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Solution.

1. Consider a free Fermi gas on N particles having spin half in 2-dimensions
with area A, assuming free particle dispersion εk = ~2k2/(2m).

(a) Calculate the Fermi momentum and Fermi energy in terms of the
particle density n = N/A. . . . [5]

We write the (aerial) density n as

n =
2

A

∑
k

Θ(εF − εk) =
2

4π2

∫
dkx dkyΘ(k2F − k2) =

k2F
2π
,

where we used radial symmetry to write dkx dky = 2π kdk.

(b) Assume now that the population in spins is disturbed so that
N↑ = 1+x

2 N and correspondingly N↓ = 1−x
2 N . Calculate the kinetic

energy as a function of x. . . . [10]

We can solve this problem by using a simple idea, the density in the above
problem (a) is the sum of the density of up and down spins, so that if the
two had different values nσ we would get

nσ =
k2Fσ
4π

,

where kFσ is the Fermi momentum of spin σ electrons. As a test, notice
that if we set equal densities for both and equal Fermi momenta, we are
consistent with the result of (a). Now using nσ = n(1 + σx)/2 (where
σ = ±1)

kFσ =
√

2πn(1 + σx).

Now the total kinetic energy is given by

< T > = Σσk εkΘ(kFσ − k) = AΣσ

∫
k
dk

2π

~2k2

2m
Θ(kFσ − k)

= A
~2

2m
Σσ

k4Fσ
8π

= NεF
1 + x2

2
.
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(c) In 2-dimensions consider the square lattice and sketch the Fermi
surface for non interacting electrons in tight binding at half filling, with
dispersion

εk = −2t(cos(kx) + cos(ky)),

and compare with the free electron Fermi surface εk = ~2k2/(2m) with
the same number of particles. . . . [5]

We are trying to calculate µ using

n

2
=

∫ π

−π

dkx
2π

∫ π

−π

dky
2π

Θ(µ− εk), (1)

with n = 1. We thus want the closed surface bounding half the area of
the BZ defined as −π ≤ kx, ky ≤ π. The “baseball diamond” consisting of
the interior region εk ≤ 0 clearly has half the area. Hence this is the FS
at half filling. We have done this problem in detail in one of the HW’s,
and hence I am assuming familiarity with the FS. If you have not done
the HW problem, this can be tedious in the exam.

The free particle FS will be circular with the same area. Hence

πk2F =
1

2
4π2. (2)

2. Consider a cluster of 4 sites in the form of a square, with sites labeled by
(1,2,3,4), and the pair creation operator

η†ab = (c†a↑c
†
b↓ − c

†
a↓c
†
b↑).

(a) Show (or argue) that η†12|0 > gives a singlet pair at sites (a,b).

. . . [10]

The wave function for this state will be

φa(r1)φb(r2) [↑↓ − ↓↑]

where φa, φb are the wave functions centered on sites a, b. This is clearly
a singlet state.

(b) Calculate explicitly the non-zero elements of the state

|Φ >=
1

2
(η†12 + η†23 + η†34 + η†41)2|0 > .

. . . [10]

Here we need to recall from the class discussion that
(
η†ab

)2
= 0, and

hence we only need the cross terms which are 6 in number. The statement
in red color is wrong since I am using the antisymmetrized η rather than
the Dyson creation operator (one ote the two terms of η†. The true answer
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is
(
η†ab

)2
= 2na↑nb↓ + 2na↓nb↑, where naσ is the number operator. Two

terms vanish in the answer corresponding to two creators of same spin and
site.

Remembering that (A+B)2 = A2 +B2 +{A,B} (think anticommutator),
we get

2|Φ > =
[
{η†12, η

†
23}+ {η†23, η

†
34}+ {η†34, η

†
41}+ {η†41, η

†
12}
]

[
+(η†12)2 + (η†23)2 + (η†34)2 + (η†41)2 + 2η†12η

†
34 + 2η†23η

†
41

]
|0 > .

The last two terms have no common sites in the product and hence there
is no need to antisymmetrize.

(c) Consider the operator

P (g) = e−g
∑4

i=1 ni↑ni↓ .

Show that this leaves singly occupied states untouched and suppresses
double occupancy by a certain g dependent factor. . . . [10]

This is the famous Gutzwiller operator, which has been of fundamental
importance. We know that ni↑ni↓ is one of the operators that is invariant
under squaring, or in fact taking any non-zero power. Hence we can
immediately write

P (g) =

4∏
i=1

(
1 + (e−g − 1)ni↑ni↓

)
.

Clearly this operator seeks out and suppresses doubly occupied sites by a
factor e−g which is small if g � 0.

(d) Calculate
|Ψ >= lim

g→∞
P (g)|Φ >,

where |Φ > was defined in (b) above. . . . [10]

This is easy since only the last two terms have non-overlapping terms.
Hence

|Ψ >=
[
η†12η

†
34 + η†23η

†
41

]
|0 > . (3)

This also happens to be a well known wave function, the exact ground state
for the Heisenberg antiferromagnet on the 4 site cluster. P W Anderson
was inspired by this wave function and generalized it to the so-called
resonating valence bond state.

|RV B >= lim
g→∞

P (g)|Φ0 > (4)

where |Φ0 > is the free Fermi ground state (band state).
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3. Consider the Hubbard model in the very simple atomic limit where the
kinetic energy vanishes. Thus we can ignore the site indices and consider
a single site where the H is given as

H = −µ
∑
σ

nσ + Un↑n↓.

(a) Calculate the partition function Z exactly. . . . [10]

This is quite simple.

Z = 1 + 2eβµ + e2βµe−βU .

The factor of 2 in the second term comes from the two spin directions.

(b) In this case calculate the two time independent correlation func-
tions

k1 =< c↑c
†
↑ >, k2 =< c†↑c↑ >

in terms of µ,U and T . . . . [15]

Let us calculate k2 and find k1 = 1− k2 (using the ACR).

k2 =
1

Z
(eβµ + eβµe−βU ),

where the first term comes from single occupancy of the up spin and the
second one from double occupancy. Hence

k1 =
1

Z
(1 + eβµ).

The interpretation of the answer is fun, the first term (1) comes from
vacuum where we can add the up electron, and the second from occupied
down spin state where we can add the up spin using the creation operator.

(c) Calculate the average double occupancy

d =< c†↑c↑c
†
↓c↓ >

in terms of µ,U and T . Show that d→ 0 as U → +∞. . . . [15]

This is as simple as (b).

d =
1

Z
(e2βµe−βU )

Only the doubly occupied term contributes to d.
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