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For Hubbard model, write H = H — ,u]\7 the Grand canonical Hamiltonian

H = teck (B)ea (k) + 1 O ek + Qer(bel (0~ Qer o),
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5 kp,Q

with £(k) = e — p, and the time dependent operators
co(k, ) = e ey (k)e ™,

so that the Greens function is

G(k,7)=—-0(r)Tr e PH cg(k:,T)c:f,(k) +6(—7)Tr e PH c:f,(k)cg(k;, 7).
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The Kubo Martin Schwinger Matsubara (KMSM) boundary condition reads with —8 <7 <0 and 0 <7+ 3 as

(G(k,7) = =Gk, 7 + B),

and using this we write the Fourier series for G as
B ,
G(k,iwy) :/ dr " G(k,T)
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where w,, = 7(2n + 1)kpT is the odd Matsubara frequency, and the inverse transform

Gk, 7) =kpT Y e ™7 G(k,iwy).
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We now study Eq 3 for large w,, integrating by parts

. 1 Swn T B~ 1 g SwWn T
Gk ion) = (e Gl TG — - /0 dr ¢ 9,G(k, 7).
and using the KMSM condition Eq 2 we get
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= — —— [ dr e 0:.G(k, 7).
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We used the standard anticommutator here. We next define
dr
(») -z
G (k,7)= o G(k,T),
and
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and hence by repeating the trick, we obtain an iterative equation

GO (kyiwn) = — ({eP) (k). ch (B)}) — —
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Therefore we obtain a high frequency expansion
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this is also called the moment expansion.
Next we discuss the spectral representation
. > pG(kv V)
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where

pa(k,v) = Y (pu+pm) (nleo(k)lm) (mlch(k)|n) 6(v — em + ).
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We may expand this at high frequencies as
o0 1 [o'e)
G ; — _— \pHl P
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p=0 >
and conclude that the moments are given by
nd (k) = / dv pe(k,v) VP = (=1)P({cP (k), ch(k)}) (11)
For the Hubbard model, the Greens function is also decomposed as
1 < pu(k,v)
(G(kyiwp))™" =idwn, — (k) —Un/2 — —— dv, (12)
oo Wy —V

and hence we may expand this for high frequencies and thereby find the moments of px(k,v) in terms of those for
pa(k,v), as a simple exercise. Calling a,(k) = [ dvpg(k,v) vP, we get: (suppressing the k dependence)

a = 4§ — (ug)?

ar = n& —2nng + )’ (13)

We may then write two alternative expressions

(1= fW)) p(k,v) = pg(k,v)
fw) pc(k,v p&(k,v) (14)
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where
pG(k,v) = > po (nfeo(k)m) (mlcl(k)n) 6(v — em +£n), or
p&(k,v) = > pn (nle(k)m) (mlcy(k)In) 6(v — en + £m)
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We note the relation

pg(k,u) :eBVpé(hy)_ (15)




In time domain:

Gk, 7) = /fo dv pa(k,v) e [0(=7)f(v) = 0(T)(1 = f(¥))]

or

Gk, 7) = /_ T e (A=) (k) — 0(F)p3 k)]

which is automactically satisfied with the above representation Eq. (17) upon using Eq. (15).
Real time propagators
We will also be interested in
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We see that

§Glt) = —00) [ v o) T) 4000 [ v e pahn)f0)

— 00 —0o0

(16)

(17)



