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For Hubbard model, write H = H − µN̂ the Grand canonical Hamiltonian

H =
∑
kσ

ξkc
†
σ(k)cσ(k) +

U

Ns

∑
k,p,Q

c†↑(k +Q)c↑(k)c†↓(p−Q)c↓(p),

with ξ(k) = εk − µ, and the time dependent operators

cσ(k, τ) = eτHcσ(k)e−τH ,

so that the Greens function is

G(k, τ) = −θ(τ)Tr e−βH cσ(k, τ)c†σ(k) + θ(−τ)Tr e−βH c†σ(k)cσ(k, τ). (1)

The Kubo Martin Schwinger Matsubara (KMSM) boundary condition reads with −β ≤ τ ≤ 0 and 0 ≤ τ + β as

G(k, τ) = −G(k, τ + β), (2)

and using this we write the Fourier series for G as

G(k, iωn) =

∫ β

0

dτ eiωnτ G(k, τ) (3)

where ωn = π(2n+ 1)kBT is the odd Matsubara frequency, and the inverse transform

G(k, τ) = kBT
∑
ωn

e−iωnτG(k, iωn). (4)

We now study Eq 3 for large ωn, integrating by parts

G(k, iωn) =
1

iωn
[eiωnτ G(k, τ)]β

−

0+ −
1

iωn

∫ β

0

dτ eiωnτ ∂τG(k, τ), (5)

and using the KMSM condition Eq 2 we get

G(k, iωn) =
1

iωn
[ G(k, 0−)−G(k, 0+)]− 1

iωn

∫ β

0

dτ eiωnτ ∂τG(k, τ),

=
1

iωn
〈{cσ(k), c†σ(k)}〉 − 1

iωn

∫ β

0

dτ eiωnτ ∂τG(k, τ)

=
1

iωn
− 1

iωn

∫ β

0

dτ eiωnτ ∂τG(k, τ). (6)

We used the standard anticommutator here. We next define

G(p)(k, τ) =
dp

dτp
G(k, τ),

and

c(p)σ (k, τ) =
dp

dτp
cσ(k, τ) = [K, [K, . . . [K, cσ(k)] . . .],

and hence by repeating the trick, we obtain an iterative equation

G(p)(k, iωn) =
1

iωn
〈{c(p)σ (k), c†σ(k)}〉 − 1

iωn

∫ β

0

dτ eiωnτ G(p+1)(k, τ). (7)
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Therefore we obtain a high frequency expansion

G(k, iωn) =

∞∑
p=0

(
1

iωn
)p+1 µ

(p)
G (k),

µ
(p)
G (k) ≡ (−1)p〈{c(p)σ (k), c†σ(k)}〉 (8)

this is also called the moment expansion.
Next we discuss the spectral representation

G(k, iωn) =

∫ ∞
−∞

dν
ρG(k, ν)

iωn − ν
(9)

where

ρG(k, ν) =
∑
n,m

( pn + pm) 〈n|cσ(k)|m〉 〈m|c†σ(k)|n〉 δ(ν − εm + εn).

(9)
We may expand this at high frequencies as

G(k, iωn) =

∞∑
p=0

(
1

iωn
)p+1

∫ ∞
−∞

dν ρG(k, ν) νp (10)

and conclude that the moments are given by

µ
(p)
G (k) =

∫ ∞
−∞

dν ρG(k, ν) νp = (−1)p〈{c(p)σ (k), c†σ(k)}〉 (11)

For the Hubbard model, the Greens function is also decomposed as

(G(k, iωn))−1 = iωn − ξ(k)− Un/2−
∫ ∞
−∞

ρΣ(k, ν)

iωn − ν
dν, (12)

and hence we may expand this for high frequencies and thereby find the moments of ρΣ(k, ν) in terms of those for
ρG(k, ν), as a simple exercise. Calling ap(k) =

∫∞
−∞ dνρG(k, ν) νp, we get: (suppressing the k dependence)

a0 = µ
(2)
G − (µ

(1)
G )2

a1 = µ
(3)
G − 2µ

(2)
G µ

(1)
G + (µ

(3)
G )3 (13)

We may then write two alternative expressions

(1− f(ν)) ρG(k, ν) = ρ>G(k, ν)

f(ν) ρG(k, ν) = ρ<G(k, ν). (14)

(14)
where

ρ>G(k, ν) =
∑
n,m

pn 〈n|cσ(k)|m〉 〈m|c†σ(k)|n〉 δ(ν − εm + εn), or

ρ<G(k, ν) =
∑
n,m

pn 〈n|c†σ(k)|m〉 〈m|cσ(k)|n〉 δ(ν − εn + εm)

(14)
We note the relation

ρ>G(k, ν) = eβνρ<G(k, ν). (15)



3

In time domain:

G(k, τ) =

∫ ∞
−∞

dν ρG(k, ν) e−ντ [θ(−τ)f(ν)− θ(τ)(1− f(ν))] (16)

or

G(k, τ) =

∫ ∞
−∞

dν e−ντ
[
θ(−τ)ρ<G(k, ν)− θ(τ)ρ>G(k, ν)

]
. (17)

which is automactically satisfied with the above representation Eq. (17) upon using Eq. (15).
Real time propagators
We will also be interested in

i G(k, t) = −θ(t) 〈eiHtcσ(k)e−iHtc†σ(k)〉+ θ(−t) 〈c†σ(k)eiHtcσ(k)e−iHt〉 (18)

We see that

i G(k, t) = −θ(t)
∫ ∞
−∞

dν e−iνtρG(k, ν) f(ν) + θ(−t)
∫ ∞
−∞

dν e−iνtρG(k, ν)f(ν) (19)


