Physics 220- Fall 2017

Theory of Many Body Physics

Homework 2

5 October, 2017

- 1. Coleman 4.9.1 (a,b,c)
- 2. Coleman 4.9. 2 (a-d)
- 3. Supersymmetric oscillator.

(10 + 15 + 5 = 30 Punkte)

A supersymmetric oscillator is a system of non-interacting spinless bosons and fermions described by the Hamiltonian

$$\hat{\mathcal{H}} = \omega(\hat{b}^{\dagger}\hat{b} + \hat{f}^{\dagger}\hat{f}),$$

where \hat{b}^{\dagger} (\hat{b}) and \hat{f}^{\dagger} (\hat{f}) are respectively bosonic and fermionic creation (annihilation) operators.

- (a) Find the eigenstates and the eigenenergies of the oscillator, together with their degeneracies.
- (b) Operators $\hat{Q} = \sqrt{\omega} \hat{b}^{\dagger} \hat{f}$ and $\hat{Q}^{\dagger} = \sqrt{\omega} \hat{b} \hat{f}^{\dagger}$ convert fermions to bosons and bosons to fermions, respectively. Show that these operators correspond to some symmetries of the Hamiltonian. Rewrite the Hamiltonian in terms of \hat{Q} and \hat{Q}^{\dagger} .
- (c) Find the time dependence of the operators $\hat{Q}(t)$ and $\hat{Q}^{\dagger}(t)$ in the Heisenberg picture.
- 4. Reading list: Read Problem 4.79 in Coleman carefully, and reproduce his calculation.