which electrons scatter off magnetic impurities rises. It is this phenomenon
that gives rise to the famous Kondo “resistance minimum” .

Since we know the form of TK , we can use this result to deduce that the weak coupling limit of
the scaling forms. If we take equation (15.110), and replace the cut-off by the temperature D → T ,
and replace go by the running coupling constant go → g(T ), we obtain

g(T ) =
1

2 ln
(
T
TK

)
+ ln 2g(T )

(15.116)

which we may iterate to obtain

2g(T ) =
1

ln
(
T
TK

) +
ln(ln(T/TK))

2 ln2
(
T
TK

) . (15.117)

Using this expression to make the replacement Jρ→ g(T ) in (15.114) and (15.115), we obtain

χ(T ) =
ni
4T

[
1 −

1
ln(T/TK)

−
1
2

ln(ln(T/TK))
ln2(T/TK)

+ . . .

]
(15.118)

1
τ(T )

= ni
πS (S + 1)

2ρ

[
1

ln2(T/TK)
+

ln(ln(T/TK))
ln3(T/TK)

+ . . .

]
(15.119)

565

Chapter 15. c©Piers Coleman 2011

From the second result, we see that the electron scattering rate has the scale-invariant form

1
τ(T )

=
ni
ρ
G(T/TK). (15.120)

where G(x) is a universal function. The pre-factor in the electron scattering rate is essentially the
Fermi energy of the electron gas: it is the “unitary scattering” rate, the maximum possible scattering
rate that is obtained when an electron experiences a resonant π/2 scattering phase shift. From this
result, we see that at absolute zero, the electron scattering rate will rise to the value 1

τ (T ) = ni
ρG(0),

indicating that at strong coupling, the scattering rate is of the same order as the unitary scattering
limit. We shall now see how this same result comes naturally out of a strong coupling analysis.

15.4.6 Nozières Fermi Liquid Theory of the Kondo Ground-state

The weak-coupling analysis tells us that at scales of order the Kondo temperature, the Kondo cou-
pling constant g scales to a value of order O(1). Although perturbative renormalization group meth-
ods can not go past this point, Anderson and Yuval[? ? ? ]pointed out that it is not unreasonable
to suppose that the Kondo coupling constant scales to a fixed point where it is large compared to
the conduction electron band-width D. This assumption is the simplest possibility and if true, it
means that the strong-coupling limit is an attractive fixed point, being stable under the renormal-
ization group. Anderson and Yuval conjectured that the Kondo singlet would be paramagnetic,
with a temperature independent magnetic susceptibility and a universal linear specific heat given by
CV = γK T

TK at low temperatures.
The first controlled treatment of this cross-over regime was carried out by Wilson using a nu-

merical renormalization group method. Wilson’s numerical renormalization method was able to
confirm the conjectured renormalization of the Kondo coupling constant to infinity. This limit is
called the “strong coupling” limit of the Kondo problem. Wilson carried out an analysis of the
strong-coupling limit, and was able to show that the specific heat would be a linear function of
temperature, like a Fermi liquid. Wilson showed that the linear specific heat could be written in a
universal form

CV = γT,

γ =
π2

3
0.4128 ± 0.002

8TK
(15.121)

Wilson also compared the ratio between the magnetic susceptibility and the linear specific heat with
the corresponding value in a non-interacting system, computing

W =
χ/χ0

γ/γ0 =
χ

γ



π2k2

B
3(µB)2


 = 2 (15.122)

within the accuracy of the numerical calculation.
Remarkably, the second result of Wilson’s can be re-derived using an exceptionally elegant set

of arguments due to Nozières[? ] that leads to an explicit form for the strong coupling fixed point
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J
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Figure 15.16: Illustrating the strong-coupling limit of the Kondo model

Hamiltonian. Nozières began by considering an electron in a one-dimensional chain as illustrated
in Fig. 15.16. The Hamiltonian for this situation is

Hlattice = −t
∑

j=0,∞
[c†σ( j + 1)cσ( j) + H.c] + Jc†α(0)%σαβcβ(0) · %S f . (15.123)

Nozières argued that the strong coupling fixed point will be described by the situation J >> t. In this
limit, the kinetic energy of the electrons in the band can be treated as a perturbation to the Kondo
singlet. The local moment couples to an electron at the origin, forming a “Kondo singlet” denoted
by

|GS 〉 =
1
√

2
(| ⇑↓〉 − | ⇓↑〉) (15.124)

where the thick arrow refers to the spin state of the local moment and the thin arrow refers to the spin
state of the electron at site 0. Any electron which migrates from site 1 to site 0 will automatically
break this singlet state, raising its energy by 3J/4. This will have the effect of excluding electrons
(or holes) from the origin. The fixed point Hamiltonian must then take the form

Hlattice = −t
∑

j=1,∞
[c†σ( j + 1)cσ( j) + H.c] + weak interaction (15.125)

where the second-term refers to the weak-interactions induced in the conduction sea by virtual
fluctuations onto site 0. If the wavefunction of electrons far from the impurity has the form ψ(x) ∼
sin(kF x), where kF is the Fermi momentum, then the exclusion of electrons from site 1 has the
effect of phase-shifting the electron wavefunctions by one the lattice spacing a, so that now ψ(x) ∼
sin(kF x − δ) where δ = kFa. But if there is one electron per site, then 2(2kFa/(2π)) = 1 by the
Luttinger sum rule, so that kF = π/(2a) and hence the Kondo singlet acts as a spinless, elastic
scattering center with scattering phase shift

δ = π/2. (15.126)

567

Chapter 15. c©Piers Coleman 2011

The appearance of δ = π/2 could also be deduced by appealing to the Friedel sum rule, which
states that the number of bound-electrons at the magnetic impurity site is

∑
σ
δσ=±1
π = 2δ/π, so that

δ = π/2. By considering virtual fluctuations of electrons between site 1 and 0, Nozières argued that
the induced interaction at site 1 must take the form

Hint ∼
t4

J3 n1↑n1↓ (15.127)

because fourth order hopping processes lower the energy of the singly occupied state, but they do
not occur for the doubly occupied state. This is a repulsive interaction amongst the conduction
electrons, and it is known to be a marginal operator under the renormalization group, leading to the
conclusion that the effective Hamiltonian describes a weakly interacting “local” Fermi liquid.

Nozières formulated this local Fermi liquid in the language of an occupancy-dependent phase
shift. Suppose the kσ scattering state has occupancy nkσ, then the the ground-state energy will
be a functional of these occupancies E[{nkσ}]. The differential of this quantity with respect to
occupancies defines a phase shift as follows

δE
δnkσ

= εk −
∆ε

π
δ({nk′σ′ }, εk). (15.128)

The first term is just the energy of an unscattered conduction electron, while δ({nk′σ′ }, εk) is the
scattering phase shift of the Fermi liquid. This phase shift can be expanded

δ({nk′σ′ }, εk) =
π

2
+ α(εk − µ) + Φ

∑

k
δnk,−σ (15.129)

where the term with coefficient Φ describes the interaction between opposite spin states of the
Fermi liquid. Nozières argued that when the chemical potential of the conduction sea is changed,
the occupancy of the localized d state will not change, which implies that the phase shift is invariant
under changes in µ. Now under a shift δµ, the change in the occupancy

∑
k δnkσ → δµρ, so that

changing the chemical potential modifies the phase shift by an amount

∆δ = (α + Φρ)∆µ = 0 (15.130)

so that α = −ρΦ. We are now in a position to calculate the impurity contribution to the magnetic
susceptibility and specific heat. First note that the density of quasiparticle states is given by

ρ =
dN
dE
= ρo +

1
π

∂δ

∂ε
= ρo +

α

π
(15.131)

so that the low temperature specific heat is given by CV = (γbulk + γi) where

γi = 2


π2k2

B
3



α

π
(15.132)

where the prefactor “2” is derived from the spin up and spin-down bands. Now in a magnetic field,
the impurity magnetization is given by

M =
δ↑
π
−
δ↓
π

(15.133)
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Since the Fermi energies of the up and down quasiparticles are shifted to εFσ → εF − σB, we have∑
k δnkσ = σρB, so that the phase-shift at the Fermi surface in the up and down scattering channels

becomes

δσ =
π

2
+ αδεFσ + Φ(

∑

k
δnkσ

=
π

2
+ ασB − ΦρσB

=
π

2
+ 2ασB (15.134)

so that the presence of the interaction term doubles the size of the change in the phase shift due to a
magnetic field. The impurity magnetization then becomes

Mi = χiB = 2
(
2α
π

)
µ2
BB (15.135)

where we have reinstated the magnetic moment of the electron. This is twice the value expected for
a “rigid” resonance, and it means that the Wilson ratio is

W =
χiπ

2k2
B

γi3(µB)2 = 2 (15.136)

15.4.7 Experimental observation of Kondo effect

Experimentally, there is now a wealth of observations that confirm our understanding of the single
impurity Kondo effect. Here is a brief itemization of some of the most important observations. (Fig.
15.17.)

• A resistance minimum appears when local moments develop in a material. For example, in
Nb1−xMox alloys, a local moment develops for x > 0.4, and the resistance is seen to develop
a minimum beyond this point.[? ? ]

• Universality seen in the specific heat CV = ni
T F(T/TK) of metals doped with dilute concen-

trations of impurities. Thus the specific heat of Cu − Fe (iron impurities in copper) can be
superimposed on the specific heat of Cu − Cr, with a suitable rescaling of the temperature
scale. [? ? ]

• Universality is observed in the differential conductance of quantum dots[? ? ] and spin-
fluctuation resistivity of metals with a dilute concentration of impurities.[? ] Actually, both
properties are dependent on the same thermal average of the imaginary part of the scattering
T-matrix

ρi = ni
ne2

m

∫
dω

(
−
∂ f
∂ω

)
2Im[T (ω)]

G =
2e2

!

∫
dω

(
−
∂ f
∂ω

)
πρIm[T (ω)]. (15.137)
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Figure 15.17: (a) Sketch of resistance minimum in MoxNb1−x (b) Sketch of excess resistivity associ-
ated with scattering from an impurity spin. Right hand-scale- differential conductivity of a quantum
dot.

