Lecture 5 April 11, 2012

Natural gas


Reasons for Optimism:

1) undiscovered resources exist

2) Methane is now more "tamed" lots of methane in coal beds

3)~1100 Tcf estimated left (used up 1000Tcf)

- •Mostly methane CH4 or ethane
- •Less harmful emissions, CNG is very popular in many parts of the world (SC Metro too)
- •Natural gas @ 12.83\$/MBtu versus electricity @ 26.08\$/MBtu
- •Heating efficiency reasonable: Chimney gets most heat though- electric heating is competitive with 100% conversion, but heat pump is best as we will discuss later.
 - •Resources:
 - •Q= 1200x 1012 cft
 - •Used up 1037 x 1012 cft
 - •15% left is one estimate
 - •Rest Of the World has about 6400x1012 cft

Crude Oil Refining		
Distillate	Boiling	Carbon Atoms
Fraction	Point (°C)	per Molecule
Gases	below 30	1-4
Gasoline	30-210	5-12
Naphtha	100-200	8-12
Kerosene & Jet Fuel	150-250	11-13
Diesel & Fuel Oil	160-400	13-17
Atmospheric Gas Oil	220-345	
Heavy Fuel Oil	315-540	20-45
Atmospheric Residue	over 450	over 30
Vacuum Residue	over 615	over 60

K R discuss further about Greases, Paraffin (wax) and Pitch & Tar at tge bottom of the fraction list. Examples 2.1 and 2.2: Price of natural gas versus gasoline versus electricity in 2004..

Natural gas sold by gas company at \$13.28/1000ft3

Electricity cost .089\$ per kWh.

Gasoline sold at 1.85\$/gallon

For electrical consumption we assume 100% efficiency

Compare the three costs per BTU

Energy equivalents data provided:

(page 2 of cover RK)

Gasoline 1 Gallon

1.25x105 Btu

Natural gas 1000ft3

1.035x106 Btu

Electricity 1kWh 3413

Btu

We will calculate the cost of 10⁵ Btu energy by the three means electrical, gas and gasoline

Gasoline: $1.85/1.25 = 1.48 \, \$$ for 10^5 Btu

energy

Natural Gas: 13.28/10.35 = 1.28 \$ for 105 Btu

Electricity: .089/kWh x 1kWh/3413 Btu x 105 Btu =

2.61 \$ for 105 Btu

Ratios NG:G:E = 1:(1.15):(2.03)

Coal

- •Origin is in plants that died 350 Million years ago by anaerobic decay of organic matter (without oxygen).
- •Big role in the past development. (Steam age = Coal age)
- •Enormous reserve left but severe environmental problems and efficiency issues
- •US has about 25% of world's reserves, Russia about 23%, China,
- •If we use at the current rate, good for another 260 years!!!!

Shale oil

- •USA has huge deposit of oil shale in Green river formation in Wyoming/Utah/Colorado
- •Oil shale is a solid hydrocarbon, like wax contains Kerogen
- •Q is between 600 to 2000 Billion barrels compared to Q=324 B Barrels of petroleum.
- Very low energy density: 3 to 5 million Btu/ton compared to 27 for coal.

Tar Sand

- •Canada special
- •Viscous crude Bitumen
- Energy density is again very low-but vast deposits exist

Sun: INSOLATION

"May we attain that excellent glory of Savitar the (Sun) god: So may he stimulate our prayers."

—The Hymns of the Rigveda (2000 BC Anonymous)

Similarly Egypt + Mayans....

तत् सवितुर्वरेण्यं। भर्गो देवस्य धीमहि। धियो यो नः प्रचोदयात्॥

Solar Constant = 2 cal/min/cm^2 (averaged over the 24 hr day)

Solar energy reaching upper atmosphere in direct line of sight of Sun. Averaging over seasons reduces this.

Effective Solar Constant = 0.5 cal/min/cm²

Losses in atmosphere due to absorption amount to 53% so we get about 47% of that

For an 8 hour day @ noon

$$600 \ W/m^2 \sim 190 \frac{Btu}{ft^2 \ hr}$$

Insolation $\equiv Energy \ in \ 8 \ hr \ day \sim 1520 \frac{Btu}{ft^2} \sim 4.5 kWhr$

Total energy supplied to USA per year by the Sun

Insolation x number of days per year x total area

1520 Btu/sqft
$$\times$$
 365 \times 3.6 \times 106 míles² \times (5280)²

1 mile = 1760 yds = 5280 ft

$$E_{total} = 5.6 \times 10^{19} \ Btu/year$$

$$E_{total-Used} = 98 \times 10^{15} \ Btu/year$$

A mere 0.16%!!!!

We will study in details several Sun related issues Sun is at 5800° K.

How do we know that?

Origin of solar energy? Thermonuclear processes.

http://www.solarwarrior.com/

Adelmans' photovoltaic system. Santa Cruz CA!!! Our system has a 2,880 square foot array with a theoretical output of 30.5kW.

Clean Air Fair Santa Cruz.

Heat Engines
Thermodynamics
and
Efficiency

Energy equivalents: 1 Gallon gas= 1.25x10⁵ Btu 1 Btu=.8x10⁻⁵ Gallon gas = 1 match stick = 778 ft-pounds (lift up 1 pound by 778 ft! That is a lot)

But:

Useful energy content is much less: Carnot efficiency limits us in converting heat into energy. Entropic loss.

For this and next lecture you might refer to other books than RK e.g. Joseph Priest's Energy:Principles, Problems, Alternatives Addision Wesley

Concepts:

Temperature T, Heat ΔQ, Specific heat C, Latent heat L, Pressure
Laws of Thermodynamics 0,1,2,3
Mixtures and resulting temperatures
Carnot Cycle for efficiency
Quality of Heat and 2nd law efficiencies