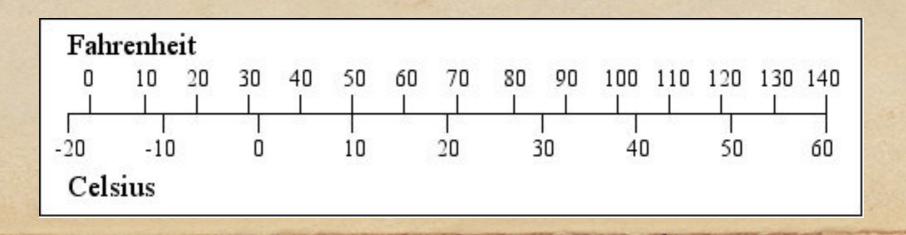
Lecture 6 Apríl 13, 2012

Heat Engines Thermodynamics and Efficiency

Concepts: Temperature T, Heat ΔQ, Specific heat C, Latent heat L, Pressure Laws of Thermodynamics 0,1,2,3 Mixtures and resulting temperatures Carnot Cycle for efficiency Quality of Heat and 2nd law efficiencies T scale: Celsius, Kelvin and Fahrenheit


 $0^0 C = 273^0 K = 32^0 F$

 ${}^{0}K = {}^{0}C + 273^{0}$ C/5 = (F - 32)/9

Ice at melting temp at sea level = 0° C=273° K=32° F

Cautionary note regarding conversion from F to C C/5=(F-32)/9 is used for converting a given temperature from one scale to another

However to convert temperature dífferences, we should use $\Delta C/5 = \Delta F/9$

Heat is written as ∆Q.
Here and everywhere ∆ (pronounced as delta) represents a change i.e. a difference. Why cant we speak of Q?
Heat is energy in flow (or motion), whereas we can speak of energy itself as a characteristic of a state.
Example: A piece of copper may be said to have a total energy of 4.2 GJ but we cannot say it has a heat content of 1 G calorie.

"Path dependence" analogous to work done.

Heat capacity: and Specific Heat

When we add heat ΔQ to a material, its temperature increases ΔT Incomplete eqn $\Delta Q = C \ \Delta T \ \times (\text{something})$ C= heat capacity that differs from material to material. C itself depends on the amount of matter present

$$c=C/M$$
 ($c=specific$ heat)
 $C=cM$

Complete eqn $\Delta Q = c \ M \Delta T$

We will see typical numbers for c as kJ/kg x ° C

or

calories/gm C^o

	ins, u.g. s,	
Си	0.39	0.093
Carbon(gr)	0.712	0.169
Graníte	0.82	0.195
Window Glass	0.84	0.2
Water	4.2	1.0
Concrete	0.924	0.22
Brick	0.84	0.20
Wet Earth	2.1	0.50
Dry Earth	0.84	0.19

kJ/(kg x C^o) calories/gm x C^o

Water has highest specific heat (more than copper here)

Specific heat

What is T anyway? (microscopic level) T is definable from Maxwell Boltzmann theory of gases/liquids Thermal agitation. Here Boltzmann's constant makes its appearance.

$$T = \frac{m}{3k_B} \langle v^2 \rangle$$

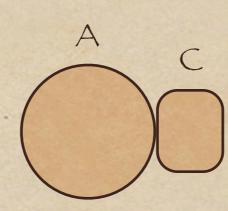
 $k_B = 1.38 \times 10^{-23} J/K$

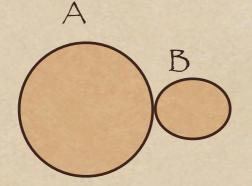
http://www.chm.davidson.edu/vce/kineticmoleculartheory/basicconcepts.html

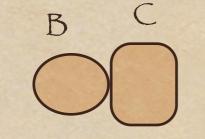
Problems Relevant Formula: Heat absorbed $\Delta Q = M \times c \times \Delta T$

•A piece of copper of weight 2 kg is heated up by 10C° Calculate the heat absorbed.

Solution:


(1) $\Delta Q = 2kg \times .3kJ/(kg \times C^{\circ}) \times 10 C^{\circ} = 6 kJ$

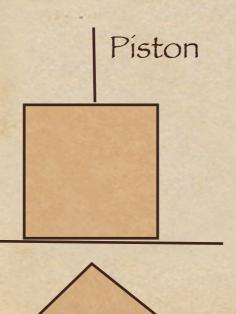

•(2) A floor made of concrete of weight 1 Tonne (metric) is heated up by the sun from 40 °F to 80°F in a day. Calculate the heat absorbed. Use kJ and convert to Btu


Specific heat	$kJ/(kg \times C^{0})$	calories/gm x	CC
Си	.268 .39	0.093	
Carbon(gr)	0.712	0.169	
Graníte	0.82	0.195	
Window Glass	0.84	0.2	
Water	4.2	1.0	
Concrete	0.924	0.22	
Brick	0.84	0.20	
Wet Earth	2.1	0.50	12/24
Dry Earth	0.84	0.19	

(2) Solution (a) $\Delta T = 40^{\circ}F = 22.22 C^{\circ}$ (b) $\Delta Q = 1000 \text{ kg x } 0.924 \text{ kJ/(kgx } C^{\circ}) \times 22.22 C^{\circ} = 20533.3 \text{ kJ} = 20.533 \text{ MJ}$ (c) $I J = 9.49 \times 10^{-4}$ Btu from tables. Hence (d) $\Delta Q = 1.95 \times 10^{4}$ Btu oth law of Thermodynamics if A and B are in (thermal) "equilibrium" and B and C are in "equilibrium" then A and C are in "equilibrium"

Equilibrium means Temperatures equalize!!

 $T_A = T_B \& T_A = T_C \implies T_B = T_C$


First Law Heat is energy and energy is conserved!!

 $\Delta E = \Delta Q + \Delta W$

We can increase the energy by either working on a system or by adding heat energy to it. Hence work done and heat have identical units:

1 calorie = 4.2J

J = Newton meter

Stove