Putting πρ
∫
dω

(
− ∂ f∂ω

)
ImT (ω) = t(ω/TK ,T/TK), we see that both properties have the form

ρi = ni
2ne2

πmρ
t(T/TK)

G =
2e2

!
t(T/TK) (15.138)

where t(T/TK) is a universal function. This result is born out by experiment.

15.5 Exercises
1. (a) Using the identity n2

fσ = n fσ, show that the atomic part of the Anderson model can be written in
the form

Hatomic = (E f +
U
2

)n f +
U
2

[
(n f − 1)2 − 1

]
, (15.139)

What happens when E f + U/2 = 0?
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(b) Using the completeness relation

| f 0〉〈 f 0 |+| f 2〉〈 f 2 |︷!!!︸︸!!!︷

(n f − 1)2 +

|↑〉〈↑|+|↓〉〈↓|︷!!!!!︸︸!!!!!︷
S2

S (S + 1)
= 1. (S = 1/2)

show that the interaction can also be written in the form

Hatomic = (E f +
U
2

)n f −
2U
3

S2 (15.140)

which makes it clear that the repulsive U term induces a “magnetic attraction” that favors formation of
a local moment.
(c) Derive the Hubbard Stratonovich decoupling for (16.54).

2. By expanding a plane wave state in terms of spherical harmonics:

〈r|k〉 = eik·r = 4π
∑

l,m
il jl(kr)Y∗lm(k̂)Ylm(r̂)

show that the overlap between a state |ψ〉 with wavefunction 〈%x|ψ〉 = R(r)Ylm(r̂) with a plane wave is
given by V(%k) = 〈%k|V |ψ〉 = V(k)Ylm(k̂) where

V(k) = 4πi−l
∫

drr2V(r)R(r) jl(kr) (15.141)

3. (i) Show that δ = cot−1
(
Ed
∆

)
is the scattering phase shift for scattering off a resonant level at position

Ed.
(ii) Show that the energy of states in the continuum is shifted by an amount −∆εδ(ε)/π, where ∆ε is

the separation of states in the continuum.
(iii) Show that the increase in density of states is given by ∂δ/∂E = ρd(E). (See chapter 3.)

4. Generalize the scaling equations to the anisotropic Kondo model with an anisotropic interaction

HI =
∑

|εk |,|εk′ ,a=(x,y,z)
Jac†kασaαβck′β · S

a
d (15.142)

and show that the scaling equations take the form

∂Ja
∂ lnD

= −2JbJcρ + O(J3),

where and (a, b, c) are a cyclic permutation of (x, y, z). Show that in the special case where Jx = Jy =
J⊥, the scaling equations become

∂J⊥
∂ lnD

= −2JzJ⊥ρ + O(J3),
∂Jz
∂ lnD

= −2(Jz)2ρ + O(J3), (15.143)

so that J2
z − J2

⊥ = constant. Draw the corresponding scaling diagram.
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5. Consider the symmetric Anderson model, with a symmetric band-structure at half filling. In this
model, the d0 and d2 states are degenerate and there is the possibility of a “charged Kondo effect”
when the interaction U is negative. Show that under the “particle-hole” transformation

ck↑ → ck↑, d↑ → d↑
ck↓ → −c†k↓, d↓ → −d†↓ (15.144)

the positive U model is transformed to the negative U model. Show that the spin operators of the local
moment are transformed into Nambu “isospin operators” which describe the charge and pair degrees
of freedom of the d-state. Use this transformation to argue that when U is negative, a charged Kondo
effect will occur at exactly half-filling involving quantum fluctuations between the degenerate d0 and
d2 configurations.

6. What happens to the Schrieffer-Wolff transformation in the infinite U limit? Rederive the Schrieffer-
Wolff transformation for an N-fold degenerate version of the infinite U Anderson model. This is
actually valid for Ce and Yb ions.

7. Rederive the Nozières Fermi liquid picture for an SU (N) degenerate Kondo model. Explain why this
picture is relevant for magnetic rare earth ions such as Ce3+ or Yb3+.

8. Check the Popov trick works for a magnetic moment in an external field. Derive the partition function
for a spin in a magnetic field using this method.

9. Use the Popov trick to calculate the T-matrix diagrams for the leading Kondo renormalization diagra-
matically.

10. Derive the formula (15.66) for the conductance of a single isolated resonance.

11. (a) Directly confirm the Read-Newn’s gauge transformation (16.41).

(b) Directly calculate the “phase stiffness” ρφ = − d
2F
dλ2 of the large N Kondo model and show that at

T = 0.

ρφ =
N
π

(
sin(πq)
TK

)
.

12. (a) Introduce a simple relaxation time into the conduction electron propagator, writing

G(%k, iωn)−1 = iωn + isgn(ωn)/2τ +
V2

iωn − λ
(15.145)

Show that the poles of this Greens function occur at

ω = Ek ±
i

2τ∗

where

τ∗ =
m∗

m
τ

is the renormalized elestic scattering time.
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(b) The Kubo formula for the optical conductivity of an isotropic one-band system is

σ(ν) = −
Ne2

3

∑

k
v2
k
Π(ν)
iν

where we have used the N fold spin degeneracy, and Π(ν) is the analytic extension of

Π(iνn) = T
∑

m
G(%k, iωm)

[
G(%k, iωm + iνn) −G(%k, iωm)

]

where in our case, G(%k, iωn) is the conduction electron propagator. Using (16.59), and approxi-
mating the momentum sum by an integral over energy, show that the low frequency conductivity
of the large N Kondo lattice is given by

σ(ν) =
ne2

m∗
1

(τ∗)−1 − iν
.
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Chapter 16

Heavy electrons

16.1 Doniach’s Kondo lattice hypothesis

Although the single impurity Kondo problem was essentially solved by the early seventies, it took
a further decade before the physics community was ready to accept the notion that the same phe-
nomenon could occur within a dense lattice environment. This resistance to change was rooted in a
number of popular misconceptions about the spin physics and the Kondo effect.

At the beginning of the seventies, it was well known that local magnetic moments severely
suppress superconductivity, so that typically, a few percent is all that is required to destroy the
superconductivity. Conventional superconductivity is largely immune to the effects of non-magnetic
disorder 1 but highly sensitive to magnetic impurities, which destroy the time-reversal symmetry
necessary for s-wave pairing. The arrival of a new class of superconducting material containing
dense arrays of local moments took the physics community completely by surprise. Indeed, the
first observations of superconductivity in UBe13, made in 1973 [1] were dismissed as an artifact
and had to await a further ten years before they were revisited and acclaimed as heavy fermion
superconductivity. [2, 3]

Normally, local moment systems develop antiferromagnetic order at low temperatures. When a
magnetic moment is introduced into a metal it induces Friedel oscillations in the spin density around
the magnetic ion, given by

〈 %M(x)〉 = −Jχ(%x − %x′)〈%S (%x′)〉

where J is the strength of the Kondo coupling and

χ(x) =
∑

%q

χ(%q)ei%q·%x

1Anderson argued in his “dirty superconductor theorem” that BCS superconductivity involves pairing of electrons in
states that are the time-reverse transform of one another. Non-magnetic disorder does not break time reversal symmetry,
and so the one particle eigenstates of a dirty system can still be grouped into time-reverse pairs from which s-wave pairs
can be constructed. For this reason, s-wave pairing is largely unaffected by non-magnetic disorder.
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χ(%q) = 2
∑

%k

f (ε%k) − f (ε%k+%q)
ε%k+%q − ε%k

(16.1)

is the the non-local susceptibility of the metal. If a second local moment is introduced at location

Figure 16.1: Illustrating how the polarization of spin around a magnetic impurity gives rise to
Friedel oscillations and induces an RKKY interaction between the spins

%x, then it couples to 〈M(%x)〉 giving rise to a long-range magnetic interaction called the “RKKY”[4]
interaction, 2

HRKKY =

JRKKY (%x−%x′)︷!!!!!!!!!!︸︸!!!!!!!!!!︷
−J2χ(%x − %x′) %S (x) · %S (x′). (16.2)

The sharp discontinuity in the occupancies at the Fermi surface produces slowly decaying Friedel
oscillations in the RKKY interaction given by

JRKKY (r) ∼ −J2ρ
cos 2kFr
|kFr|3

(16.3)

where ρ is the conduction electron density of states and r is the distance from the impurity, so the
RKKY interaction oscillates in sign, depending on the distance between impurities. The approxi-
mate size of the RKKY interaction is given by ERKKY ∼ J2ρ.

Normally, the oscillatory nature of this magnetic interaction favors the development of antiferro-
magnetism. In alloys containing a dilute concentration of magnetic transition metal ions, the RKKY
interaction gives rise to a frustrated, glassy magnetic state known as a spin glass in which the mag-
netic moments freeze into a fixed, but random orientation. In dense systems, the RKKY interaction
typically gives rise to an ordered antiferromagnetic state with a Néel temperature TN ∼ J2ρ.

In 1976 Andres, Ott and Graebner discovered the heavy fermion metal CeAl3. [? ] This metal
has the following features:

• A Curie susceptibility χ−1 ∼ T at high temperatures.

• A paramagnetic spin susceptibility χ ∼ constant at low temperatures.

• A linear specific heat capacity CV = γT , where γ ∼ 1600mJ/mol/K2 is approximately 1600
times larger than in a conventional metal.

2named after Ruderman, Kittel, Kasuya and Yosida
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• A quadratic temperature dependence of the low temperature resistivity ρ = ρo + AT 2

Andres, Ott and Grabner pointed out that the low temperature properties are those of a Fermi liquid,
but one in which the effective masses of the quasiparticles are approximately 1000 larger than the
bare electron mass. The Fermi liquid expressions for the magnetic susceptibility χ and the linear
specific heat coefficient γ are

χ = (µB)2 N∗(0)
1 + Fao

γ =
π2k2

B
3

N∗(0) (16.4)

where N∗(0) = m∗
m N(0) is the renormalized density of states and Fa0 is the spin-dependent part of the

s-wave interaction between quasiparticles. What could be the origin of this huge mass renormaliza-
tion? Like other Cerium heavy fermion materials, the Cerium atoms in this metal are in aCe3+(4 f 1)
configuration, and because they are spin-orbit coupled, they form huge local moments with a spin
of J = 5/2. In their paper, Andres, Ott and Graebner suggested that a lattice version of the Kondo
effect might be responsible.

