Using Ohm's Law

Ohm's Law reads

$$
V=IR.
$$

If we know the current and the resistance, we may find the potential difference (voltage) between the ends of the piece of wire. For example, suppose a circuit element has a resistance of 50.0 Ω and carries a current of 3.5 A (a). Then the potential difference between the ends of the piece of wire is

$$
V = IR = (3.5 \text{ A}) \times (50.0 \Omega) = 175 \text{ V}.
$$

A greater resistance would have led to a greater potential difference. If the resistance were 200 Ω (b), the potential difference would have been

$$
V = IR = (3.5 \text{ A}) \times (200.0 \Omega) = 700 \text{ V}.
$$

A greater current for the same resistance would also have meant a greater potential difference. If $I = 10.0$ A (c), then the potential difference is

$$
V = IR = (10.0 \text{ A}) \times (50.0 \Omega) = 500 \text{ V}.
$$

Fig. E04.3.1 Finding the voltage (potential difference) between ends of wires, and the amount of power dissipated. a. $I = 3.5$ A, $R = 50.0$ Ω b. $I = 3.5$ A, $R = 200.0$ Ω c. $I = 10.0$ A, $R = 50.0$ Ω d. $I = 1.0$ A, $R = 50.0 \Omega$ e. $I = 3.5$ A, $R = 10.0 \Omega$

Similarly a smaller current, say $I = 1.0$ A (d), for the same resistance means a smaller potential difference

$$
V = IR = (1.0 \text{ A}) \times (50.0 \Omega) = 50.0 \text{ V}.
$$

A smaller resistance R = 10.0 Ω , for the same current as in (a), 3.5 A (e) also means a smaller potential difference between the ends of the piece of wire,

$$
V = IR = (3.5 \text{ A}) \times (10.0 \Omega) = 35 \text{ V}.
$$

Suppose we have a potential difference between two points of 100 V. If the current in the circuit element is 2.0 A, for example, we can determine the resistance to be

$$
R = V/I = 100 \text{ V}/2.0 \text{ A} = 50.0 \text{ }\Omega.
$$

A greater current flow will result if the resistance is smaller. For example, if the current in this circuit element having a potential difference of 100 V is 5.0 A, the resistance is lower:

$$
R = V/I = 100 \text{ V}/5.0 \text{ A} = 20.0 \text{ }\Omega.
$$

A smaller current flow will result when the resistance is greater. If the current in this same circuit element is 0.50 A, the resistance must have been

$$
R = V/I = 100 \text{ V}/0.50 \text{ A} = 200.0 \Omega.
$$

Finally, if we know the potential difference between the ends of the piece of wire and the resistance, we can determine the current. Suppose a piece of wire has a potential difference between the ends of the wire of 100 V and has a resistance of 10.0 Ω . The current is

$$
I = V/R = 100 \text{ V}/10.0 \Omega = 10.0 \text{ A}.
$$

Just as above, we can see that increasing the potential difference for a given resistance means a greater current, and increasing the resistance for a given potential difference means a smaller current. The contrary also is true: decreasing the potential difference for a given resistance means a smaller current, and decreasing the resistance for a given potential difference means a greater current.

Finding power

We know that power is given as

 $P = IV$

If Ohm's Law, $V = IR$, is also true, then we may find the power simply. Let us use the examples from the first paragraph above. The power used in each situation is

$$
P = IV = (175 \text{ V}) \times (3.5 \text{ A}) = 612.5 \text{ W};
$$

\n
$$
P = IV = (700 \text{ V}) \times (3.5 \text{ A}) = 2450 \text{ W};
$$

\n
$$
P = IV = (500 \text{ V}) \times (10.0 \text{ A}) = 5000 \text{ W};
$$

\n
$$
P = IV = (50.0 \text{ V}) \times (1.0 \text{ A}) = 50.0 \text{ W};
$$
and
\n
$$
P = IV = (35 \text{ V}) \times (3.5 \text{ A}) = 122.5 \text{ W},
$$
 respectively

If we know *P* and *V* we may determine *I*. Suppose in a circuit element that $V = 120$ V and $P = 1200$ W. Then

 $I = P/V = 1200$ W/120 V = 10 A.

We may now use Ohm's Law to determine the resistance of the circuit element:

 $R = V/I = 120 \text{ V}/10 \text{ A} = 12 \Omega$.

