Physics 220- Fall 2017

Theory of Many Body Physics

Commutator Notes -1

11 October, 2017

A useful set of identities are listed here- they are frequently used to calculate various important variables in MBT. We denote the destruction operator for Fermions $a_j = f_j$ or for Bosons $a_j = b_j$. The number operator $n_j = a_j^{\dagger} a_j$, and $\hat{N} = \sum_j n_j$.

With $|0\rangle$ as the vacuum state we note that

$$a_{j}|0> = 0$$

 $n_{j}|0> = 0$
 $\hat{N}|0> = 0$ (1)

Using this we can calculate $\hat{N}Q|0>$ for any Q as $\hat{N}Q|0>=[\hat{N},Q]|0>$. Very often the commutator is easy to calculate from the standard (anti)commutators.

For calculating commutators we can use the identities

$$[AB, C] = A[B, C] - [C, A]B$$

= $A\{B, C\} - \{C, A\}B.$ (2)

By using the elementary identity [P,Q] = -[Q,p] and $[A,B]^{\dagger} = [B^{\dagger},A^{\dagger}]$ we can evaluate many more relevant commutators.

Finally we should recall the telescopic identity for commutators (please check this for a few cases)

$$[A, B_1 B_2 B_3 \dots B_m] = \sum_{j=1}^m B_1 \dots B_{j-1} [A, B_j] B_{j+1} \dots B_m$$
 (3)