(b)

(a)

Effect

Effect

Lattice Kondo

Kondo

ρ(   )

ρ(   )E ρ(   )E

ρ(   )E
E

E
E

x

E E

x

Figure 16.2: (a) Single impurity Kondo effect builds a single fermionic level into the conduction
sea, which gives rise to a resonance in the conduction electron density of states (b) Lattice Kondo
effect builds a fermionic resonance into the conduction sea in each unit cell. The elastic scattering
off this lattice of resonances leads to formation of a heavy electron band, of width TK .

This discovery prompted Sebastian Doniach[? ] to propose that the origin of these heavy elec-
trons derived from a dense version of the Kondo effect. Doniach proposed that heavy electron

577

Chapter 16. c©Piers Coleman 2011

systems should be modeled by the “Kondo-lattice Hamiltonian” where a dense array of local mo-
ments interact with the conduction sea. For a Kondo lattice with spin 1/2 local moments, the Kondo
lattice Hamiltonian[? ] takes the form

H =
∑

%kσ

ε%kc
†
%kσc%kσ + J

∑

j

%S j · c†%kα

(
%σ

2

)

αβ

c%k′βe
i(%k′−%k)·%Rj (16.5)

Doniach argued that there are two scales in the Kondo lattice, the Kondo temperature TK and ERKKY ,
given by

TK = De−1/2Jρ

ERKKY = J2ρ (16.6)

When Jρ is small, then ERKKY >> TK , and an antiferromagnetic state is formed, but when the

J J

T  > T     K RKKYT  <  T     K RKKY

T

ρ ρc

?

AFM

Liquid
Fermi

Figure 16.3: Doniach diagram, illustrating the antiferromagnetic regime, where TK < TRKKY and
the heavy fermion regime, where TK > TRKKY . Experiment has told us in recent times that the
transition between these two regimes is a quantum critical point. The effective Fermi temperature
of the heavy Fermi liquid is indicated as a solid line. Circumstantial experimental evidence suggests
that this scale drops to zero at the antiferromagnetic quantum critical point, but this is still a matter
of controversy.

Kondo temperature is larger than the RKKY interaction scale, TK >> ERKKY , Doniach argued that a
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dense Kondo lattice ground-state is formed in which each site resonantly scatters electrons. Bloch’s
theorem then insures that the resonant elastic scattering at each site will form a highly renormalized
band, of width ∼ TK . By contrast to the single impurity Kondo effect, in the heavy electron phase
of the Kondo lattice the strong elastic scattering at each site acts in a coherent fashion, and does
not give rise to a resistance. For this reason, as the heavy electron state forms, the resistance of
the system drops towards zero. One of the fascinating aspects of the Kondo lattice concerns the

ρ 
   

( 
µ
Ω

   
   

   
   

 )
cm

/C
e

m 100
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x 1−xCe  La    Cu 6
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0.5
0.73
0.9
0.99
1.0

x=0.094

Figure 16.4: Development of coherence in heavy fermion systems. Resistance inCe1−xLaxCu6 after
Onuki and Komatsubara[? ]

Luttinger sum rule. This aspect was first discussed in detail by Martin[5], who pointed out that the
Kondo model can be regarded as the result of adiabatically increasing the interaction strength U in
the Anderson model, whilst preserving the valence of the magnetic ion. During this process, one
expects sum rules to be preserved. In the impurity, the scattering phase shift at the Fermi energy
counts the number of localized electrons, according to the Friedel sum rule

∑

σ

δσ
π
= n f = 1

This sum rule survives to large U, and reappears as the constraint on the scattering phase shift
created by the Abrikosov Suhl resonance. In the lattice, the corresponding sum rule is the Luttinger
sum rule, which states that the Fermi surface volume counts the number of electrons, which at small
U is just the number of localized (4f, 5f or 3d) and conduction electrons. When U becomes large,
number of localized electrons is now the number of spins, so that

2
VFS

(2π)3 = ne + nspins
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This sum rule is thought to hold for the Kondo lattice Hamiltonian, independently of the origin of
the localized moments. Such a sum rule would work, for example, even if the spins in the model
were derived from nuclear spins, provided the Kondo temperature were large enough to guarantee a
paramagnetic state.

Experimentally, there is a great deal of support for the above picture. It is possible, for example,
to examine the effect of progressively increasing the concentration of Ce in the non-magnetic host
LaCu6.(16.4 ) At dilute concentrations, the resistivity rises to a maximum at low temperatures. At
dense concentrations, the resistivity shows the same high temperature behavior, but at low tempera-
tures coherence between the sites leads to a dramatic drop in the resistivity. The thermodynamics of
the dense and dilute system are essentially identical, but the transport properties display the effects
of coherence.

There are many indications that the Fermi surface of heavy electron systems has a volume which
counts both spins and conduction electrons. The most direct evidence derives from Fermi surface
studies made from accurate measurements of de Haas van Alphen oscillations [? ? ]. Typically, in
the heavy Fermi liquid, the measured de Haas van Alphen orbits are consistent with band-structure
calculations in which the f-electrons are assumed to be delocalized. By contrast, the measured
masses of the heavy electrons often exceed the band-structure calculated masses of the narrow f-
band by an order of magnitude or more. Perhaps the most remarkable discovery of recent years, is
the observation that the volume of the f-electron Fermi surface appears to “jump” to a much smaller
value when the f-electrons anti-ferro magnetically order, indicating that once the Kondo effect is
interupted by magnetism, the heavy f-electrons become localized again[? ]

Yet Doniach scenario for heavy fermion development is fundamentally a comparison of energy
scales: it does not tell us how the heavy fermion phase evolves from the antiferromagnet, nor does
it explain the nature of the heavy f-electron. Amongst the early objections to Doniach’s hypothesis
and were of particular concern:

• Size of the Kondo temperature TK . Simple estimates of the value of Jρ required for heavy
electron behavior give a value Jρ ∼ 1. Yet in the Anderson model, Jρ ∼ 1 would imply a
mixed valent situation, with no local moment formation.

• Exhaustion paradox. The naive picture of the Kondo model imagines that the local moment
is screened by conduction electrons within an energy range TK of the Fermi energy. The
number of conduction electrons in this range is of order TK/D << 1 per unit cell, where D is
the band-width of the conduction electrons, suggesting that there are not enough conduction
electrons to screen the local moments.

The resolution of these two issues are quite intriguing.

Enhancement of the Kondo temperature by spin degeneracy

The resolution of the first issue has its origins in the large spin-orbit coupling of the rare earth
or actinide ions in heavy electron systems. This protects the orbital angular momentum against
quenching by the crystal fields. Rare earth and actinide ions consequently display a large total
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angular momentum degeneracy N = 2 j + 1, which has the effect of dramatically enhancing the
Kondo temperature. Take for example the case of the Cerium ion, where the 4 f 1 electron is spin-
orbit coupled into a state with j = 5/2, giving a spin degeneracy of N = 2 j+1 = 6. Ytterbium heavy
fermion materials involve the Yb : 4 f 13 configuration, which has an angular momentum j = 7/2, or
N = 8.

To take account of these large spin degeneracies, we need to generalize the Kondo model. This
was done in the mid-sixties by Coqblin and Schrieffer[6]. Coqblin and Schrieffer considered a
degenerate version of the infinite U Anderson model in which the spin component of the electrons
runs from − j to j,

H =
∑

kσ
εkc†kσckσ + E f

∑

σ

| f 1 : σ〉〈 f 1 : σ| +
∑

k,σ
V

[
c†kσ| f 0〉〈 f 1 : σ| + H.c.

]
.

Here the conduction electron states are also labeled by spin indices that run from − j to j. This is
because the spin-orbit coupled f states couple to partial wave states of the conduction electrons in
which the orbital and spin angular momentum are combined into a state of definite j. Suppose |%kσ〉
represents a plane wave of momentum %k, then one can construct a state of definite orbital angular
momentum l by integrating the plane wave with a spherical harmonic, as follows:

|klmσ〉 =
∫

dΩ
4π
|%kσ〉Y∗lm(k̂)

When spin orbit interactions are strong, one must work with a partial wave of definite j, obtained by
combining these states in the following linear combinations. Thus for the case j = l + 1/2 (relevant
for Ytterbium ions), we have

|km〉 =
∑

σ=±1

√
l + σm + 1

2
2l + 1

|klm −
σ

2
,
σ

2
〉.

An electron creation operator is constructed in a similar way. This construction is unfortunately, not
simultaneously possible at more than one site.

When E f << 0, the valence of the ion approaches unity and n f → 1. In this limit, one can
integrate out the virtual fluctuations f 1

" f 0 + e− via a Schrieffer Wolff transformation. This leads
to the Coqblin Schrieffer model

HCS =
∑

kσ
εkc†kσckσ + J

∑

k,k′,αβ
c†kβck′αΓαβ, (σ, α, β ∈ [− j, j]).

where J = V2/|E f | is the induced antiferromagnetic interaction strength. This interaction is under-
stood as the result of virtual charge fluctuations into the f 0 state, f 1

" f 0 + e−. The spin indices
run from − j to j, and we have introduced the notation

Γαβ ≡ f †α fβ = | f 1 : α〉〈 f 1 : β|

Notice that the charge Q = n f of the f−electron, normally taken to be unity, is conserved by the
spin-exchange interaction in this Hamiltonian.
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To get an idea of how the Kondo effect is modified by the larger degeneracy, consider the renor-
malization of the interaction, which is given by the diagram

Je f f (D′) =
J

+

J
N

J

= J + NJ2ρ ln
( D
D′

)
(16.7)

( where the cross on the intermediate conduction electron state indicates that all states with energy
|εk| ∈ [D′,D] are integrate over). From this result, we see that β(g) = ∂g(D)/∂ lnD = −Ng2, where
g = Jρ has an N− fold enhancement, derived from the N intermediate hole states. A more extensive
calculation shows that the beta function to third order takes the form

β(g) = −Ng2 + Ng3. (16.8)

This then leads to the Kondo temperature

TK = D(NJρ)
1
N exp

[
−

1
NJρ

]

so that large degeneracy enhances the Kondo temperature in the exponential factor. By contrast, the
RKKY interaction strength is given by TRKKY ∼ J2ρ, and it does not involve any N fold enhance-
ment factors, thus in systems with large spin degeneracy, the enhancement of the Kondo temperature
favors the formation of the heavy fermion ground-state.