It is obvious in this case that if *R* had been known, the Joule heating relation $P = I^2 R$ could have been used to determine *I* as

$$
I = \sqrt{P/R} = \sqrt{1200 \text{ W}/12 \Omega} = \sqrt{100 \text{ A}^2} = 10 \text{ A}.
$$

As another example, consider a 10 W flashlight bulb. The two batteries that operate it produce a potential difference of 3.0 V. A current of

 $I = P/V = 10$ W/3.0 V = 3.33 A.

will flow, the resistance may be found as

$$
R = V/I = 3.0 \text{ V}/3.33 \text{ A} = 0.90 \text{ }\Omega.
$$

Note that the Joule heat equation is consistent:

$$
P = I^2 R = (3.33 \text{ A})^2 \times (0.90 \Omega) = 10 \text{ W}.
$$

Determining Joule heating losses

We would like to be able to calculate the losses to Joule heat in various situations.

Suppose a 1000 MW power plant sends its power out on a 800,000 V high voltage line. If the total resistance of the line is 2.2Ω , what percentage of the electrical power will be lost due to Joule heating?

We may find the current in the transmission line, because we know that $P = IV$, so $I =$ *P*/*V*:

$$
I = \frac{P}{V} = \frac{1000 \text{ MW}}{800\ 000 \text{ V}} = \frac{1\ 000\ 000\ 000 \text{ W}}{800\ 000 \text{ V}} = 1250 \text{ A}.
$$

The power in Joule heating is found by $P_{\text{Joule heating}} = I^2 R$,

$$
P_{\text{Joule heating}} = I^2 R = (1250 \text{ A})^2 \times 2.2 \Omega = 3,437,500 \text{ W} = 3.44 \text{ MW}.
$$

Hence $\frac{P_{Joule \text{ heating}}}{P}$ $P_{transmitted} = P_{transmitted}$ 3.44 MW $\frac{1000 \text{ MW}}{1000 \text{ MW}}$ = 0.344% and so about one-third of a percent of the

transmitted electric power is lost to Joule heating in this case.

Let's do a similar example. Suppose a 750 MW power plant sends its power out on a 364,960 V high voltage transmission line. If 1 percent of the power is lost due to Joule heating on a section of transmission line, what is the resistance of the section?

Clearly, 1% of 750 MW is 7.5 MW, so 7.5 MW of power is dissipated as Joule heat. We know the current in the line because, as mentioned above, $I = P/V$, where P is the power produced at the plant and *V* is the transmission line voltage. Then the current in the transmission line is

$$
I = P/V = \frac{750\ 000\ 000\ W}{364\ 960\ V} = 2055\ A,
$$

and the Joule heat dissipated is $P_{\text{Joule heating}} = I^2 R$,

$$
P_{\text{Joule heating}} = 7.5 \text{ MW} = (2055 \text{ A})^2 R,
$$

so we may write

$$
R = \frac{7\,500\,000\,\mathrm{W}}{4\,223\,025\,\mathrm{A}^2} = 1.78\,\mathrm{W/A}^2 = 1.78\,\mathrm{V/A} = 1.78\,\Omega.
$$

This transmission line has a resistance of 1.78 Ω .

In our final examples, a 600 MW power plant sends its power out on a high voltage line. If the total resistance of a section of the line is 160Ω , and 5% of the power is lost due to Joule heating, what is the voltage of the transmission line? We first find the loss to Joule heat, $P_{\text{Joule heating}} = (0.05) \times (600 \text{ MW}) = 30 \text{ MW}$. We know that $P_{\text{Joule heating}} = I^2 R$, so we may determine the current in the transmission line from

$$
I^2 = \frac{30\ 000\ 000\ W}{160\ \Omega} = 187,500\ A^2.
$$

Taking the square root of this number, we find a current if $I = 433$ A. Since the power coming from the power plant is $P = IV$, the voltage of the transmission line must be $V =$ *P* $\frac{I}{I}$ = 600 000 000 W $\frac{600000 \text{ W}}{433 \text{ A}} = 1,385,681 \text{ V}.$

This is not a realistic problem because there are no transmission lines operating with such high voltage. The 765,000 V transmission lines are the highest voltage lines currently in use. What if the 600 MW transmission line had a Joule heating loss of 30 MW at a voltage of 765,000 V? What would the line's resistance have to be? As in the example of

the 750 MW power plant, we have

$$
I = P/V = \frac{600\ 000\ 000\ W}{765\ 000\ V} = 784.3\ A,
$$

so
$$
I^2 = 615,148 \text{ A}^2
$$
 and
\n $R = \frac{30\ 000\ 000 \text{ W}}{615\ 148 \text{ A}^2} = 48.77 \text{ W/A}^2 \approx 48.8 \text{ V/A} = 48.8 \Omega.$