In practice, rare-earth ions are exposed to the crystal fields of their host, which splits the N =
2 j + 1 fold degeneracy into many multiplets. Even in this case, the large degeneracy is helpful,
because the crystal field splitting is small compared with the band-width. At energies D′ large
compared with the crystal field splitting Tx, D′ >> Tx, the physics is that of an N fold degenerate
ion, whereas at energies D′ small compared with the crystal field splitting, the physics is typically
that of a Kramers doublet, i.e.

N−2

2

XT

∂g
∂ lnD

=

{
−Ng2 (D >> Tx)
−2g2 (D << Tx)

(16.9)

from which we see that at low energy scales, the leading order renormalization of g is given by

1
g(D′)

=
1
go
− N ln

(
D
Tx

)
− 2 ln

(Tx
D′

)
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where the first logarithm describes the high energy screening with spin degeneracy N, and the
second logarithm describes the low-energy screening, with spin degeneracy 2. This expression is
∼ 0 when D′ ∼ T ∗K , the Kondo temperature, so that

0 =
1
go
− N ln

(
D
Tx

)
− 2 ln

(
Tx
T ∗K

)

from which we deduce that the renormalized Kondo temperature has the form[7]

T ∗K = D exp
(
−

1
2Joρ

) (
D
Tx

) N
2 −1
.

Here the first term is the expression for the Kondo temperature of a spin 1/2 Kondo model. The
second term captures the enhancement of the Kondo temperature coming from the renormalization
effects at scales larger than the crystal field splitting. Suppose Tx ∼ 100K, and D ∼ 1000K, and
N = 6, then the enhancement factor is order 100. This effect enhances the Kondo temperature
of rare earth heavy fermion systems to values that are indeed, up to a hundred times bigger than
those in transition metal systems. This is the simple reason why heavy fermion behavior is rare in
transition metal systems. [? ] In short- spin-orbit coupling, even in the presence of crystal fields,
substantially enhances the Kondo temperature.

The exhaustion problem

At temperatures T <
˜
TK , a local moment is “screened” by conduction electrons. What does this

actually mean? The conventional view of the Kondo effect interprets it in terms of the formation of
a “magnetic screening cloud” around the local moment. According to the screening cloud picture,
the electrons which magnetically screen each local moment are confined within an energy range
of order δε ∼ TK around the Fermi surface, giving rise to a spatially extended screening cloud of
dimension l = vF/TK ∼ a εFTK , where a is a lattice constant and εF is the Fermi temperature. In a
typical heavy fermion system, this length would extend over hundreds of lattice constants. This
leads to the following two dilemmas

1. It suggests that when the density of magnetic ions is greater than ρ ∼ 1/l3, the screening
clouds will interfere. Experimentally no such interference is observed, and features of single
ion Kondo behavior are seen at much higher densities.

2. “ The exhaustion paradox” The number of “screening”electrons per unit cell within energy
TK of the Fermi surface roughly TK/W, where W is the bandwidth, so there would never be
enough low energy electrons to screen a dense array of local moments.

In this lecture I shall argue that the screening cloud picture of the Kondo effect is conceptually
incorrect. Although the Kondo effect does involve a binding of local moments to electrons, the
binding process takes place between the local moment and high energy electrons , spanning decades
of energy from the Kondo temperature up to the band-width. (Fig. 16.5) I shall argue that the
key physics of the Kondo effect, both in the dilute impurity and dense Kondo lattice, involves
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Figure 16.5: Contrasting (a) the “screening cloud” picture of the Kondo effect with (b) the composite
fermion picture. In (a), low energy electrons form the Kondo singlet, leading to the exhaustion prob-
lem. In (b) the composite heavy electron is a highly localized bound-state between local moments
and high energy electrons which injects new electronic states into the conduction sea at the chemical
potential. Hybridization of these states with conduction electrons produces a singlet ground-state,
forming a Kondo resonance in the single impurity, and a coherent heavy electron band in the Kondo
lattice.

the formation of a composite heavy fermion formed by binding electrons on logarithmically large
energy scales out to the band-width. These new electronic states are injected into the conduction
electron sea near the Fermi energy. For a single impurity, this leads to a single isolated resonance.
In the lattice, the presence of a new multiplet of fermionic states at each site leads to the formation
of a coherent heavy electron band with an expanded Fermi surface. ( 16.5)

16.1.1 Large N Approach

We shall now solve the Kondo model, both the single impurity and the lattice, in the large N limit.
In the early eighties, Anderson[? ] pointed out that the large spin degeneracy N = 2 j+1 furnishes a
small parameter 1/N which might be used to develop a controlled expansion about the limit N → ∞.
Anderson’s observation immediately provided a new tool for examining the heavy fermion problem:
the so called “large N expansion”. [8].

The basic idea behind the large N expansion, is to take a limit where every term in the Hamil-
tonian grows extensively with N. In this limit, quantum fluctuations in intensive variables, such as
the electron density, become smaller and smaller, scaling as 1/N, and in this sense,

1
N
∼ !e f f

behaves as an effective Planck’s constant for the theory. In this sense, a large N expansion is a
semi-classical treatment of the quantum mechanics, but instead of expanding around ! = 0, one can
obtain new, non trivial results by expanding around the non trivial solvable limit 1

N = 0. For the
Kondo model, we are lucky, because the important physics of the Kondo effect is already captured
by the large N limit as we shall now see.

Our model for a Kondo lattice or an ensemble of Kondo impurities localized at sites j is

H =
∑

%kσ

ε%kc
†
%kσc%kσ +

∑

j
HI( j) (16.10)
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where
HI( j) =

J
N
Γαβ( j)ψ†β( j)ψα( j)

is the interaction Hamiltonian between the local moment and conduction sea. Here, the spin of the
local moment at site j is represented using pseudo-fermions

Γαβ( j) = f † jα f jβ,

and
ψ†α( j) =

∑

%k

c†%kαe
−i%k·%Rj

creates an electron localized at site j.
There are a number of technical points about this model that need to be discussed:

• The spherical cow approximation. For simplicity, we assume that electrons have a spin
degeneracy N = 2 j + 1. This is a theorists’ idealization- a “spherical cow approximation”
which can only be strictly justified for a single impurity. Nevertheless, the basic properties of
this toy model allow us to understand how the Kondo effect works in a Kondo lattice. With an
N-fold conduction electron degeneracy, it is clear that the Kinetic energy will grow as O(N).

• Scaling the interaction. Now the interaction part of the Hamiltonian HI( j) involves two
sums over the spin variables, giving rise to a contribution that scales as O(N2). To ensure that
the interaction energy grows extensively with N, we need to scale the coupling constant as
O(1/N).

• Constraint n f = Q. Irreducible representations of the rotation group SU (N) require that
the number of f−electrons at a given site is constrained to equal to n f = Q. In the large N
limit, it is sufficient to apply this constraint on the average 〈n f 〉 = Q, though at finite N a
time dependent Lagrange multiplier coupled to the difference n f − Q is required to enforce
the constraint dynamically. With Q f−electrons, the spin operators Γab = f †a fb provide
an irreducible antisymmetric representation of SU(N) that is described by column Young
Tableau with Q boxes. As N is made large, we need to ensure that q = Q/N remains fixed, so
that Q ∼ O(N) is an extensive variable. Thus, for instance, if we are interested in N = 2, this
corresponds to q = n f /N = 1

2 . We may obtain insight into this case by considering the large
N limit with q = 1/2.

The next step in the large N limit is to carry out a “Hubbard Stratonovich” transformation on
the interaction. We first write

HI( j) = −
J
N

(
ψ† jβ f jβ

) (
f † jαψ jα

)
,

with a summation convention on the spin indices. We now factorize this[9, 10] as

HI( j)→ HI[V, j] = V̄ j
(
ψ† jα f jα

)
+

(
f † jαψ jα

)
Vj + N

V̄ jV j

J
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This is an exact transformation, provided the hybridization variables Vj(τ) are regarded as fluctuat-
ing variables inside a path integral, so formally,

Z =
∫
D[V, λ]

Z[λ,V]︷!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!︷

Tr[T exp
[
−

∫ β

0
H[V, λ]

]
] (16.11)

where

H[V, λ] =
∑

%kσ

ε%kc
†
%kσc%kσ +

∑

j

(
HI[Vj, j] + λ j[n f ( j) − Q]

)
, (16.12)

is exact. In this expression, D[V, λ] denotes a path integral over all possible time-dependences of
Vj and λ j(τ), and T denotes time ordering. The important point for our discussion here however, is
that in the large N limit, the Hamiltonian entering into this path integral grows extensively with N,
so that we may write the partition function in the form

Z =

∫
D[V, λ]Tr[T exp

[
−N

∫ β

0
H[V, λ]

]
(16.13)

whereH[V, λ] = 1
NH[V, λ] ∼ O(1) is an intensive variable in N. The appearance of a large factor N

in the exponential means that this path integral becomes dominated by its saddle points in the large
N limit- i.e, if we choose

Vj = Vo, λ j = λo

where the saddle point values Vo and λo are chosen so that

∂ lnZ[V, λ]
∂V

∣∣∣∣∣Vj=Vo,λ j=λo
=
∂ lnZ[V, λ]
∂λ

∣∣∣∣∣Vj=Vo,λ j=λo
= 0

then in the large N limit,
Z = Tre−βH[Vo,λo]

In this way, we have converted the problem to a mean-field theory, in which the fluctuating variables
Vj(τ) and λ j(τ) are replaced by their saddle-point values. Our mean-field Hamiltonian is then

HMFT =
∑

%kσ

ε%kc
†
%kσc%kσ +

∑

j,α

(
f † jαψ jαVo + V̄oψ† jβ f jβ + λo f † jα f jα

)
+ Nn

(
V̄oVo
J
− λoq

)
,

where n is the number of sites in the lattice. We shall now illustrate the use of this mean-field theory
in two cases- the Kondo impurity, and the Kondo lattice. In the former, there is just one site; in the
latter, translational invariance permits us to set Vj = Vo at every site, and for convenience we shall
choose this value to be real.
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16.1.2 Mean-field theory of the Kondo impurity

Diagonalization of MF Hamiltonian

The Kondo effect is at heart, the formation of a many body resonance. To understand this phe-
nomenon at its conceptually simplest, we begin with the impurity model. We shall begin by writing
down the mean-field Hamiltonian for a single Kondo ion

H =
∑

kσ
εkc†kσckσ +

∑

kσ
V[c†kσ fσ + f †σckσ] + λ

∑

σ

n fσ − λQ +
NV2

J
(16.14)

By making a mean-field approximation, we have reduced the problem to one of a self-consistently
determined resonant level model. Now, suppose we diagonalize this Hamiltonian, writing it in the
form

H =
∑

γσ

Eγa†γσaγσ +
NV2

J
− λQ (16.15)

where the “quasiparticle operators” αγ are related via a unitary transformation to the original oper-
ators

a†γσ =
∑

k
αkc†kσ + β f †σ. (16.16)

commuting a†γσ with H, we obtain
[H, a†γσ] = Eγa† (16.17)

Expanding the right and left-hand side of (16.17) in terms of (16.16) and (16.14), we obtain,

(Eγ − εk)αk − Vβ = 0
−V

∑

k
αk + (Eγ − λ)β = 0 (16.18)

Solving for αk using the first equation, and substituting into the second equation, we obtain

Eγ − λ −
∑

k

V2

Eγ − εk
= 0 (16.19)

We could have equally well obtained these eigenvalue equations by noting the electron eigenvalues
Eγ must correspond to the poles of the f-Green function, Gf (Eγ)−1 = 0, where from an earlier
subsection,

G−1
f (ω) =


ω − λ −

∑

k

V2

ω − εk


 (16.20)

Either way, the one-particle excitation energies Eγ must satisfy

Eγ = λ +
∑

k

V2
o

Eγ − εk
(16.21)
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Figure 16.6: (a) Graphical solution of the equation y = −
∑
k

V2

y−εk , for eight equally spaced conduc-
tion electron energies. Notice how the introduction of a new bound-state at y = 0 displaces electron
band-states both up and down in energy. In this way, the Kondo effect injects new bound-state
fermion states into the conduction sea. (b) Energy dependence of the scattering phase shift.

The solutions of this eigenvalue equation are illustrated graphically in Fig. (16.6). Suppose the
energies of the conduction sea are given by the 2M discrete values

εk = (k +
1
2

)∆ε, k ∈ {−M, . . . ,M − 1}

Suppose we restrict our attention to the particle-hole case when the f-state is exactly half filled,
i.e. when Q = N/2. In this situation, λ = 0. We see that one solution to the eigenvalue equation
corresponds to Eγ = 0. The original band-electron energies are now displaced to both lower and
higher energies, forming a band of 2M + 1 eigenvalues. Clearly, the effect of the hybridization is
to inject one new fermionic eigenstate into the band. Notice however, that the electron states are
displaced symmetrically either-side of the new bound-state at Eγ = 0.

Each new eigenvalue is shifted relative to the original conduction electron energy by an amount
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of order ∆ε. Let us write
Eγ = εγ − ∆ε

δγ

π

where δ ∈ [0, π] is called the “phase shift”. Substituting this into the eigenvalue equation, we obtain

Eγ = λ +
γ+M∑

n=γ+1−M

Vo2

∆ε(n − δπ )

Now if M is large, we can replace the sum over states in the above equation by an unbounded sum

Eγ = λ +
V2
o
∆ε

∞∑

n=−∞

1
(n − δπ )

Using contour integration methods, one can readily show that

∞∑

n=−∞

1
(n − δπ )

= −π cot δ

so that the phase shift is given by δγ = δ(Eγ), where

tan δ[ε] =
πρV2

o
λ − ε

where we have replaced ρ = 1
∆ε as the density of conduction electron states. This can also be written

δ(ε) = tan−1
[
∆

λ − ε

]
= Im ln[λ + i∆ − ε] (16.22)

where ∆ = πρV2
o is the width of the resonant level induced by the Kondo effect. Notice that for

λ = 0, δ = π/2 at the Fermi energy.

• The phase shift varies from δ = 0 at Eγ = −∞ to δ = π at Eγ = ∞ , passing through δ = π/2
at the Fermi energy.

• An extra state has been inserted into the band, squeezing the original electron states both
down and up in energy to accommodate the additional state: states beneath the Fermi sea are
pushed downwards, whereas states above the Fermi energy are pushed upwards. From the
relation

Eγ = εγ −
∆ε

π
δ(Eγ)

we deduce that

dε
dE

= 1 +
∆ε

π

dδ(E)
dE

= 1 +
1
πρ

dδ(E)
dE

(16.23)

589

Chapter 16. c©Piers Coleman 2011

where ρ = 1/∆ε is the density of states in the continuum. The new density of states ρ∗(E)is
given by ρ∗(E)dE = ρdε, so that

ρ∗(E) = ρ(0)
dε
dE
= ρ + ρi(E) (16.24)

where
ρi(E) =

1
π

dδ(E)
dE

=
1
π

∆2

(E − λ)2 + ∆2 (16.25)

corresponds to the enhancement of the conduction electron density of states due to injection
of resonant bound-state.

Minimization of Free energy

With these results, let us now calculate the Free energy and minimize it to self-consistently evaluate
λ and ∆. The Free energy is given by

F = −NT
∑

γ

ln[1 + e−βEγ] − λQ +
NV2

o
J
. (16.26)

In the continuum limit, where ε → 0, we can use the relation Eγ = εγ − ∆ε δπ to write

−T ln[1 + e−βEγ] = −T ln[1 + e−β(εγ−∆ε
δ
π )]

=

→F0︷!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!︷
−T ln[1 + e−βεγ]−

∆ε

π
δ(εγ) f (εγ) (16.27)

where f (x) = 1/(eβx+1) is the Fermi function. The first term in (16.27) is the Free energy associated
with a state in the continuum. The second term results from the displacement of continuum states
due to the injection of a resonance into the continuum. Inserting this result into (16.26), we obtain

F = F0 − N
∑

γ

∆ε

π
δ(εγ) f (εγ) − λQ +

NV2
o

J

= F0 − N
∫ ∞

−∞

dε
π
f (ε)δ(ε) − λQ +

NV2
o

J
(16.28)

The shift in the Free energy due to the Kondo effect is then

∆F = −N
∫ ∞

−∞

dε
π
f (ε)Im ln[ζ − ε] − λQ +

N∆
πJρ

(16.29)

where we have introduced ζ = λ + i∆. This integral can be done at finite temperature, but for
simplicity, let us carry it out at T = 0, when the Fermi function is just at step function, f (x) = θ(−x).
This gives

∆E =
N
π

Im
[
(ζ − ε) ln

[ζ − ε
e

]]0

−D
− λQ +

N∆
πJρ
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=
N
π

Im
[
ζ ln

[ ζ
eD

]
− D ln

[D
e

]]
− λQ +

N∆
πJρ

(16.30)

where we have expanded (ζ + D) ln
[D+ζ

e

]
→ D ln

[
D
e

]
+ ζ lnD to obtain the second line. We can

further simplify this expression by noting that

−λQ +
N∆
πJρ
= −

N
π

Im
[
ζ ln

[
e−

1
ρJ+iπq

]]
(16.31)

where q = Q/N. With this simplification, the shift in the ground-state energy due to the Kondo
effect is

∆E =
N
π

Im
[
ζ ln

[
ζ

eTKeiπq

]]
(16.32)

where we have dropped the constant term and introduced the Kondo temperature TK = De−
1
Jρ . The

stationary point ∂E/∂ζ = 0 is given by

ζ = λ + i∆ = TKeiπq
{

TK =
√
λ2 + ∆2

tan(πq) = ∆
λ

Notice that

• The phase shift δ = πq is the same in each spin scattering channel, reflecting the singlet nature
of the ground state. The relationship between the filling of the resonance and the phase shift
Q =

∑
σ
δσ
π = N

δ
π is nothing more than Friedel’s sum rule.

• The energy is stationary with respect to small variations in λ and ∆. It is only a local minimum
once the condition ∂E/∂λ, corresponding to the constraint 〈n̂ f 〉 = Q, or λ = ∆ cot(πq) is
imposed. It is instructive to study the energy for the special case q = 1

2 , λ = 0 which is
physically closest to the S = 1/2, N = 2 case. In this case, the energy takes the simplified
form

∆E =
N
π

[
∆ ln

[
∆

eTK

]]
(16.33)

Plotted as a function of V , this is the classic “Mexican Hat” potential, with a minimum where
∂E/∂V = 0 at ∆ = πρ|V |2 = TK . (Fig. 16.7)

• According to (16.24), the enhancement of the density of states at the Fermi energy is

ρ∗(0) = ρ +
∆

π(∆2 + λ2)

= ρ +
sin2(πq)
πTK

(16.34)

per spin channel. When the temperature is changed or a magnetic field introduced, one can
neglect changes in ∆ and λ, since the Free energy is stationary. This implies that in the large
N limit, the susceptibility and linear specific heat are those of a non-interacting resonance of
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width ∆. The change in linear specific heat ∆CV = ∆γT and the change in the paramagnetic
susceptibility ∆χ are given by

∆γ =



Nπ2k2

B
3


 ρi(0) =



Nπ2k2

B
3




sin2(πq)
πTK

∆χ =

[
N
j( j + 1)(gµB)2

3

]
ρi(0) =

[
N
j( j + 1)(gµB)2

3

]
sin2(πq)
πTK

(16.35)

Notice how it is the Kondo temperature that determines the size of these two quantities. The
dimensionless “Wilson” ratio of these two quantities is

W =
[

(πkB)2

(gµB)2 j( j + 1)

]
∆χ

∆γ
= 1

At finite N, fluctuations in the mean-field theory can no longer be ignored. These fluctuations
induce interactions amongst the quasiparticles, and the Wilson ratio becomes

W =
1

1 − 1
N
.

The dimensionless Wilson ratio of a large variety of heavy electron materials lies remarkably
close to this value.

16.1.3 Gauge invariance and the composite nature of the f−electron

We now discuss the nature of the f−electron. In particular, we shall discuss how

• the f−electron is actually a composite object, formed from the binding of high-energy con-
duction electrons to the local moment.

• although the broken symmetry associated with the large N mean-field theory does not persist
to finite N, the phase stiffness associated with the mean-field theory continues to finite N.
This phase stiffness is responsible for the charge of the composite f electron.

Composite nature of the heavy f−electron

Let us begin by discussing the composite structure of the f−electron. In real materials, the Kondo
effect we have described involves spins formed from localized f- or d-electrons. Though it is tempt-
ing to associate the composite f−electron in the Kondo effect with the the f−electron locked inside
the local moment, we should also bear in mind that the Kondo effect could have occurred equally
well with a nuclear spin! Nuclear spins do couple antiferromagnetically with a conduction electron,
but the coupling is far too small for an observable nuclear Kondo effect. Nevertheless, we could
conduct a thought experiment where a nuclear spin is coupled to conduction electrons via a strong
antiferromagnetic coupling. In this case, a resonant bound-state would also form from the nuclear
spin. The composite bound-state formed in the Kondo effect clearly does not depend on the origin
of the spin partaking in the Kondo effect.
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There are some useful analogies between the formation of the composite f−electron in the
Kondo problem and the formation of Cooper pairs in superconductivity, which we shall try to draw
upon. One of the best examples of a composite bound-state is the Cooper pair. Inside a super-
conductor, pairs of electrons behave as composite bosonic particles. One of the signatures of pair
formation, is the fact that Cooper pairs of electron operators behave as a single composite at low
energies,

ψ↑(x)ψ↓(x′) ≡ F(x − x′)
The Cooper pair operator is a boson, and it behaves as a c-number because the Cooper pairs con-
dense. The Cooper pair wavefunction is extremely extended in space, extending out to distances of
order ξ ∼ vF/Tc. A similar phenomenon takes place in the Kondo effect, but here the bound-state is a
fermion and it does not condense For the Kondo effect the fermionic composite (%σ ·%S (x))αβψβ(x) be-
haves as a single charged electron operator. The analogy between superconductivity and the Kondo
effect involves the temporal correlation between spin-flips of the conduction sea and spin-flips of
the local moment, so that at low energies

[%σαβ · %S (t)]ψβ(t′) ∼ ∆(t − t′) fα(t′).

The function ∆(t − t′) is the analog of the Cooper pair wavefunction, and it extends out to times
τK ∼ !/TK .

To see this in a more detailed fashion, consider how the interaction term behaves. In the path
integral we factorize the interaction as follows

HI =
J
N
ψ†βΓαβψα −→ V̄

(
ψ†α fα

)
+

(
f †αψα

)
V + N

V̄V
J

By comparing these two terms, we see that the composite operator Γαβ( j)ψα( j) behaves as a single
fermi field:

1
N
Γαβ(t)ψα(t) −→

(
V̄
J

)
fα(t)

Evidently, a localized conduction electron is bound to a spin-flip of the local moment at the same
site, creating a new independent fermionic excitation. The correlated action of adding a con-
duction electron with a simultaneous spin flip of the local moment at the same site creates a
composite f−electron.

It is worth noting that this fermionic object only hybridizes with conduction electrons at a single
point: it is thus local in space.

Let us now try to decompose the composite fermion in terms of the electrons that contribute to
the bound-state amplitude. We start by writing the local moment in the fermionic representation, 3

1
N
Γαβψα = −

1
N
f †βψα fα −→ −

1
N
〈 f †βψβ〉 fβ

3Important and subtle point: The emergence of a composite fermion does not depend on a fermionic representation
of the spin. The fermionic representation for the spin is simply the most convenient because it naturally furnishes us with
an operator in the theory that represents the composite bound-state.
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where we have replaced the bilinear product between the conduction and f−electron by its expec-
tation value. We can evaluate this “bound-state amplitude” from the corresponding Green-function

−
V
J
=

1
N
〈 f †βψβ〉 =

∫
dω
π
f (ω)ImGψ f (ω − iδ)

= Vo
∫

f (ω)
dω
π

Im



∑

k

1
ω − εk − iδ

1
ω − i∆


 (16.36)

where we have chosen the half-filled case Q/N = 1/2, λ = 0. In the large band-width limit, the main
contribution to this integral is obtained by neglecting the principal part of the conduction electron
propagator 1/(ω − εk − iδ)→ iπδ(ω − εk), so that

1
N
〈 f †βψβ〉 =

∑

k
f (εk)



εk

ε2k + ∆
2


 (16.37)

From this expression, we can see that the contribution of a given k state in the Fermi sea to the
bound-state amplitude is given by

1
N
〈 f †βckβ〉 = f (εk)



εk

ε2k + ∆
2




This function decays with the inverse of the energy, right out to the band-width. Indeed, if we break-
down the contribution to the overall bound-state amplitude, we see that each decade of energy counts
equally. Let us take T = 0 and divide the band on a logarithmic scale into n equal parts, where the
ratio of the lower and upper energies is s > 1, then

Vo
J
= ρVo

∫ 0

−D
dε

−ε
ε2 + ∆2 ∼ ρVo

∫ D

∆

dε
1
ε

= ρVo




∫ D

D/s
+

∫ D/s

D/s2
+ . . .

∫ D/sn−1

D/sn
+

∫ D/sn

∆



dε
ε

= ρV0

{
ln s + ln s + . . . ln s + ln

Ds−n

∆

}
(16.38)

This demonstrates that the composite bound-state involves electrons on spread out over decades of
energy out to the band-width. If we complete the integral, we find that

Vo
J
= ρVo ln

D
∆
⇒ ∆ = De−

1
Jρ = TK

as expected from the minimization of the energy. Another way of presenting this discussion, is to
write the composite bound-state in the time-domain, as

1
N
Γαβ(t′)ψα(t) −→ ∆(t − t′) fα(t′) (16.39)

where now
∆(t − t′) =

1
N
〈 fβ†(t)ψβ(t′)〉
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This is the direct analog of Cooper pair bound-state wavefunction, except that the relevant variable
is time, rather than space. If one evaluates the function ∆(t) at a finite t, we find that

∆(t − t′) =
∑

k
f (εk)



εk

ε2k + ∆
2


 e
−iεk(t−t′)

Heuristically, the finite time cuts off the energy integral over the Fermi surface at an energy of order
!/t, so that

∆(t) ∼


ρVo ln

(
Dt
!

)
(t << !/TK)

ρVo ln
(
D
TK

)
(t >> !/TK)

emphasizing the fact that the Kondo effect involves a correlation between the spin-flips of the con-
duction sea and the local moment over decades of time scales from the the inverse band-width up to
the Kondo time !/TK .

From these discussions, we see that the Kondo effect is

• entirely localized in space.

• extremely non-local in time and energy.

This picture of the Kondo effect as a temporal, rather than a spatial bound-state is vital if we are to
understand the extension of the Kondo effect from the single impurity to the lattice.

Gauge invariance and the charge of the f−electron

One of the interesting points to emerge from the mean-field theory is that the energy of mean-field
theory does not depend on the phase of the bound-state amplitude V = |V |eiθ. This is analogous
to the gauge invariance in superconductivity, which derives from the conservation of the total elec-
tronic charge. Here, gauge invariance arises because there are no charge fluctuations at the site of
the local moment, a fact encoded by the conservation of the total f-charge Q. Let us look at the full
Lagrangian for the f−electron and interaction term

LI = fσ†(i∂t − λ) fσ − HI

HI = V̄
(
ψ†α fα

)
+

(
f †αψα

)
V + N

V̄V
J

(16.40)

This is invariant under the “Read-Newns”[10] transformation

f → f eiφ,
V → Veiφ, (θ → θ + φ),
λ → λ +

∂φ

∂t
. (16.41)

where the last relation arises from a consideration of the gauge invariance of the dynamic part
f †(i∂t − λ) f of the Lagrangian. Now if V(t) = |V(t)|eθ(t), where r(t) is real, Read and Newns
observed that by making the gauge choice φ(t) = −θ(t), the resulting V = |V |ei(θ+φ) = |V | is real.
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In this way, once the Kondo effect takes place the phase of V = |V |eiθ is dynamically absorbed into
the constraint field λ : effectively λ ≡ ∂tφ represents the phase precession rate of the hybridization
field. The absorption of the phase of an order parameter into a dynamical gauge field is called
the “Anderson Higg’s” mechanism.[? ] By this mechanism, once the Kondo effect takes place, V
behaves as a real, and hence neutral object under gauge transformations, this in turn implies that the
composite f−electron has to transform under real electromagnetic gauge transformations, in other
words the Anderson Higgs effect in the Kondo problem endows the composite f−electron with
charge.

E

V=V  e0
ιφ

φ

Figure 16.7: “Mexican Hat Potential” which determines minimum of Free energy, and self-
consistently determines the width of the Kondo resonance. The Free energy displays this form
provided the constraint ∂F/∂λ = 〈n f 〉 − Q = 0 is imposed.

There is a paradox here, for in the Kondo effect, there can actually be no true broken sym-
metry, since we are dealing with a system where the number of local degrees of freedom is finite.
Nevertheless, the phase φ does develop a stiffness- a stiffness against variation in time, and the order
parameter consequently develops infinite range correlations in time. There is a direct analogy be-
tween the spatial phase stiffness of a superconductor and the temporal phase stiffness in the Kondo
effect. In superconductivity, the energy depends on spatial derivatives of the phase

E ∝
ρs
2

(∇φ − 2e%A)2 ⇒
1
λL

2
∝ ρs

( where we have set ! = 1.) Gauge invariance links this stiffness to the mass of the photon field,
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Table 16.1: Parallels between Superconductivity and the Kondo effect .

Superconductivity Kondo effect

Bound State ψ↑(x)ψ↓(x′) = F(x − x′)
(
%σαβ · %S (t′)

)
ψβ(t) = ∆(t − t′) fα(t′)

Bosonic Fermionic

Characteristic energy Tc = ωDe−1/gρ TK = D
√
Jρe−1/Jρ

Energy range contributing E ∈ [Tc, ωD] E ∈ [TK ,D]
to bound state

Extended in space time
ξ ∼ vF/Tc τ ∼ !/TK

Conserved Quantity Total electron charge Charge of local moment

Long Range Order LRO d > 2 Powerlaw in time
Powerlaw in space d ≤ 2

Phase stiffness ρs ρφ

Consequences of Meissner effect Formation of charged
Phase stiffness heavy electron
(Anderson- Higgs) 2 ∆VF(2π)3 = ne + nspins

Quantity related 1
λ2
L
∝ ρs 1

U∗ = ρφ

to phase stiffness
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which generates the Meissner effect; the inverse squared penetration depth is directly proportional
to the phase stiffness. In an analogous fashion, in the Kondo effect, the energy depends on temporal
derivatives of the phase and the phase stiffness is 4

E ∝
ρφ

2
(∂tφ)2

For a Kondo lattice, there is one independent Kondo phase for each spin site, and the indepen-
dent conservation of Q at each site guarantees that there is no spatial phase stiffness associated with
φ. The temporal phase stiffness leads to a slow logarithmic growth in the phase -phase correlation
functions, which in turn leads to power-law temporal correlations in the order parameter V(τ):

〈δφ(τ)δφ(τ′)〉 ∼
1
N

ln(τ − τ′), 〈V̄(τ)V(τ′)〉 ∼ e−〈δφ(τ)δφ(τ
′)〉 ∼ (τ − τ′)−

1
N .

In this respect, the Kondo ground-state resembles a two dimensional superconductor, or a one di-
mensional metal: it is critical but has no true long-range order. As in the superconductor, the
development of phase stiffness involves real physics. When we make a gauge transformation of the
electromagnetic field,

eΦ(x, t) → eΦ(x, t) + ∂tα(x, t),
e%A(x, t) → e%A(x, t) + ∇α,
ψ(x) → ψ(x)e−iα(x,t) (16.42)

Because of the Anderson - Higg’s effect, the hybridization is real and the only way to keep LI
invariant under the above transformation, is by gauge transforming the f−electron and the constraint
field

fσ( j) → fσ( j)e−iα(x j,t)

λ → λ + ∂tα (16.43)

( Notice how λ transforms in exactly the same way as the potential eΦ.)

The non-trivial transformation of the f−electron under electromagnetic gauge transformations
confirm that it has acquired a charge. Rigidity of the Kondo phase is thus intimately related to the
formation of a composite charged fermion. The gauge invariant form for the energy dependence of
the Kondo effect on the Kondo phase φ must then be

E ∝
ρφ

2
(∂tφ − eΦ)2

From the coefficient of Φ2, we see that the Kondo cloud has an intrinsic capacitance C = e2ρφ
(E ∼ CΦ2/2). But since the energy can also be written (en f )2/2C ∼ U∗n2

f /2 we see that the
stiffness of the Kondo phase can also be associated with an interaction between the f−electrons of
strength U∗, where

1
U∗
= C/e2 = ρφ

4Note that because λ ∼ ∂tφ, the phase stiffness is given by ρφ = ∂2F/∂λ2
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16.1.4 Mean-field theory of the Kondo Lattice

Diagonalization of the Hamiltonian

We can now make the bold jump from the single impurity problem, to the lattice. Most of the
methods described in the last subsection generalize very naturally from the impurity to the lattice:
the main difficulty is to understand the underlying physics. The mean-field Hamiltonian for the
lattice[11? ] takes the form

HMFT =
∑

%kσ

ε%kc
†
%kσc%kσ +

∑

j,α

(
f † jαψ jαVo + V̄oψ† jβ f jβ + λo f † jα f jα

)
+ Nn

(
V̄oVo
J
− λoq

)
,

where n is the number of sites in the lattice. Notice, before we begin, that the composite f-state
at each site of the lattice is entirely local, in that hybridization occurs at one site only. Were the
composite f-state to be in any way non-local, we would expect that the hybridization of one f-
state would involve conduction electrons at different sites. We begin by rewriting the mean field
Hamiltonian in momentum space, as follows

HMFT =
∑

%kσ

(
c†%kσ, f

†
%kσ

) ( ε%k Vo
Vo λo

) (
c%kσ
f%kσ

)
+ Nn

(
V̄oVo
J
− λoq

)

where
f †%kσ =

1
√
n

∑

j
f † jσei

%k·%Rj

is the Fourier transform of the f−electron field. The absence of k− dependence in the hybridization
is evident that each composite f−electron is spatially local. This Hamiltonian can be diagonalized
in the form

HMFT =
∑

%kσ

(
a†%kσ, b

†
%kσ

) (E%k+ 0
0 E%k−

) (
a%kσ
b%kσ

)
+ Nn

(
V̄oVo
J
− λoq

)

where a†%kσ and b†%kσ are linear combinations of c†%kσ and f †%kσ, playing the role of “quasiparticle op-
erators” of the theory and the momentum state eigenvalues E %k± of this Hamiltonian are determined
by the condition

Det
[
E %k±1 −

(
ε%k Vo
Vo λo

)]
= 0,

which gives

E%k± =
ε%k + λo

2
±




(
ε%k − λo

2

)2
+ |Vo|2




1
2

(16.44)

are the energies of the upper and lower bands. The dispersion described by these energies is shown
in Fig. 16.8 . A number of points can be made about this dispersion:

599

Chapter 16. c©Piers Coleman 2011

(a) (b)

(c)

λ
µ

E(k)

k

Light small
electron FS

Heavy fermion
"hole" Fermi surface

E

 ρ(   )E

gΔ

Figure 16.8: (a) Dispersion produced by the injection of a composite fermion into the conduction
sea. (b) Renormalized density of states, showing “hybridization gap” (∆g). (c) Transformation of
the Fermi surface from a light electron Fermi surface into a heavy “hole”-like Fermi surface.

• We see that the Kondo effect injects new fermionic states into the the original conduction
band. Hybridization between the heavy electron states and the conduction electrons builds an
upper and lower Fermi band separated by a “hybridization gap” of width ∆g = Eg(+)−Eg(−),
such that energies in the range

Eg(−) < E < λo + Eg(+)

Eg(±) = λo ±
V2

0
D∓

(16.45)

are forbidden. Here ±D± are the top and bottom of the conduction band. In the special case
where λo = 0, corresponding to half filling, a Kondo insulator is formed.

• The effective mass of the Fermi surface has the opposite sign to the original conduction sea
from which it is built, so naively, the Hall constant should change sign when coherence de-
velops.

• The Fermi surface volume expands in response to the presence of the new heavy electron
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bands. The new Fermi surface volume now counts the total number of particles. To see this
note that

Ntot = 〈
∑

kλσ
nkλσ〉 = 〈n̂ f + nc〉

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total
number of conduction electrons. This means

Ntot = N
VFS
(2π)3 = Q + nc.

This expansion of the Fermi surface is a direct manifestation of the creation of new states by
the Kondo effect. It is perhaps worth stressing that these new states would form, even if the local moments were nuclear
In other words, they are electronic states that have only depend on the rotational degrees of
freedom of the local moments.

The Free energy of this system is then

F
N
= −T

∑

%k,±

ln
[
1 + e−βE%k±

]
+ ns

(
V̄V
J
− λq

)

Let us discuss the ground-state energy, Eo- the limiting T → 0 of this expression. We can write this
in the form

Eo
Nns
=

∫ 0

−∞
ρ∗(E)E +

(
V̄V
J
− λq

)

where we have introduced the density of heavy electron states ρ∗(E) =
∑
%k,± δ(E − E

(±)
%k

). Now
the relationship between the energy of the heavy electrons (E) and the energy of the conduction
electrons (ε) is given by

E = ε +
V2

E − λ
so that the density of heavy electron states related to the conduction electron density of states ρ by

ρ∗(E) = ρ
dε
dE
= ρ

(
1 +

V2

(E − λ)2

)
(16.46)

The originally flat conduction electron density of states is now replaced by a “hybridization
gap”, flanked by two sharp peaks of width approximately πρV2 ∼ TK . With this information, we
can carry out the integral over the energies, to obtain

Eo
Nns
=
D2ρ

2
+

∫ 0

−D
dEρV̄V

E
(E − λ)2 +

(
V̄V
J
− λq

)
(16.47)

where we have assumed that the upper band is empty, and the lower band is partially filled. If we
impose the constraint ∂F∂λ = 〈n f 〉 − Q = 0 we obtain

∆

πλ
− q = 0
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so that the ground-state energy can be written

Eo
Nns
=
∆

π
ln

(
∆e
πqTK

)
(16.48)

where TK = De−
1
Jρ as before.

Let us pause for a moment to consider this energy functional qualitatively. The Free energy
surface has the form of “Mexican Hat” at low temperatures. The minimum of this functional will
then determine a familiy of saddle point values V = Voeiθ, where θ can have any value. If we
differentiate the ground-state energy with respect to V2, we obtain

0 =
1
π

ln
(
∆e2

πqTK

)

or
∆ =
πq
e2 TK

confirming that ∆ ∼ TK .

Composite Nature of the heavy quasiparticle in the Kondo lattice.

We now turn to discuss the nature of the heavy quasiparticles in the Kondo lattice. Clearly, at an
operational level, the composite f−electrons are formed in the same way as in the impurity model,
but at each site, i.e

1
N
Γαβ( j, t)ψ jα(t) −→

(
V̄
J

)
f jα(t)

This composite object admixes with conduction electrons at a single site- site j. The bound-state
amplitude in this expression can be written

−
Vo
J
=

1
N
〈 f †βψβ〉 (16.49)

To evaluate the contributions to this sum, it is useful to notice that the condition ∂E/∂V̄ = 0 can be
written

1
N
∂E
∂V̄o

= 0 =
Vo
J
+

1
N
〈 f †βψβ〉

=
Vo
J
+ Vo

∫ 0

−D
dEρ

E
(E − λ)2 (16.50)

where we have used (16.47) to evaluate the derivative. From this we see that we can write

Vo
J
= −Vo

∫ 0

−D
dEρ

(
1

E − λ
+

λ

(E − λ)2

)

= −Voρ ln
[λe
D

]
(16.51)
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It is clear that as in the impurity, the composite f−electrons in the Kondo lattice are formed from
high energy electron states all the way out to the bandwidth. In a similar fashion to the impurity,
each decade of energy between TK and D contributes equally to the overall bound-state amplitude.
The above expression only differs from the corresponding impurity expression (16.36) at low en-
ergies, showing that low energy electrons play a comparatively unimportant role in forming the
composite heavy electron. It is this feature that permits a dense array of composite fermions to
co-exist throughout the crystal lattice.

These composite f−electrons admix with the conduction electrons to produce a heavy electron
band with a density of states given by (16.46),

ρ∗(E) = ρ
dε
dE
= ρ

(
1 +

V2

(E − λ)2

)

which becomes
ρ∗(0) = ρ +

q
TK

at the Fermi energy. The mass enhancement of the heavy electrons is then

m∗

m
= 1 +

q
ρTK

∼
qD
TK

This large factor in the effective mass enhancement can be as much as 1000 in the most severely
renormalized heavy electron systems.

Consequences of mass renormalization

The effective mass enhancement of heavy electrons can be directly observed in a wide range of
experimental quantities including

• The large renormalization of the linear specific heat coefficient γ∗ ∼ m∗
m γ and Pauli suscepti-

bility χ∗ ∼ m∗
m χ.

• The quadratic temperature (“ A” ) coefficient of the resistivity. At low temperatures the re-
sistivity of a Fermi liquid has a quadratic temperature dependence, ρ ∼ ρo + AT 2, where
A ∼

(
1
TF

)2
∼

(
m∗
m

)2
∼ γ2 is related to the density of three-particle excitations. The approx-

imate constancy of the ratio A/γ2 in heavy fermion systems is known as the “Kadowaki-
Woods” relation.[12]

• The renormalization of the effective mass as measured by dHvA measurements of heavy
electron Fermi surfaces.[? ? ? ]

• The appearance of a heavy quasiparticle Drude feature in the frequency dependent optical
conductivity σ(ω). (See discussion below).
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ne 2

m
τ

T  DK~

(    )−1
τ* τ−1

*
m
m=

2m
neπ 2

1f  = 

2m
ne
∗

2πf  = 2

T  DK~Δω∼      V

"Interband"

σ(ω)

ω
Figure 16.9: Separation of the optical sum rule in a heavy fermion system into a high energy “inter-
band” component of weight f2 ∼ ne2/m and a low energy Drude peak of weight f1 ∼ ne2/m∗.

The optical conductivity of heavy fermion metals deserves special discussion. According to the
f-sum rule, the total integrated optical conductivity is determined by the plasma frequency

∫ ∞

0

dω
π
σ(ω) = f1 =

π

2

(
ne2

m

)

where n is the density of electrons. 5 In the absence of local moments, this is the total spectral
weight inside the Drude peak of the optical conductivity.

5The f-sum rule is a statement about the instantaneous, or short-time diamagnetic response of the metal. At short
times d j/dt = (ne2/m)E, so the high frequency limit of the conductivity is σ(ω) = ne2

m
1
δ−iω . But using the Kramer’s

Krönig relation

σ(ω) =
∫

dx
iπ

σ(x)
x − ω − iδ

at large frequencies,

ω(ω) =
1

δ − iω

∫
dx
π
σ(x)

so that the short-time diamagnetic response implies the f-sum rule.
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What happens to this spectral weight when the heavy electron fluid forms? Whilst we expect
this sum rule to be preserved, we also expect a new “quasiparticle” Drude peak to form in which

∫
dωσ(ω) = f2

π

2
ne2

m∗
= f1

m
m∗

In other words, we expect the total spectral weight to divide up into a tiny “heavy fermion” Drude
peak, of total weight f2, where

σ(ω) =
ne2

m∗
1

(τ∗)−1 − iω
separated off by an energy of order V ∼

√
TKD from an “inter-band” component associated with

excitations between the lower and upper Kondo bands.[13, 14] This second term carries the bulk
∼ f1 of the spectral weight. (Fig. 16.9 ).

Simple calculations, based on the Kubo formula confirm this basic expectation,[13, 14] showing
that the relationship between the original relaxation rate of the conduction sea and the heavy electron
relaxation rate τ∗ is

(τ∗)−1 =
m
m∗

(τ)−1. (16.52)

Notice that this means that the residual resistivity

ρo =
m∗

ne2τ∗
=

m
ne2τ

is unaffected by the effects of mass renormalization. This can be understood by observing that
the heavy electron Fermi velocity is also renormalized by the effective mass, v∗F =

m
m∗ , so that the

mean-free path of the heavy electron quasiparticles is unaffected by the Kondo effect.

l∗ = v∗Fτ
∗ = vFτ

This is yet one more reminder that the Kondo effect is local in space, yet non-local in time.
These basic features- the formation of a narrow Drude peak, and the presence of a hybridization

gap, have been seen in optical measurements on heavy electron systems[? 15? ]

16.1.5 Summary

In this lecture we have presented Doniach’s argument that the enhancement of the Kondo temper-
ature over and above the characteristic RKKY magnetic interaction energy between spins leads to
the formation of a heavy electron ground-state. This enhancement is thought to be generated by
the large spin degeneracies of rare earth, or actinide ions. A simple mean-field theory of the Kondo
model and Kondo lattice, which ignores the RKKY interactions, provides a unified picture of heavy
electron formation and the Kondo effect, in terms of the formation of a composite quasiparticle be-
tween high energy conduction band electrons and local moments. This basic physical effect is local
in space, but non-local in time. Certain analogies can be struck between Cooper pair formation,
and the formation of the heavy electron bound-state, in particular, the charge on the f−electron can
be seen as a direct consequence of the temporal phase stiffness of the Kondo bound-state. This
bound-state hybridizes with conduction electrons- producing a single isolated resonance in a Kondo
impurity, and an entire renormalized Fermi surface in the Kondo lattice.
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16.2 Exercises
1. (a) Using the identity n2

fσ = n fσ, show that the atomic part of the Anderson model can be written in
the form

Hatomic = (E f +
U
2

)n f +
U
2

[
(n f − 1)2 − 1

]
, (16.53)

What happens when E f + U/2 = 0?

(b) Using the completeness relation

| f 0〉〈 f 0 |+| f 2〉〈 f 2 |︷!!!︸︸!!!︷

(n f − 1)2 +

|↑〉〈↑|+|↓〉〈↓|︷!!!!!︸︸!!!!!︷
S2

S (S + 1)
= 1. (S = 1/2)

show that the interaction can also be written in the form

Hatomic = (E f +
U
2

)n f −
2U
3

S2 (16.54)

which makes it clear that the repulsive U term induces a “magnetic attraction” that favors formation of
a local moment.

(c) Derive the Hubbard Stratonovich decoupling for (16.54).

2. By expanding a plane wave state in terms of spherical harmonics:

〈r|k〉 = eik·r = 4π
∑

l,m
il jl(kr)Y∗lm(k̂)Ylm(r̂)

show that the overlap between a state |ψ〉 with wavefunction 〈%x|ψ〉 = R(r)Ylm(r̂) with a plane wave is
given by V(%k) = 〈%k|V |ψ〉 = V(k)Ylm(k̂) where

V(k) = 4πi−l
∫

drr2V(r)R(r) jl(kr) (16.55)

3. (i) Show that δ = cot−1
(
Ed
∆

)
is the scattering phase shift for scattering off a resonant level at position

Ed.
(ii) Show that the energy of states in the continuum is shifted by an amount −∆εδ(ε)/π, where ∆ε is

the separation of states in the continuum.
(iii) Show that the increase in density of states is given by ∂δ/∂E = ρd(E). (See chapter 3.)

4. Generalize the scaling equations to the anisotropic Kondo model with an anisotropic interaction

HI =
∑

|εk |,|εk′ ,a=(x,y,z)
Jac†kασaαβck′β · S

a
d (16.56)

and show that the scaling equations take the form

∂Ja
∂ lnD

= −2JbJcρ + O(J3),
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where and (a, b, c) are a cyclic permutation of (x, y, z). Show that in the special case where Jx = Jy =
J⊥, the scaling equations become

∂J⊥
∂ lnD

= −2JzJ⊥ρ + O(J3),
∂Jz
∂ lnD

= −2(Jz)2ρ + O(J3), (16.57)

so that J2
z − J2

⊥ = constant. Draw the corresponding scaling diagram.

5. Consider the symmetric Anderson model, with a symmetric band-structure at half filling. In this
model, the d0 and d2 states are degenerate and there is the possibility of a “charged Kondo effect”
when the interaction U is negative. Show that under the “particle-hole” transformation

ck↑ → ck↑, d↑ → d↑
ck↓ → −c†k↓, d↓ → −d†↓ (16.58)

the positive U model is transformed to the negative U model. Show that the spin operators of the local
moment are transformed into Nambu “isospin operators” which describe the charge and pair degrees
of freedom of the d-state. Use this transformation to argue that when U is negative, a charged Kondo
effect will occur at exactly half-filling involving quantum fluctuations between the degenerate d0 and
d2 configurations.

6. What happens to the Schrieffer-Wolff transformation in the infinite U limit? Rederive the Schrieffer-
Wolff transformation for an N-fold degenerate version of the infinite U Anderson model. This is
actually valid for Ce and Yb ions.

7. Rederive the Nozières Fermi liquid picture for an SU (N) degenerate Kondo model. Explain why this
picture is relevant for magnetic rare earth ions such as Ce3+ or Yb3+.

8. Check the Popov trick works for a magnetic moment in an external field. Derive the partition function
for a spin in a magnetic field using this method.

9. Use the Popov trick to calculate the T-matrix diagrams for the leading Kondo renormalization diagra-
matically.

10. Derive the formula (15.66) for the conductance of a single isolated resonance.

11. (a) Directly confirm the Read-Newn’s gauge transformation (16.41).
(b) Directly calculate the “phase stiffness” ρφ = − d

2F
dλ2 of the large N Kondo model and show that at

T = 0.
ρφ =

N
π

(
sin(πq)
TK

)
.

12. (a) Introduce a simple relaxation time into the conduction electron propagator, writing

G(%k, iωn)−1 = iωn + isgn(ωn)/2τ +
V2

iωn − λ
(16.59)

Show that the poles of this Greens function occur at

ω = Ek ±
i

2τ∗
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where
τ∗ =

m∗

m
τ

is the renormalized elestic scattering time.
(b) The Kubo formula for the optical conductivity of an isotropic one-band system is

σ(ν) = −
Ne2

3

∑

k
v2
k
Π(ν)
iν

where we have used the N fold spin degeneracy, and Π(ν) is the analytic extension of

Π(iνn) = T
∑

m
G(%k, iωm)

[
G(%k, iωm + iνn) −G(%k, iωm)

]

where in our case, G(%k, iωn) is the conduction electron propagator. Using (16.59), and approxi-
mating the momentum sum by an integral over energy, show that the low frequency conductivity
of the large N Kondo lattice is given by

σ(ν) =
ne2

m∗
1

(τ∗)−1 − iν
.
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